Topology and Correlations in Monolayer Crystals

Sanfeng Wu Department of Physics, MIT 12/25/2017 @ UCAS

Topology and Correlations

Topological Quantum States

Correlated Quantum States

Topology and Correlations

carrier density

carrier density

The simplest materials hosting 2D electrons:

(Isolated) Crystalline Atomic Monolayers

My Research Interests & Today's Topic

Experimental Quantum Spin Hall Effect

2D time-reversal invariant topological insulators

Semiconductor Heterostructures

Molenkamp & Zhang et al (HgTe, 2007)

Du et al (InAs/GaSb, ~ 2015)

Low Temperature Phenomena: Near Liquid Helium Temperature (< 10 K)

Monolayer QSH Systems

Spin-orbit coupled Graphene, 2005 Kane&Mele

Bismuth Bilayer, 2006 Yazdani, Murakami, Palacios etc

Stanene, 2013 S.C. Zhang et al

Silicene and Germanium, 2011 Y. Yao et al

Transition Metal Dichalcogenides Qian, Liu, Fu and Li, Science (2014)

Others: $GaBiCl_2$ BiX/SbX ZrBr $ZrTe_5$ Bi_4F_4 Bi_4Br_4 TaCX (X=Cl, Br, I) MC (M = Zr, Hf)

....

REPORT

Quantum spin Hall effect in two-dimensional transition metal dichalcogenides

Xiaofeng Qian^{1,*}, Junwei Liu^{2,*}, Liang Fu^{2,†}, Ju Li^{1,†} + Author Affiliations ^{4†}Corresponding author. E-mail: liangfu@mit.edu (L.F.); liju@mit.edu (J.L.) M = Mo, W;X = S, Se, Te. Science 20 Nov 2014: Α В С 1H-MX₂ 1T-MX₂ $1T'-MX_2$ DOI: 10.1126/science.1256815 X1 1T' TMD Monolayer M X2 > X Х Г Х

- ✓ Helical edge mode of a insulator
- ✓ Topological protection allowed by TR symmetry

Expected QSH Transport Signatures:

- Bulk insulating + edge conducting
- Quantized conductance, ~ e²/h per edge
- Conductance saturates in the short-edge limit
- Quantization destroyed under broken TR symmetry
- (Zeeman gap opening at the Dirac point)

Quantum Transport in Atomically Thin WTe₂

Edge Conduction in Monolayer WTe₂

Distinguish Edge Conduction from the Bulk Contribution

•

Tang et al, Nature Physics (2017)

Is It Really a QSH Insulator?

Difficulties

- Good Contact?
- High Quality Devices?
- How to do length dependence properly?

Helical Edge Mode: Breaking Time-Reversal Symmetry

Helical Edge Mode: Breaking Time-Reversal Symmetry

Observation of the QSHE in Monolayer WTe₂

Expected QSH Transport Signatures:

- Bulk insulating + edge conducting
- Quantized conductance, ~ e²/h per edge
- Conductance saturates in the short-edge limit
- Quantization destroyed under broken TR symmetry
- (Zeeman gap opening at the Dirac Point)
- Spin-polarized edge transport
- Non-local quantum transport
- Exotic phenomena allowed by QSHE

The High Temperature QSHE

<u>Wu*,</u>[#], Fatemi^{*,#}, Gibson, Watanabe, Taniguchi, Cava, and Jarillo-Hererro[#] to appear in **Science** (2017)

Recent ARPES/STM Measurements: **45 meV** gap in the bulk Tang et al, *Nature Physics* (2017); Jia et al, *PRB* (2017)

Superconductivity in Electrostatically Doped Monolayer WTe₂

Gate Tunable Superconductivity

Fatemi*, <u>Wu*,</u>, Cao, Bretheau, Gibson, Watanabe, Taniguchi, Cava, and Jarillo-Hererro[#] Submitted (2017)

Monolayer WTe₂: A Low Density Superconductor

2D Superconductors and their carrier densities.

A Route to Monolayer Topological Superconductor

- Understand the nature of the monolayer superconductivity
 - -- Is it unconventional/topological?
 - -- Is there spontaneous symmetry breaking?
- Create topological Josephson Junctions (Fu & Kane, 2008)
 - -- Interference pattern?
 - -- Current-phase relation?
 - -- ac Josephson effect?

- Engineer Majorana Zero Mode (MZM)
 - -- Zero bias tunneling peak?
 - -- Reading and Braiding?

A Route to Engineering Superconducting Tc

- What is the optimal Tc of the WTe₂ monolayer superconductivity?
- -- Will there be a dome in the phase diagram?
- -- Can monolayer Tc be higher than bulk (under high pressure)?

Тс	bulk	Bulk under Pressure	monolayer	Engineered Monolayer
FeSe	~ 9 K	~ 27 K	< 2.2 K (on SiC)	65 or 109 K (on STO)
WTe ₂	Not Found	~ 6.5 K	0 (Insulator)	~ 1 K (BN gated)

- Can we develop a tool box for engineering monolayer Tc?
- -- The effect of substrate, strain, pressure, twist angle, and electric field
- -- What is the effect of combining them?
- New High Tc SC in monolayer form?
- -- other monolayers?

Monolayer Tc-Engineering Tool Box

Experimental Tools To Be Developed

Monolayer Quantum Electronics

Quantum Transport

- -- Electron dissipation/dissipation-less transport
- -- Characteristic conductance (T-dependence, B-dependence, Quantization)

Electron Tunneling Spectroscopy

- -- DOS near fermi surface
- -- Van der Waals Tunneling

Monolayer Optical Spectroscopy and Microscopy

- Symmetry Breaking
- Spin information
- Time Resolution (dynamics)
- Space Resolution (microscope)

Selection of My PhD Work

2D Nanophotonics

Wu et al, 2D Materials (2014) Wu et al, Nature (2015)

2D Nonlinear Optics

Wu et al, Nano Letters (2012) Seyler,..., Wu, et al, Nat. Nanotech. (2015)

2D Magneto-photocurrent

Wu et al, Science Advances (2016) Wu et al, in preparation, (2016)

2D Valley-Optoelectronics

Wu et al, Nature Physics (2013) Ross*, Wu*, et al, Nat. Comm. (2013) Jones, ..., Wu, et al, Nat. Nanotech. (2013) Yuan, ..., Wu, et al, Nat. Phys. (2013) Singh, ..., Wu, et al, PRL (2014) Chu, ..., Wu, et al, PRB (2014) Rivera, ..., Wu, et al, Nat. Comm. (2015)

Optical Tools for Probing and Manipulating Correlated and Topological Electronic Phases

- Magneto-Optical Spectroscopy
 - --- Faraday/Kerr rotation
 - --- Time reversal symmetry breaking
 - --- Vortex/spin polarization
- Nonlinear Optics
 - -- Second harmonic generation
 - -- Inversion symmetry breaking
 - -- Lattice or electronic symmetries
- Ultrafast Pump Probe Spectroscopy
 - -- Ultrafast time domain information
 - -- Dynamics of spin, charge, orbit, and lattice
 - -- Lifetimes & hidden metastable states
- Microscopic Imaging
 - -- Kerr rotation microscope
 - -- SHG microscope
 - -- Scanning photocurrent microscope

A Laboratory for Correlated and Topological States in Atomic Monolayers

History and the Future of History

"上古结绳而治,后世圣人易之以书契"

伏羲 (3000 ~ 5000 B.C.E)

2017 C.E

"The Knotting Age"

"The Scratching Age"

结绳记事

g Age"

"A New Knotting Age"? 量子结绳记事?

刻划记事

Acknowledgements

Work at MIT

11117

Pappalardo Fellowships in Physics

MASSACHUSETTS INSTITUTE OF TECHNOLOG

Pablo Jarillo-Herrero

Quantum Nanoelectronics @ MIT

Jarillo-Herrero Group

Valla Fatemi (MIT) Quinn Gibson & Robert J. Cava (Princeton) Kenji Watanabe & Takashi Taniguchi (NIMS) Liang Fu (MIT)

Additional Information

Experimental Tools To Be Developed

Monolayer Quantum Electronics

Quantum Transport

- -- Electron dissipation/dissipation-less transport
- -- Characteristic conductance (T-dependence, B-dependence, Quantization)

Electron Tunneling Spectroscopy

- -- DOS near fermi surface
- -- Van der Waals Tunneling

Monolayer Optical Spectroscopy and Microscopy

- Symmetry Breaking
- Spin information
- Time Resolution (dynamics)
- Space Resolution (microscope)

Selection of My PhD Work

2D Nanophotonics

Wu et al, 2D Materials (2014) Wu et al, Nature (2015)

2D Nonlinear Optics

Wu et al, Nano Letters (2012) Seyler,..., Wu, et al, Nat. Nanotech. (2015)

2D Magneto-photocurrent

Wu et al, Science Advances (2016) Wu et al, in preparation, (2016)

2D Valley-Optoelectronics

Wu et al, Nature Physics (2013) Ross*, Wu*, et al, Nat. Comm. (2013) Jones, ..., Wu, et al, Nat. Nanotech. (2013) Yuan, ..., Wu, et al, Nat. Phys. (2013) Singh, ..., Wu, et al, PRL (2014) Chu, ..., Wu, et al, PRB (2014) Rivera, ..., Wu, et al, Nat. Comm. (2015)

Optical Tools for Probing and Manipulating Correlated and Topological Electronic Phases

- Magneto-Optical Spectroscopy
 - --- Faraday/Kerr rotation
 - --- Time reversal symmetry breaking
 - --- Vortex/spin polarization
- Nonlinear Optics
 - -- Second harmonic generation
 - -- Inversion symmetry breaking
 - -- Lattice or electronic symmetries
- Ultrafast Pump Probe Spectroscopy
 - -- Ultrafast time domain information
 - -- Dynamics of spin, charge, orbit, and lattice
 - -- Lifetimes & hidden metastable states
- Microscopic Imaging
 - -- Kerr rotation microscope
 - -- SHG microscope
 - -- Scanning photocurrent microscope

A Laboratory for Correlated and Topological States in Atomic Monolayers

Probing Spin Polarization in Monolayer QSHE

Spin-Polarized Current

QSHE in Monolayer WTe₂ (inversion symmetric)

Scanning Nonlinear Kerr Rotation Microscope

SHG selects only edge Kerr effect detects spin polarization

Scanning Kerr Rotation Microscope

Spin Hall Effect in Semiconductors Kato et al, Science 2014

Magneto-optics and Laser Manipulation of Single Vortex

Optical manipulation of single flux quanta I.S. Veshchunov, W. Magrini, S.V. Mironov, A.G. Godin, J.-B. Trebbia, A.I. Buzdin, Ph. Tamarat & B. Lounis *Nature Communication* (2016)

"A"brikosov "V"ortices

a, Crystal structure of 1T'-WTe₂. The doubled period due to the spontaneous lattice distortion from 1T phase is indicated by the red rectangle. **b**, Schematic diagram to show the bulk band evolution from a topologically trivial phase, to a non-trivial phase, and then to a bulk band opening due to SOC. **c**–**e**, Calculated band structures for WTe₂ to show the evolution from 1T-WTe₂ along the Γ –Y direction (**c**), 1T'-WTe₂ without SOC (**d**) and 1T'-WTe₂ with SOC (**e**). Red and blue dotted bands highlight the two bands involved in band inversion, which mainly contain the $5d_z^2$ and $5d_{xz}$ orbital contents, respectively. + and – signs denote the parity of the Bloch states at the Γ point

Superconductivity: Magnetic Field Effect

Monolayer Crystals and Heterostructures

2D electron

Atomic Heterostructures

Hidden (Buried), Complex

(Isolated) Crystalline Atomic Monolayers

Version 3.0?

Monolayer Heterostructures

Huang*, Wu^{*,#}, Sanchez^{*,#}, et al, Nature Materials (2014)

REPORT

Quantum spin Hall effect in two-dimensional transition metal dichalcogenides

Version 3.0?

Monolayer Heterostructures

Vertical

2D Atomic Lego: Atomically Sharp Atomically Close

Huang*, Wu^{*,#}, Sanchez^{*,#}, et al, Nature Materials (2014)

Existing Semiconductor Heterostructure Systems

Received 3 Feb 2015 | Accepted 20 Apr 2015 | Published 26 May 2015

DOI: 10.1038/ncomms8252

OPEN

Unexpected edge conduction in mercury telluride quantum wells under broken time-reversal symmetry

"Surprisingly, the edge conduction persists up to 9 T with little change"

Eric Yue Ma^{1,2}, M. Reves Calvo^{1,2}, Jing Wang^{1,3}, Biao Lian^{1,3}, Mathias Mühlbauer^{1,4}, Christoph Brüne⁴, Yong-Tao Cui¹, Keji Lai^{1,2,5}, Worasom Kundhikanjana^{1,2}, Yongliang Yang¹, Matthias Baenninger^{1,3}, Markus König^{1,3}, Christopher Ames⁴, Hartmut Buhmann⁴, Philipp Leubner⁴, Laurens W. Molenkamp⁴, Shou-Cheng Zhang^{1,3}, David Goldhaber-Gordon^{1,3}, Michael A. Kelly¹ & Zhi-Xun Shen^{1,2,3}

PRL 114, 096802 (2015)

PHYSICAL REVIEW LETTERS

6 MARCH 2015

Robust Helical Edge Transport in Gated InAs/GaSb Bilayers "The quantized conductance persist

Lingjie Du,¹ Ivan Knez,^{1,2} Gerard Sullivan,³ and Rui-Rui Du^{1,*}

to a 12 T applied in-plane field"

Expected QSH Transport Signatures:

- Bulk insulating + edge conducting
- Quantized conductance, ~ e^2/h per edge
- Conductance saturates in the short-edge limit **No report**
- Quantization destroyed under broken TR symmetry No
- (Zeeman gap opening at the Krammers Point)

Low Temperature **Phenomena:**

Near Liquid Helium Temperature (< 8 K)