2017/10/16 @ KITS

Thermal effects in spintronics

Yuichi Ohnuma

Japan Atomic Energy Agency

Collaborators:

Mamoru Matsuo (JAEA) Hiroto Adachi (Okayama Univ.) Sadamichi Maekawa (JAEA)

Nano spin conversion

Curriculum vitae

EXPERIENCE

2016–present Postdoctoral Fellow, Advanced Science Research Center, Japan Atomic Energy Agency

EDUCATION

March 2016 **Ph.D. in Physics, Tohoku University, Japan** Thesis Topic: "Microscopic theory of spin current generation in magnetic insulator/ metal bilayer system"

Advisor: Professor Eiji Saioth

March 2013 M.S. in Physics, Tohoku University, Japan

March 2011 B.A. in Physics, Tohoku University, Japan

HONORS AND AWARDS

- Nov. 2016Student Award of the Physical Society of Japan"Linear response theory of spin current generated by magnons"
- Mar. 2010 Aoba-science promotion award of Tohoku University For excellent scores in undergraduate course

Achievements

Publications…7 papers

Selected papers:

- [*] Theory of the spin Peltier effect
- Y. Ohnuma, et al., Phys. Rev. B 96, 134412 (2017).
- [*] Origin of the spin Seebeck effect in compensated ferrimagnets
- S. Geprägs and <u>Y. Ohnuma</u> et al., Nat. Commun., **7**, 10452 (2016).
- [*] Spin Seebeck effect in antiferromagnets and compensated ferrimagnets <u>Y. Ohnuma</u> et al., Phys. Rev. B, **87**, 014423 (2013).

Invited talks (International conference)

- Kanazawa, Japan, Feb. 2017
- Hawaii, USA, Dec. 2016

Funding

2017	A Grant-in-Aid for Young Scientists B from MEXT, Japan "Theory of spin Peltier effect" 2017—2019 Declined according to the regulations of Japan Atomic Energy Agencey
2014/04/012016/03/31	Grant from Japan Society for the Promotion of Science, Japan "Theory of the modulated magnetization dynamics by the heat current" Total Direct Costs: 2.000.000 JPY

Spin current

 $7\rho_s$ T_s =

 $\nabla \rho_s = T_s$

 $\nabla \rho_s = T_s$

Interconversion of spin and charge currents

We can detect spin current.

Interconversion of spin and heat currents

Interconversion of spin and heat currents

Interconversion of spin and heat currents

Contents

- Spin Seebeck effect [heat -> spin]
- Spin Peltier effect [spin -> heat]
- Summary

Spin Seebeck effect

Short review of spin Seebeck effect

Spin Seebeck effect in metal/ferromagnet

Adachi PRB (2011)

König and Martinek 2003 Adachi 2011 Ohnuma 2013, 2016, 2017

Spin Seebeck effect in metal/ferromagnets

Expression of spin Seebeck effect

$$I_{S} = \Delta T \times \int_{kq\omega} \left[J_{sd}^{2} \times \operatorname{Im} \chi_{q\omega}^{R} \times \operatorname{Im} G_{k\omega}^{R} \times \frac{\partial f}{\partial T} \right]$$

Spin = Temeprature × interfacial × Spectral × Spectral × Interfacial × Spectral × function in F × Distribution function in F

$$\chi = \left\langle \sigma^{+} \sigma^{-} \right\rangle \quad G = \left\langle S^{+} S^{-} \right\rangle$$

Spin Seebeck effect in metal/ferromagnets

$$I_{sd} = \Delta T \int_{kq\omega} \left[J_{sd}^{2} \operatorname{Im} \chi_{q\omega}^{R} \operatorname{Im} G_{k\omega}^{R} \frac{\partial f}{\partial T} \right]$$
Quasiparticle approximation for FI (magnon)
$$I_{sd} = \Delta T \int_{\omega} \tilde{J}_{sd} (\omega) D(\omega) \frac{\partial f(\omega)}{\partial T}$$

$$I_{sd} = \Delta T \int_{\omega} \tilde{J}_{sd} (\omega) D(\omega) \frac{\partial f(\omega)}{\partial T}$$
Spin current = Temeprature $\times \operatorname{Effective exchange}_{at interface} \xrightarrow{\operatorname{Number of magnons}} \tilde{J}_{sd} (\omega) = J_{sd}^{2} S \operatorname{Im} \chi_{q\omega}^{R}$

Two sign changes of spin Seebeck effect in $Gd_3Fe_5O_{12}/Pt$

Geprägs and Ohnuma et al., Nat. Commun. 2016

Two sign changes of spin Seebeck effect in $Gd_3Fe_5O_{12}/Pt$

Nat. Commun. (2016)

Magnetization compensation effect RE₃Fe₅O₁₂ **M(T)** RE=Dy, Gd, Er,… Li-Cr ferrite comp **T_{Néel}** H₀ ςΑ SB

Origin of the 1st sign change

PRB 87 014423 (2013)

Magnetization compensation effect causes sign change at T_{sign1}.

Two sign changes of spin Seebeck effect in $Gd_3Fe_5O_{12}/Pt$

Nat. Commun. (2016)

Two sign changes of spin Seebeck effect in $Gd_3Fe_5O_{12}/Pt$

Nat. Commun. (2016)

Spin Seebeck effect in metal/ferromagnets

$$I_{S}^{FM} = \Delta T \int_{\omega} \tilde{J}_{sd}(\omega) D(\omega) \frac{\partial f(\omega)}{\partial T} \frac{\partial f(\omega)}{\partial T}$$

Effective exchange

at interface

Number of magnons

Spin Seebeck effect in metal/ferrimagnets

$$I_{S}^{FM} = \Delta T \int_{\omega} \tilde{J}_{sd}(\omega) D(\omega) \frac{\partial f(\omega)}{\partial T}$$

Two sub-lattice spins

$$J_{sd}^{A} \& J_{sd}^{B}$$

Spin Seebeck effect in metal/ferrimagnets

$$I_{S}^{FM} = \Delta T \int_{\omega} \tilde{J}_{sd}(\omega) D(\omega) \frac{\partial f(\omega)}{\partial T}$$

Mode decoupling

$$\begin{aligned}
Ferri\\S &= I_{S}^{\alpha} - I_{S}^{\beta}\\
I_{S}^{\alpha} &= \Delta T \int_{\omega} \tilde{J}_{sd}^{\alpha}(\omega) D^{\alpha}(\omega) \frac{\partial f(\omega)}{\partial T}\\
I_{S}^{\beta} &= \Delta T \int_{\omega} \tilde{J}_{sd}^{\beta}(\omega) D^{\beta}(\omega) \frac{\partial f(\omega)}{\partial T}
\end{aligned}$$

Competition of two modes of magnons

$$I_{S}^{Ferri} = I_{S}^{\alpha} - I_{S}^{\beta}$$

$$I_{S}^{\alpha} = \Delta T \int_{\omega} \tilde{J}_{sd}^{\alpha}(\omega) \times \left[D^{\alpha}(\omega) \frac{\partial f(\omega)}{\partial T} \right]$$

$$I_{S}^{\beta} = \Delta T \int_{\omega} \tilde{J}_{sd}^{\beta}(\omega) \times \left[D^{\beta}(\omega) \frac{\partial f(\omega)}{\partial T} \right]$$

Effective exchange at interface

Number of magnons

Competition of two modes of magnons

$$I_{S}^{Ferri} = I_{S}^{\alpha} - I_{S}^{\beta}$$
$$I_{S}^{\alpha} = \Delta T \int_{\omega} \tilde{J}_{sd}^{\alpha}(\omega) \times \begin{bmatrix} D^{\alpha}(\omega) \frac{\partial f(\omega)}{\partial T} \end{bmatrix}$$
$$I_{S}^{\beta} = \Delta T \int_{\omega} \tilde{J}_{sd}^{\beta}(\omega) \times \begin{bmatrix} D^{\beta}(\omega) \frac{\partial f(\omega)}{\partial T} \end{bmatrix}$$

Effective exchange at interface (dominant)

$$\tilde{J}^{\alpha}_{sd}(\omega) \sim \left(J^{A}_{sd}\right)^{2} S^{A}$$

$$\tilde{J}^{\beta}_{sd}(\omega) \sim \left(J^{B}_{sd}\right)^{2} S^{B}$$

Number of

Competition of two modes of magnons

$$I_{S}^{Ferri} = I_{S}^{\alpha} - I_{S}^{\beta}$$
$$I_{S}^{\alpha} = \Delta T \int_{\omega} \tilde{J}_{sd}^{\alpha}(\omega) \times \left[D^{\alpha}(\omega) \frac{\partial f(\omega)}{\partial T} \right]$$
$$I_{S}^{\beta} = \Delta T \int_{\omega} \tilde{J}_{sd}^{\beta}(\omega) \times \left[D^{\beta}(\omega) \frac{\partial f(\omega)}{\partial T} \right]$$

Effective exchange at interface (dominant)

$$\tilde{J}^{\alpha}_{sd}(\omega) \sim \left(J^{A}_{sd}\right)^{2} S^{A}$$

$$\tilde{J}^{\beta}_{sd}(\omega) \sim \left(J^{B}_{sd}\right)^{2} S^{B}$$

$$\Delta = z J_{AB} \left(S^{A} - S^{B} \right)$$

Number of

magnons

(spin A is Gd)
$$J_{sd}^{A} \ll J_{sd}^{B}$$
 \longrightarrow $\tilde{J}_{sd}^{\alpha}(\omega) \ll \tilde{J}_{sd}^{\beta}(\omega)$
 $\omega_{k=0}^{\beta} = \Delta, \omega_{k=0}^{\alpha} \sim 0$ \longrightarrow $D^{\alpha}(\omega) \frac{\partial f}{\partial T} \gg D^{\beta}(\omega) \frac{\partial f}{\partial T}$

Origin of the 2nd sign change

Spin current from mode alpha is dominant.

Spin current from mode beta is dominant.

Origin of the 2nd sign change

Spin current from mode alpha is dominant.

 $J_{sd}^{A} \ll J_{sd}^{B} \implies I_{S}^{\alpha} \ll I_{S}^{\beta}$ $\Delta < k_{B}T$ J^{B}_{sd} sd $I_{\rm S} = -I_{\rm S}^{\beta}$

Spin current from mode beta is dominant.

Origin of the 2nd sign change

Spin current from mode alpha is dominant.

 $J_{sd}^{A} \ll J_{sd}^{B} \implies I_{S}^{\alpha} \ll I_{S}^{\beta}$ $I_{S} = -I_{S}^{\beta}$ $\Delta < k_{B}T$ J^{B}_{sd}

Spin current from mode beta is dominant.

Competition of magnons causes 2nd sign change.

Origins of two sign changes of spin Seebeck effect in $Gd_3Fe_5O_{12}/Pt$

Nat. Commun. 2016

Origins of two sign changes of spin Seebeck effect in $Gd_3Fe_5O_{12}/Pt$

Nat. Commun. 2016

T_{sign2} and interfacial interaction

Spin Peltier effect

Spin Peltier effect

Heat generation and absorption due to spin current

Y. Ohnuma et al.,

Phys. Rev. B 96, 134412 (2017)

Spin accumulation $\delta \mu_{\scriptscriptstyle S} \coloneqq \mu_{\uparrow} - \mu_{\downarrow}$

From the spin diffusion equation in PM,

$$\delta \mu_{S} = 2e\alpha_{SH}\lambda_{P}\rho_{P}j_{c} \tanh(d_{P}/2\lambda_{P})$$

Spin Hall	Relaxation
angle	length

S. Zhang 2000

Y. Ohnuma et al.,

Phys. Rev. B 96, 134412 (2017)

Spin accumulation $\delta \mu_{s} \coloneqq \mu_{\uparrow} - \mu_{\downarrow}$

From the spin diffusion equation in PM,

$$\delta \mu_{S} = 2e\alpha_{SH}\lambda_{P}\rho_{P}j_{c} \tanh(d_{P}/2\lambda_{P})$$

S. Zhang 2000

Y. Ohnuma et al.,

Phys. Rev. B 96, 134412 (2017)

Y. Ohnuma et al.,

Phys. Rev. B 96, 134412 (2017)

Heat current injection due to spin accumulation

Y. Ohnuma et al., Phys. Rev. B **96**, 134412 (2017)

Onsager's reciprocal relation

Spin current injection into FI

Spin injection into FI

$$I_{S}^{\text{int}} = -\sum_{i} \left\langle \partial_{t} \sigma_{i}^{z} \right\rangle$$

König & Martinek 2003 Adachi 2011 Ohnuma 2013, 2014, 2017

Spin current injection into FI

König & Martinek 2003 Adachi 2011 Ohnuma 2013, 2014, 2017

Spin injection and spin Seebeck effect

Spin injection

Spin Seebeck effect

Spin injection and spin Seebeck effect

Spin injection and spin Seebeck effect

Spin injection

$$I_{S}^{\text{int}} = J_{sd}^{2} \int_{kq\omega} \operatorname{Im} \chi_{q\omega}^{R} \operatorname{Im} G_{k\omega}^{R} \frac{\partial f_{\omega}^{BE}}{\hbar \partial \omega} \frac{\delta \mu_{S}}{\delta \mu_{S}}$$
Spin accumulation

Spin Seebeck effect

$$I_{S}^{SSE} = J_{sd}^{2} \int_{kq\omega} \operatorname{Im} \chi_{q\omega}^{R} \operatorname{Im} G_{k\omega}^{R} \frac{\partial f_{\omega}^{BE}}{\partial T} \Delta T$$
Temperature difference

Heat-current injection into FI

Spin current

$$I_{S}^{\text{int}} = -\sum_{i} \left\langle \partial_{t} \sigma_{i}^{z} \right\rangle$$

Time derivative of spin in PM

Heat-current injection into FI

Spin current

$$I_{S}^{\text{int}} = -\sum_{i} \left\langle \partial_{t} \boldsymbol{\sigma}_{i}^{z} \right\rangle$$

Time derivative of spin in PM

Heat current

$$I_{H}^{\text{int}} = \sum_{i} \left\langle \partial_{t} H_{F} \right\rangle$$

Time derivative of Hamiltonian of FI

Maki & Griffine (1965)

$$H_F = J \sum_{ij} S_i \cdot S_j - g \mu_B H_0 \sum_i S_i^z$$

Heat-current injection into FI

Heat transport driven by spin accumulation

$$\begin{pmatrix} I_{S}^{\text{int}} \\ I_{H}^{\text{int}} \end{pmatrix} = \begin{pmatrix} L_{11} & L_{12} \\ L_{21} & L_{22} \end{pmatrix} \begin{pmatrix} \delta \mu_{S} \\ -\Delta T / T \end{pmatrix}$$

$$L_{11} = J_{sd}^2 \int_{kq\omega} \frac{1}{\hbar} \operatorname{Im} \chi_{q\omega}^R \operatorname{Im} G_{k\omega}^R \frac{\partial f_{\omega}^{BE}}{\partial \omega} \qquad L_{12} = J_{sd}^2 \int_{kq\omega} \operatorname{Im} \chi_{q\omega}^R \operatorname{Im} G_{k\omega}^R \left(-T \frac{\partial f_{\omega}^{BE}}{\partial T} \right)$$
$$L_{21} = J_{sd}^2 \int_{kq\omega} \omega \operatorname{Im} \chi_{q\omega}^R \operatorname{Im} G_{k\omega}^R \frac{\partial f_{\omega}^{BE}}{\partial \omega} \qquad L_{22} = J_{sd}^2 \int_{kq\omega} \hbar \omega \operatorname{Im} \chi_{q\omega}^R \operatorname{Im} G_{k\omega}^R \left(-T \frac{\partial f_{\omega}^{BE}}{\partial T} \right)$$

Spin Seebeck effect

Spin Peltier effect $L_{12} = J_{sd}^2 \int_{kq\omega} \operatorname{Im} \chi_{q\omega}^R \operatorname{Im} G_{k\omega}^R \left(-T \frac{\partial f_{\omega}^{BE}}{\partial T} \right)$

$$_{1} = J_{sd}^{2} \int_{kq\omega} \omega \operatorname{Im} \chi_{q\omega}^{R} \operatorname{Im} G_{k\omega}^{R} \frac{\partial f_{\omega}^{B}}{\partial \omega}$$

Spin Seebeck effect $L_{12} = J_{sd}^2 \int_{kq\omega} \operatorname{Im} \chi_{q\omega}^R \operatorname{Im} G_{k\omega}^R \left(-T \frac{\partial f_{\omega}^{BE}}{\partial T} \right)$ **Spin Peltier effect** $L_{21} = J_{sd}^2 \int_{kq\omega} \operatorname{Im} \chi_{q\omega}^R \operatorname{Im} G_{k\omega}^R \omega \frac{\partial f_{\omega}^{BL}}{\partial \omega}$ $\frac{\partial f_{\omega}^{BE}}{\partial T} = \frac{\hbar\omega}{k_{B}T^{2}} \frac{1}{4\sinh^{2}\left(\hbar\omega/2k_{B}T\right)}$ $\omega \frac{\partial f_{\omega}^{BE}}{\partial \omega} = -T \frac{\partial f_{\omega}^{BE}}{\partial T} \qquad \frac{\partial f_{\omega}^{BE}}{\partial \omega} = -\frac{\hbar}{k_B T} \frac{1}{4 \sinh^2(\hbar \omega / 2k_B T)}$

Spin Seebeck effect

 $L_{12} = J_{sd}^2 \int_{kq\omega} \operatorname{Im} \chi_{q\omega}^R \operatorname{Im} G_{k\omega}^R \left(-T \frac{\partial f_{\omega}^{BE}}{\partial T} \right)$

Spin Peltier effect

$$L_{21} = J_{sd}^2 \int_{kq\omega} \operatorname{Im} \chi_{q\omega}^R \operatorname{Im} G_{k\omega}^R \left(-T \frac{\partial f_{\omega}^{BE}}{\partial T} \right)$$

Onsager's reciprocal relation $L_{12} = L_{21}$

Kelvin's relation of thermal spin effects

$$\begin{pmatrix} I_{S}^{\text{int}} \\ I_{H}^{\text{int}} \end{pmatrix} = \begin{pmatrix} L_{11} & L_{12} \\ L_{21} & L_{22} \end{pmatrix} \begin{pmatrix} \delta \mu_{S} \\ -\Delta T / T \end{pmatrix}$$

Spin Seebeck coefficient Spin Peltier coefficient

$$I_{S}^{\text{int}} = -S_{SSE}\Delta T \qquad I_{H}^{\text{int}} = \prod_{SPE}\delta\mu_{S}$$
$$S_{SSE} = L_{12} / T \qquad \Pi_{SPE} = L_{21}$$

Kelvin's relation of thermal spin effects

$$\begin{pmatrix} I_{S}^{\text{int}} \\ I_{H}^{\text{int}} \end{pmatrix} = \begin{pmatrix} L_{11} & L_{12} \\ L_{21} & L_{22} \end{pmatrix} \begin{pmatrix} \delta \mu_{S} \\ -\Delta T / T \end{pmatrix}$$

Spin Seebeck coefficient Spin Peltier coefficient

$$I_{S}^{\text{int}} = -S_{SSE} \Delta T \qquad I_{H}^{\text{int}} = \prod_{SPE} \delta \mu_{S}$$
$$S_{SSE} = L_{12} / T \qquad \Pi_{SPE} = L_{21}$$

(cf: Kelvin's relation For thermoelectric effect $\Pi = TS$

Kelvin's relation for thermal spin effects

 $\Pi_{SPE} = TS_{SSE}$

 $L_{12} = L_{21}$

Heat generation from spin current

Summary

Note

Seebeck & Peltier effects in bulk materials

Charge currentHeat current $j_e = q \langle \partial_t N_e \rangle$ $j_h = \langle \partial_t H \rangle$ $\begin{pmatrix} j_e \\ j_h \end{pmatrix} = \begin{pmatrix} L_{11} & L_{12} \\ L_{21} & L_{22} \end{pmatrix} \begin{pmatrix} E \\ -\nabla T / T \end{pmatrix}$

Linear response theory of Seebeck & Peltier effects

$$L_{12} = TS^{SSE} = \lim \frac{1}{\omega} \int_0^\infty \left\langle \left[j_q(t), j_e \right] \right\rangle e^{-i\omega t}$$
$$L_{21} = \Pi^{SSE} = \lim \frac{1}{\omega} \int_0^\infty \left\langle \left[j_h(t), j_e \right] \right\rangle e^{-i\omega t}$$

Luttinger 1964

Charge current J_c

Y. Ohnuma et al., Phys. Rev. B **96**, 134412 (2017)

Achievements

Publications (7 papers)

[1] Theory of the spin Peltier effect

Y. Ohnuma, M. Matsuo, and S. Maekawa, Phys. Rev. B 96, 134412 (2017).

[2] Theory of spin hydrodynamic generation

M. Matsuo, Y. Ohnuma, and S. Maekawa, Phys. Rev. B, 96, 020401(R) (2017).

[3] Spin transport in half-metallic ferromagnets

Y. Ohnuma, M. Matsuo, and S. Maekawa, Phys. Rev. B, 94, 184405 (2016).

[4] Origin of the spin Seebeck effect in compensated ferrimagnets

S. Geprägs and <u>Y. Ohnuma</u> et al., Nat. Commun., **7**, 10452 (2016).

[5] Magnon instability driven by heat current in magnetic bilayers Y. Ohnuma et al., Phys. Rev. B, **92**, 224404 (2015).

[6] Enhanced dc spin pumping into a fluctuating ferromagnet near Tc Y. Ohnuma et al., Phys. Rev. B, 89, 174417 (2014).

[7] Spin Seebeck effect in antiferromagnets and compensated ferrimagnets <u>Y. Ohnuma</u> et al., Phys. Rev. B, **87**, 014423 (2013).