Exploring quantum spin-frustrated materials

Qingming Zhang (张清明)

Department of Physics, Renmin University, Beijing 100872

KITS Beijing, Mar. 29, 2017

Collaborators:

Yuesheng Li (RUC) Wei Tong, Langsheng Ling, Li Pi, Zhaorong Yang (HMFL) Gang Chen, Shiyan Li, Jun Zhao (Fudan) Zhonghua Wu (IHEP) D. Adroja, P. K. Biswas, P. J. Baker (RAL) A. A. Tsirlin, P. Gegenwart (Augsburg) Xiaoqun Wang (SJTU) Andrej Zorko, H. Luetkens, O. Zaharko (PSI & Institute of Jozef Stefan)

Ref.:

J. Phys.: Condens. Matter 25, 026003 (2013) Chem. Phys. Lett. 570, 37 (2013) New J. of Phys. 16, 093011 (2014) Scientific Reports 5, 16419 (2015) Phys. Rev. B 93, 060405 (R) (2016) Phys. Rev. B 94, 024438 (2016) Phys. Rev. Lett. 115, 167203 (2015) Phys. Rev. Lett. 117, 097201 (2016) Phys. Rev. Lett. 117, 267202 (2016) Phys. Rev. Lett. 118, 107202 (2017) Nature 540, 559-562 (2016)

Outline

- > A short introduction
- (Zn,Co,Ni)Cu₃(OH)₆Cl₂: two-dimensional kagome system
- > ZnCu₃(OH)₆SO₄: anisotropic kagome system
- YbMgGaO₄: structurally perfect triangular system
- ≻ Summary

Geometrical frustration

Building block for spin frustrated systems kagome, pyrochlore, spinel...

Quantum spin liquid—RVB state

RVB state – an example of a topological phase U(1) quantum spin liquid Z2 quantum spin liquid SU(2) quantum spin liquid

Buckley Prize winner 2017

X.-G. Wen

"Sheepskin Scroll"

Where to find the mysterious "liquid" in the desert of condensed matter?

- S=1/2
- Antiferromagnetic coupling and frustration geomtry
- Large frustration factor $f (= \Theta_W / T_N)$
- No long-range magnetic ordering
- No spontaneous symmetry breaking
- Strong charge fluctuation and/or exotic interactions
- Fractional excitation: spinon

Herbertsmithite

ZnCu₃(OH)₆Cl₂

Antisite disorder/ impurities

Herbertsmithite

M. Fu et al., Science 350, 655 (2015)

$MCu_3(OH)_6Cl_2$ (M=Zn, Co, Ni)

Cu: 20(1)% Intralayer/kagome position: Cu: 93.6(1.0)%

Significant site mixing

Combined structural refinements

Y. Li et al., J. Phys.: Condens. Matter 25, 026003 (2013) Y. Li et al., Chem. Phys. Lett. 570, 37 (2013)

$ZnCu_3(OH)_6SO_4$

Li et al., New J. of Phys. 16 (2014) 093011

Thermodynamics of ZnCu₃(OH)₆SO₄

Zn _x Cu _{4-x} (OH) ₆ SO ₄	Weiss tem- perature (K)	transition temperature (K)	frustration factor ($ $ Θ_w /T_c)	Curie constant (Kcm ³ / mol)	$\mu_{\rm eff}$ ($\mu_{\rm B}/$ Cu)	g
$\mathbf{x} = 0$	-100	7.5	13	22.2	1.88	2.17
x = 0.6	-90	3.5	26	19.5	1.91	2.21
x = 1	-79	< 0.05	>1580	17.1	1.90	2.20

Li et al., New J. of Phys. 16 (2014) 093011

Spin dynamics of ZnCu₃(OH)₆SO₄

ZnCu₃(OD)₆SO₄

Sign of two regions

- No oscillation down to 21 mK
- Two regions?

M. Gomilsek et al., Phys. Rev. B 93, 060405 (2016) (Rapid Commun.) M. Gomilsek et al., Phys. Rev. B 94, 024438 (2016)

3d vs 4f

Powder diffraction

Li et al., Scientific Reports 5, 16419 (2015)

Structurally perfect YbMgGaO₄

- Strict R-3m symmetry
- Two-dimensional
- $> S_{eff} = 1/2$
- No antisite/impurity
- ➢ No DM interaction
- Perfect reference sample LuMgGaO₄
- High-quality crystals available
- ➤ Small J

Li et al., Scientific Reports 5, 16419 (2015) Li et al., Phys. Rev. Lett. 115, 167203 (2015)

Single Crystals

Charge Gap \sim 4 eV

Magnetization

Θ_w~ -4 K

Li et al., Scientific Reports 5, 16419 (2015) Li et al., Phys. Rev. Lett. 115, 167203 (2015) **Spin Hamiltonian**

Under R-3m symmetry

$$\begin{split} \mathcal{H} &= \sum_{\langle ij \rangle} [J_{zz} S_i^z S_j^z + J_{\pm} (S_i^+ S_j^- + S_i^- S_j^+) \\ \text{Anisotropic} \\ \text{terms} \\ &+ J_{\pm\pm} (\gamma_{ij} S_i^+ S_j^+ + \gamma_{ij}^* S_i^- S_j^-) \\ - \frac{i J_{z\pm}}{2} (\gamma_{ij}^* S_i^+ S_j^z - \gamma_{ij} S_i^- S_j^z + \langle i \leftrightarrow j \rangle)], \end{split}$$

$$\kappa$$
-(ET)₂Cu₂(CN)₃ EtMe₃Sb[Pd(dmit)₂]₂

Strong charge fluctuations

Ring exchange

Exchange parameters

Specific Heat

- No magnetic ordering down to 50 mK
- Accurate spin entropy
- Zero-entropy spin ground state (residual spin entropy below 50 mK < 0.6%)

U(1) quantum spin liquid ground state

Rule out long-range magnetic ordering and spin freezing

Li et al., Phys. Rev. Lett. 117, 097201 (2016)

U(1) quantum spin liquid ground state

Li et al., Phys. Rev. Lett. 117, 097201 (2016)

Spin excitations

- Diffusive spin excitations
- Spinon Fermi surface
- Gapless U(1) quantum spin liquid

Y. Shen et al., Nature 540, 559-562 (2016)

Summary

- \diamond A new two-dimensional triangular compound YbMgGaO₄ with S_{eff}=1/2 and high-quality single crystals available
- ♦ Anisotropic spin Hamiltonian
- ◇ Gapless U(1) quantum spin liquid ground state
- Strong spin-orbit coupling may play a key role in forming QSL ground state and our work may inspire a new route to search for QSL materials