"New Frontiers of Strongly Correlated Electron Materials" workshop KITS Beijing Rejuvenated Understanding of Cuprate High-T_c Superconductors

Univ. Tokyo Masa Imada

Collaborators:

Shiro Sakai, Marcello Civelli, Kota Ido, Takahiro Ohgoe, Kakah Beijingawa, Hui-Hai Zhao, Satoshi Morita, Andrew Darmawan, Youhei Yamaji, Yusuke Nomura, Atsushi Fujimori, Teppei Yoshida

Open post dotoral fellow position

computational approach to strongly correlated electron systems

contact imada@ap.t.u-tokyo.ac.jp

IVI, TIVIADA

- 1. Competing Orders Stripes and *d*-wave superconductivity in Hubbard studied by the state of the art numerical methods
- 2. *ab initio* Hamiltonian for cuprate superconductors (HgBa₂CuO₄) and its solution
- 3. New concept & mechanism emerging from numerics Emergent fermions; dark fermion theory cDMFT and machine learning of ARPES
- 4. Summary and outlook

IVI, TIVIADA

Charge inhomogeneity vs. superconductivity

300

 $T_{\rm N}$

 T^*

Strange metal

Fermi

liquid

 $p_{\rm max}$

Lee et al. Nature

patch structure,

442, 546 (2006)

stripes

Variational Monte Carlo Tahara, MI JPSJ 77 (2008), 114701 $|\psi\rangle = \mathcal{L}_L \mathcal{P}_J \mathcal{P}_{d-h}^{\text{ex.}} \mathcal{P}_G \mathcal{L}^{S=0}$ $|\phi_{\rm pair}\rangle$ $\left| \Phi_{\text{pair}} \right\rangle = \left| \sum_{ij\sigma\tau} f_{ij\sigma\tau} c_{i\sigma}^{\dagger} c_{j\tau}^{\dagger} \right|^{N/2} \left| 0 \right\rangle$ f_{ii} : pair-dependent variational parameter

optimization of 1000-10000 variables to overcome bias

Represent strong entanglement in the real space representation

IVI. IIVIADA

If long-period stripe is allowed: severe competition of dSC and stripes

U/t=10 Hubbard δ~0.11

uniform dSC metastable stripe (weak dSC) GS energy difference ~ 0.01*t*

VMC+ tensor network+ Lanczos with variance extrapolation: Phase diagram of Hubbard

Outline

- 1. Competing Orders Stripes and *d*-wave superconductivity in Hubbard studied by the state of the art numerical methods
- 2. *ab initio* Hamiltonian for cuprate superconductors (HgBa₂CuO₄) and its solution
- 3. New concept emerging from numerics Emergent fermions; dark fermion theory cDMFT and machine learning of ARPES
- 4. Summary and outlook

Basic Scheme of MACE (multi-scale *ab initio* scheme for correlated electrons)

1st-principles effective Hamiltonian for curates

Hirayama *et al.* arXiv:1708.07498

HgBa₂CuO₄

1band $(x^2 - y^2)$

Hamiltonians

La₂CuO₄

Aryasetiawan *et al.* PRB 2004 MACE scheme for *ab initio* hamiltonian

improved cGW-SIC method $2p\sigma$ level feedback to satisfy

 $n_{\rm GW} = n_{\rm VMC}$

HgBa₂CuO₄ 1-band Hamiltonian e

2band $(x^2-y^2, 3z^2-r^2)$

3band $(x^2 - y^2, 2p_{\sigma})$

One-body	t_1	t_2	t_3	t_4	t_5
parameters (eV)	0.509	-0.127	0.077	-0.018	-0.004
Two-body	U	V_1	V_2	V_3	V_4
parameters (eV)	3.846	0.834	0.460	0.318	0.271

VMC+FTTN+LCZS for *ab initio* Hamiltonian of HgBa₂CuO₄

fully ab initio results with long-ranged transfer and interaction

Uniform SC state is stabilized for *ab intio* **case**

 V_3 partially cancels V_1

experiments: 0.09<δ<0.12, q~0.25 W. Tabis, Y. Li, M. L. Tacon, et al., Nat. Commun. 5, 5875 (2014). G. Campi, A. Bianconi, et al. S. M. Kazakov, et al., Nature 525, 359 (2015).

Outline

- 1. Competing Orders Stripes and *d*-wave superconductivity in Hubbard studied by the state of the art numerical methods
- 2. *ab initio* Hamiltonian for cuprate superconductors (HgBa₂CuO₄) and its solution
- 3. New concept & mechanism emerging from numerics Emergent fermions; dark fermion theory cDMFT and machine learning of ARPES

4. Summary and outlook

Introduction How did the BCS el-ph mechanism become convincing?

Green's function and self-energy in Nambu representation

 $G = \begin{pmatrix} \omega - \varepsilon_{\mathbf{k}} - \Sigma^{\text{nor}} & -\Sigma^{\text{ano}} \\ -\Sigma^{\text{ano}} & \omega + \varepsilon_{\mathbf{k}} + \Sigma^{\text{nor}} \end{pmatrix}^{-1} \text{ Nambu representation} \\ G(\mathbf{k}, \omega) = \begin{bmatrix} \omega + \mu - \varepsilon_{\mathbf{k}} - (\Sigma^{\text{nor}}(\mathbf{k}, \omega) + W(\mathbf{k}, \omega)) \end{bmatrix}^{-1} \end{pmatrix}^{-1}$ $W(\mathbf{k},\omega) = \frac{\Sigma^{\text{ano}}(\mathbf{k},\omega)^2}{\omega - \mu + \varepsilon_{\mathbf{k}} + \Sigma^{\text{nor}}(\mathbf{k},-\omega)^*}$ $A(k,\omega) = \operatorname{Im} G(k,\omega)$ Re Σ is given from Im Σ through K.K. transformation $A(k,\omega) \iff \mathcal{A}\left(\left\{\operatorname{Im}\Sigma^{\operatorname{nor}}(k,\omega),\operatorname{Im}\Sigma^{\operatorname{ano}}(k,\omega)\right\}\right)$ $A(k,\omega)$ is functional of Im $\Sigma^{nor}(k,\omega)$ and Im $\Sigma^{ano}(k,\omega)$ Experimentally, only $A(k,\omega)$ is known How to estimate (infer) inverse problem Im $\Sigma^{nor}(k,\omega)$ and Im $\Sigma^{ano}(k,\omega)$ separately? \Rightarrow machine learning

Normal and anomalous self-energies; peaks and cancellationoptimal Bi2212underdoped Bi2201 prominent peaks in Σ^{nor} and Σ^{ano} at $\pm 45 \text{ meV}(OP)$ $\pm 55 \text{ meV}(UD)$ secondary weak peaks at $\pm 130 \text{meV}(OP), \pm 160 \text{ meV}(UD)$

Cancellation of Σ^{nor} **and** W in $\Sigma^{\text{tot}} = \Sigma^{\text{nor}} + W$ The reason why overlooked in experiments for decades **Agreement with** dark fermion theory existence of Sakai *et al.* PRL dark fermion 116,057003 (2016)

Peaks are the origin of SC

$$\operatorname{Re} \Sigma^{\operatorname{ano}}(\mathbf{k}, \omega = 0) \propto \operatorname{Re} \Delta(\mathbf{k}, \omega = 0)$$

; SC gap

truncated K.K. transform

$$I_{\Sigma}(\Omega) \equiv \frac{2}{\pi} \frac{\int_{0}^{\Omega} d\omega \frac{\operatorname{Im} \Sigma^{\operatorname{ano}}(\omega)}{\omega}}{\operatorname{Re} \Sigma^{\operatorname{ano}}(\omega=0)}$$

- 90% of Re $\Sigma^{ano}(\omega=0)$ is from the first negative peaks in Im $\Sigma^{ano}(\omega)$
- Cutting the first peaks leads to the disappearance of SC and to a good normal metal
- **QP** width ~ exp. resolution 10 meV

IVI. IIVIADA

Why ML teaches us cancellation? Black box? We are led to physical intuition

large SC gap around $\omega = 0$ in $A(k, \omega)$ **prominent peak** structure in Im Σ^{ano} at $|\omega| > gap$

No prominent structure in $A(k, \omega)$ at $|\omega| > gap$ Cancellation of normal and anomalous constribution in $A(k,\omega)$

quantum coherence only at $|\omega| < \omega^*$ Peak must be in the region $|\omega| < \omega^*$

IVI. IIVIADA

Pole cancellation between Σ^{nor} and Σ^{ano} in CDMFT of Hubbard

Sakai *et al.* Phys. Rev. Lett. 116 (2016) 057003

 Σ^{nor} cancels with Win $\Sigma^{\text{tot}} = \Sigma^{\text{nor}} + W$!

Perfect agreement with the machine learning result obtained purely from the experimental data

IVI. IIVIADA

ω

How is the cancellation understood? As far as we know, the only way is the dark fermion (two-component) theory.

What is TCFM (two-component fermion model — dark fermion model) ?

$$H = \sum_{k} \left[\varepsilon_{c}(k) c_{k\sigma}^{\dagger} c_{k\sigma} + \Lambda_{k} (c_{k\sigma}^{\dagger} d_{k\sigma} + \text{H.c.}) + \varepsilon_{d}(k) d_{k\sigma}^{\dagger} d_{k\sigma} \right]$$

hybridization gap = pseudogap

cf. RVB Yang, Rice, Zhang (2006) Konig, Rice, Tsvelik (2006) for two-leg laddres

IVI, TIVIADA

Sakai et al. Phys. Rev. Lett. How to understand the cancellation; 116 (2016) 057003 **Dark fermion theory** d; dark fermion Two-component fermion model at $T < T_c$ $H = \sum \left[\varepsilon_{c}(k) c_{k\sigma}^{\dagger} c_{k\sigma} + \Lambda_{k} (c_{k\sigma}^{\dagger} d_{k\sigma} + \text{H.c.}) + \varepsilon_{d}(k) d_{k\sigma}^{\dagger} d_{k\sigma} \right]$ $+(\Delta_{c}c_{k\sigma}^{\dagger}c_{k\sigma}^{\dagger} + \Delta_{d}d_{k\sigma}^{\dagger}d_{k\sigma}^{\dagger} + \text{H.c.})]$ Nambu representation
4x4 matrix $\Sigma_{c}^{\text{nor}}(k,\omega) = G_{d}\Lambda_{k}^{2} = \frac{\Lambda_{k}^{2}}{(\omega - \varepsilon_{d}) - \frac{\Delta_{d}^{2}}{\omega + \varepsilon_{d}}} \qquad G(\mathbf{k},\omega) = \left[\omega + \mu - \varepsilon_{\mathbf{k}} - \Sigma_{c}^{\text{nor}}(\mathbf{k},\omega) - W(\mathbf{k},\omega)\right]^{-1}$ $\Sigma_{c}^{\text{ano}}(k,\omega) = \Delta_{c} + G_{d}\Lambda_{k}^{2} = \Delta_{c} + \frac{\Lambda_{k}^{2}\Delta_{d}(\omega + \varepsilon_{d})}{(\omega - \varepsilon_{d}) - \frac{\Delta_{d}^{2}}{(\omega + \varepsilon_{d})}} \qquad The residue of W$ For $T > T_{c}$, pole at $\omega = \varepsilon_{d}^{(\omega - \varepsilon_{d})} - \frac{\Delta_{d}^{2}}{(\omega + \varepsilon_{d})}$ has the same amplitude generates pseudogap with that of Σ^{ano} but with the opposite sign **Bosonic excitations such as** \Rightarrow The poles cancel in spin fluctuations would not $\Sigma^{nor}+W$ smoking gun cause the cancellation.

Emergent hybridization as the universal origin of gap generation

Hybridization gap of TCFM is the universal origin of gap formation $H = \sum_{k\sigma\sigma'} [\varepsilon(k)c_{k\sigma}^{\dagger}c_{k\sigma} + \varepsilon'(k)d_{k\sigma'}^{\dagger}d_{k\sigma'} + \Lambda(k)(c_{k\sigma}^{\dagger}d_{k\sigma'} + h.c)]$

(1) fermion symmetry breaking ex. AF, CO $d_k = c_{k+Q}$

$$c^{\dagger}cd^{\dagger}d \Longrightarrow \left\langle d^{\dagger}c \right\rangle c^{\dagger}d$$

CO, AF, BCS-SC, QCD mass (Nambu-Jona-Lasinio) (2) bose condensation

$$c^{\dagger}d(b+b^{\dagger}) \Rightarrow c^{\dagger}d(\langle b \rangle + \langle b^{\dagger} \rangle)$$
 Nambu-Goldstone

weak interaction (W-, Z-boson condensation), Higgs mechanism

QCD gluon condensation

They require always spontaneous symmetry breaking. How about the pseudogap and Mott gap

where apparent SSB is absent?

⇒ML and cDMFT tell us electron fractionalization into c and dark fermion d without SSB

exact fractionalization

mapping between single-component interacting system (Hubbard) and two-component noninteracting system (TCFM) Electron fractionalization in Mott insulator Emergent Mott gap fermion When t/U is nonzero, Mottgap fermion $\tilde{d}_{\sigma} = c_{\sigma}(1-n_{-\sigma}) - c_{\sigma}n_{-\sigma}$ is interpreted as a fermion extracted from an antiresonant state of UHB and LHB, namely doublon-holon bound state (exciton) in the insulator

 $c_{\sigma}^{\dagger} n_{-\sigma}$ upper Hubbard creation (doublon generation) $c_{\sigma}^{\dagger} (1-n_{-\sigma})$ lower Hubbard creation (singlon generation)

bistability/fractionalization between dark fermion and electron ⇒ charge inhomogeneity & phase separation

Summary

- *1. ab intio* results support dominant uniform $dSC \Leftrightarrow Hubbard$
- 2. Boltzmann machine and cDMFT; completely different approaches give consistent self-energy structure;

 \star anomalous peaks, dominating the SC

★ cancellation of Σ^{nor} and Σ^{ano} contributions

Summary

- **3.** supports dark fermion and 2-component hybridization mechanism resulting in
 - \star peak cancellation on the self-energies &
 - \star gap generation without spontaneous symmetry breaking inTCFM

$$H = \sum_{k} \left[\varepsilon_{c}(k) c_{k\sigma}^{\dagger} c_{k\sigma} + \Lambda_{k} (c_{k\sigma}^{\dagger} d_{k\sigma} + \text{H.c.}) + \varepsilon_{d}(k) d_{k\sigma}^{\dagger} d_{k\sigma} + (\Delta_{c} c_{k\sigma}^{\dagger} c_{k\sigma}^{\dagger} + \Delta_{d} d_{k\sigma}^{\dagger} d_{k\sigma}^{\dagger} + \text{H.c.}) \right]$$

4. origin of cuprate pseudogap and superconductivity

 ★ Interpreted from electron fractionalization in Mott insulator, giving associated Frenkel excitons and Mott gap fermions
 ★ Possible further fractionalization in the doped Mott insulator whose hot bed is Wannier excitons

 Dark fermions arising from Wannier excitons boost up SC and generates pseudogap

 → experimental detection
 M. IMAL