Spin-mechatronics: spin current generation by mechanical motion

Mamoru Matsuo (AIMR Tohoku Univ., ASRC-JAEA, ERATO-JST)

in collaboration with :

(Theory) Y. Ohnuma, J. leda & S. Maekawa

(Experiment) H. Chudo, R. Takahashi, M. Ono, K. Harii, Y. Ogata, M. Imai, S. Okayasu, & E. Saitoh (JAEA) R. Iguchi (NIMS) D. Kobayashi, Y. Nozaki (Keio Univ.)

"Spin-mechatronics"

Observation of spin-current generation by

- · Liquid metal motion in Hg (R.Takahashi, MM et al., Nat. Phys. 2016)
- \cdot Surface acoustic wave in Cu (D.Kobayashi, MM et al., PRL 2017 \Im)

Spin-mechatronics project since 2010

2010.4 From IMR-Tohoku Univ. to ASRC- JAEA

Ultra high-speed rotor in ASRC: Centrifuge of isotopes

 \Rightarrow Explore interconversion between spin and

mechanical rotation ?

Prof. Maekawa ASRC, Director General

"Reconsider Einstein-de Haas/Barnett effect in terms of <u>spin current</u> after an interval of one century."

Prof. Saitoh AIMR, Tohoku Univ. <u>"Spin-mechatronics group"</u> in ASRC

"Spin current physics in non-inertial frames! But, what is the Hamiltonian?"

Electron in non-inertial frames

Gyromagnetic effect

Spin current generation by rigid, elastic, and fluid motion

Magnetism and rotation

Magnetization by rotation: Barnett effect (1915)

$$H_{\rm Spin-rotation} = -S \cdot \Omega$$

$$H_{\rm Cor} = -L \cdot \Omega$$

$$H_{\text{Zeeman}} = -S \cdot \gamma B$$

$$B_{\Omega} = \frac{\Omega}{\gamma} \left[\gamma = \frac{e}{m} : \text{gyromagnetic ratio} \right]$$

$$H_{\text{Spin-rotation}} = -S \cdot \Omega$$

How to detect? Rotation at 10kHz

Rotation as gravity

0.4 million G !! (@ 1 mm from rotation axis) gravity on white dwarf star 0.1 million G

$$r\Omega^{2} = 1 \text{mm} \times (2\pi \times 10^{4} \text{ s}^{-1})^{2} = 4 \times 10^{6} \text{m/s} \sim 0.4 \times 10^{6} \text{G}$$

Rotation as magnetic field

Gyromagnetic ratio of electron:
1T~30GHz
10kHz
$$\rightarrow$$
0.3µT
 $B = \Omega / \gamma_e, \quad \gamma_e = \frac{e}{m} = 1.76 \times 10^{11} \text{ rad} \cdot \text{s}^{-1} \cdot \text{T}^{-1}$

Challenge: How to use mechanical rotation to manipulate spins?

Observation of spin-rotation coupling

• Ferromagnets: Barnett's original exp. (1915)

Theoretical predictions:

• MM et al., PRL(2011), …

Spin-rotation coupling arise universally in rotating materials

- Paramagnetic states (Gd, Tb, Dy):
 Ono & MM et el., PRB(2015),
 Ogata, MM et al., APL(2017); JMMM(2017)
- Nuclear spin: Chudo & MM et al., APEX(2014), JPSJ(2015)

Spin-current generation by SRC

- Liquid metal flow: Takahashi & MM et al, Nat.Phys.(2016)
- Surface acoustic wave: Kobayashi & MM et al., PRL(2017)

Gyromagnetic effect

Spin current generation by rigid, elastic, and fluid motion

Mechanical generation of spin current

Pauli-Schrödinger eq. in inertial frames

Riemann-Cartan geometry (1922)

Cf. Stern-Gerlach (1922) Pauli (1927) Dirac (1928)

Spin connection = "Twist of tetrads" → spin gauge field in non-inertial frames

Spin mechatronics = Physics of spin connection

Pauli-Schrödinger eq. in rotating frame

Mechanical Spin Hall Effect due to rotation

Mechanical generation of spin current

Mechanical analogue of Stern-Gerlach effect

 $H_{\text{Zeeman}} = -S \cdot \gamma B$ $\Rightarrow F = -\nabla H_{Zeeman} = S \cdot \nabla (\gamma B)$ Spin current is generated along gradient of mag. field. $H_{\textit{Spin-rotation}} = -S \cdot \Omega$ $\Rightarrow F = -\nabla H_{Spin-rotation} = S \cdot \nabla \Omega$ Spin current is generated along rotation-gradient. How to create rotation-gradient? \rightarrow 1. Surface acoustic wave, 2. Fluid motion of liquid metal !! Spin current by vorticity gradient

Elastic motion (surface acoustic wave)

MM et al., PRB(R)2013 Kobayashi, MM et al., PRL2017 (Editors' Suggestion)

Fluid motion

R. Takahashi, MM. et al., Nature Physics 2016 MM et al., PRB(R)2017

Science, Editor's choice Nature Physics, N&V Nature Materials, N&V

Spin current generation by surface acoustic wave

Spin current is generated along vorticity gradient!

Spin-vorticity vs. Zeeman

For theoretical details: MM et al., "Spin-mechatronics", JPSJ 86, 011011 (2017).

Spin current from Surface Acoustic Wave

Spin current \propto Gradient of rotation		
	<u>Spin Hall Effect</u>	<u>Spin-rotation</u>
	Strong Spin-Orbit	w/o Spin-Orbit
10 ⁻⁶ m @ GHz	Short Spin Lifetime	Long Spin Lifetime
MM et al., Phys. Rev. B87, 180402(R) (2013)	Pt	Cu

Cu can be utilized for spin-current source! \rightarrow Rare metal free spintronics

How to detect AC spin current by SAW?

Inverse $j_c = \theta_{\text{ISHE}} \left(\frac{2e}{\hbar}\right) j_s \times \sigma_5$ Hall yolt Non-uniform \$pin current is compensated...

Prof. Nozaki's beautiful idea!

Kobayashi, Nozaki, MM et al., PRL2017

Mechanical generation of spin current

Rotation (vorticity) -gradient in a pipe flow of liquid metal

Experimental setup for spin hydrodynamic generation

R. Takahashi, MM et al., Nat. Phys. 12, 52-56 (2016)

Mechanism of Spin-hydrodynamic voltage generation

Result - Spin-hydrodynamic signal measurement

R. Takahashi, MM et al., Nat. Phys. 12, 52-56 (2016)

LETTER

doi:10.1038/nature23004

Global Λ hyperon polarization in nuclear collisions

The STAR Collaboration*

Recently, Takahashi *et al.*¹⁴ reported the first observation of a coupling between the vorticity of a fluid and the internal quantum spin of the electron, opening the door to a new field of fluid spintronics. In their study, the vorticity ω —a measure of the 'swirl' of the velocity flow field around any point (non-relativistically, $\omega = \frac{1}{2}\nabla \times v$)—is generated through shear viscous effects as liquid mercury flows next to a rigid wall.

R.Takahashi MM et al., Nature Physics 12, 52 (2016)