

The KITS 2017 Forum in Beijing (March 29, 2017)

"Mechanical Effects on Spintronics" -Spin Mechatronics-

Sadamichi Maekawa

Advanced Science Research Center (ASRC), Japan Atomic Energy Agency (JAEA), Tokai, Japan.

- Introduction to spin mechatronics; Einstein-de Haas effect (1915) and Bernett effect (1915). (M.Ono et al., Phys. Rev. B92, 174424(2015) and Y. Ogata et al., *APL (2017)*).
- Nuclear magnetic resonance with mechanical rotation, (H.Chudo et al, Appl. Phys. Express 7, 063004 (2014) and J. Phys. Soc. Jpn, 84, 043601 (2015) and more),
- 3. Spin hydrodynamic generation in liquid metals. (R.Takahashi et al., Nature Phys. 12,52 (2016)), News & Views; Nature Phys. 12,24 (2016), Nature Mat. 14, 1188 (2015), Science 350, 925 (2015)).

Collaborators (AERC, JAEA)

Experiment

E. Saitoh

S. Okayasu

M. Ono

H. Chudo

K. Harii

Y. Ogata

M. Imai

R. Takahashi

Theory

S. Maekawa

M. Matsuo

J. Ieda

Y. Ohnuma

- Introduction to spin mechatronics; Einstein-de Haas effect (1915) and Bernett effect (1915). (M.Ono et al., Phys. Rev. B92, 174424(2015) and Y. Ogata et al., *APL (2017)*).
- Nuclear magnetic resonance with mechanical rotation, (H.Chudo et al, Appl. Phys. Express 7, 063004 (2014) and J. Phys. Soc. Jpn, 84, 043601 (2015) and more),
- 3. Spin hydrodynamic generation in liquid metals. (R.Takahashi et al., Nature Phys. 12,52 (2016)), News & Views; Nature Phys. 12,24 (2016), Nature Mat. 14, 1188 (2015), Science 350, 925 (2015)).

Derivation of spin-rotation coupling

Dirac equation

$$\begin{bmatrix} \gamma^{\mu} (p_{\mu} - \mathbf{i}\hbar\Gamma_{\mu}) - mc \end{bmatrix} \psi = 0 \qquad \begin{array}{c} \gamma^{\mu} : \text{gamma matrix } m: \text{mass} \\ q: \text{charge } c: \text{velocity of light} \end{bmatrix}$$

Spin connection $\Gamma_{\mu} = -\frac{1}{4} \bar{\gamma}_{\alpha} \bar{\gamma}_{\beta} e_{\nu}^{(\alpha)} g^{\nu\lambda} \Big[\partial_{\mu} e_{\lambda}^{(\beta)} - \frac{1}{2} g^{\sigma\eta} \Big(\partial_{\nu} g_{\eta\mu} + \partial_{\mu} g_{\eta\nu} - \partial_{\eta} g_{\mu\nu} \Big) e_{\sigma}^{(\beta)} \Big]$ $e_{\mu}^{(\alpha)} : \text{vierbine} \quad g^{\mu\nu} : \text{metric}$ low energy limit $\mathcal{H} = \frac{p^{2}}{2m} - (\mathbf{r} \times \mathbf{p}) \cdot \mathbf{\Omega} \Big[-\frac{\hbar}{2} \boldsymbol{\sigma} \cdot \mathbf{\Omega} \Big]$

Non-relativistic limit

$$\mathcal{H}_{0} = \frac{p^{2}}{2m} \qquad \qquad \mathcal{U} = \exp\left(\mathbf{i}J \cdot \Omega t/\hbar\right)$$
$$J = r \times p + s \quad \text{total angular momentum}$$
$$\mathcal{H} = U\mathcal{H}_{0}U^{\dagger} - \mathbf{i}\hbar U \frac{\partial U^{\dagger}}{\partial t} = \frac{p^{2}}{2m} - (r \times p) \cdot \Omega - S \cdot \Omega$$

Derivation of spin-rotation coupling

We need to observe the Barnett field in the rotating frame!!

1. Introduction to spin mechatronics;

- Einstein-de Haas effect (1915) and Bernett effect (1915). (M.Ono et al., Phys. Rev. B92, 174424(2015) and Y. Ogata et al., *APL* (2017)).
- Nuclear magnetic resonance with mechanical rotation, (H.Chudo et al, Appl. Phys. Express 7, 063004 (2014) and J. Phys. Soc. Jpn, 84, 043601 (2015) and more),
- Spin hydrodynamic generation in liquid metals.
 (R.Takahashi et al., Nature Phys. 12,52 (2016)), News & Views; Nature Phys. 12,24 (2016), Nature Mat. 14, 1188 (2015), Science 350, 925 (2015)).

Rotate together the coil and the sample

Ω couples to angular momentum, B couples to magnetic moment.

Tuning circuit

Observation of Barnett field

Indium-115: $\gamma_{In} = 9.33 \text{ MHz/T}$ Silicon-29: $\gamma_{Si} = -8.45 \text{ MHz/T}$ Using rotating NMR, we can easily determine the sign of gyromagnetic ratio of nuclei.

- Introduction to spin mechatronics; Einstein-de Haas effect (1915) and Bernett effect (1915). (M.Ono et al., Phys. Rev. B92, 174424(2015) and Y. Ogata et al., *APL (2017)*).
- 2. Nuclear magnetic resonance with mechanical rotation, (H.Chudo et al, Appl. Phys. Express 7, 063004 (2014) and J. Phys. Soc. Jpn, **84**, 043601 (2015) and more),
- 3. Spin hydrodynamic generation in liquid metals.
 (R.Takahashi et al., Nature Phys. 12,52 (2016)), News & Views; Nature Phys. 12,24 (2016), Nature Mat. 14, 1188 (2015), Science 350, 925 (2015)).

spin current generation from fluid motion

overview

"Spin Hydrodynamic Generation (SHD)"

pipe size dependence measurement

Result 3 - Absence of Contact Electrification of Wall

