

Imaging and Controlling Emergent States in Quantum Materials

Peter Wahl University of St Andrews

Acknowledgements

Experiments:

Christopher Trainer, Chi Ming Yim, Ram Aluru, Haibiao Zhou, Antoine Essig, Jean-Philippe Reid (St Andrews) Mostafa Enayat, Zhi-Xiang Sun, Udai Raj Singh, Stefan Schmaus (Stuttgart)

Samples:

Y. Liu, C.T. Lin, MPI Stuttgart

V. Tsurkan, J. Deisenhofer, A. Loidl, Universität Augsburg

Shun Chi, Doug Bonn, UBC Vancouver

Chris Stock, University of Edinburgh

<u>Theory:</u>

A. Yaresko, MPI Stuttgart

C. Heil and F. Giustino, Oxford University

Funding:

Scottish Universities Physics Alliance

Netherlands Organization for Scientific Research (Rubicon Grant)

EPSRC

Quantum Materials -High Tc Superconductivity

May 11, 1987

K.A. Müller and J.G. Bednorz, Science 237, 1133 (1987)

Phase Diagrams of Quantum Materials

C. Lester *et al.*, Nat. Mat. **14**, 373 (2015) S. Grigera *et al.*, Science **294**, 329 (2001)

Nat. Phys. 8, 514

Instrumentation

•1.6K (to ~20K) 16T SI STM

•7mK(MXC), 14T SI-STM, hold time up to ~140h

•1.6K, 9/5T vector magnet

All with sample exchange and *in-situ* sample cleavage.

EPL. Magnet dewar STM head

Rev. Sci. Instr. **82**, 113708 (2011); Rev. Sci. Instr. **84**, 013708 (2013); Rev. Sci. Instrum. **88**, 093705 (2017)

Spectroscopic Mapping

Spatial map of local excitations:

- Local gap size
- Effect of defects
- Inelastic excitations
- Local ordering

FFT

Periodic effects:

- Quasiparticles
- CDWs
- Lattice distortions

Spin-polarized STM

With a magnetic tip on a magnetic sample:

Sample LDOS Tip LDOS

R. Wiesendanger, Rev. Mod. Phys. 81, 1495

Spin-polarized STM

With a magnetic tip on a magnetic sample:

What is the Smoking Gun of Magnetic Imaging with STM ?

- 1. Change the magnetization of the tip
- 2. image the same place with the same tip

Iron-based Superconductors

Paglione&Greene, Nat. Phys. 6, 645 (2010)

Phase Diagram

N. Katayama *et al.*, *J. Phys. Soc. Jpn.* **79**, 113702 (2010); Y. Mizuguchi and Y. Takano, *J. Phys. Soc. Jpn.* **79**, 102001 (2010)

Phase Diagram

Diagonal Double Stripe Order

Origin of complex magnetic order:

- Doping due to excess iron ? (e.g. Ducatman, Fernandes, Perkins, Phys. Rev. B 90, 165123)
- Quantum fluctuations ? (e.g. Ducatman, Perkins, Chubukov, Phys. Rev. Lett. 109, 157206)
- Structural distortion driving double-stripe order (Glasbrenner et al., Nat. Phys. 11, 954)

E.E. Rodriguez et al., Phys. Rev. B84, 064403 (2011)

Stripes in FeTe

Magnetic structure deduced from Neutron Scattering

Expected Pattern in Fourier Space

Stripes in FeTe

Non-magnetic tip

Magnetic tip

Some Fe defects gone ...

Magnetic Field

B=-5T

Magnetic Field

Largest spin polarization between Te atoms !

Science **345**, 653 (2014) Phys. Rev. B **91**, 161111 (2015)

STM in a Vectormagnet

Full 3D rotation of 5T

Rev. Sci. Instr. 88, 093705 (2017)

Results: Low excess Fe – Fe_{1.06}Te

Reconstructing the magnetic structure

Out of plane angle (degrees)

- out of plane component of 31°
- Same periodicity, but different magnetization direction than neutron scattering

see also Hänke et al, Nat. Commun. 8, 13939

Magnetic order at high excess Fe concentations *x*>0.12

Incommensurate order with q=0.4.

Magnetic order at high excess Fe concentations *x*>0.12

Spin spiral!

- spin spiral rotating in the bc plane
- full agreement with neutron scattering

Effect of removing surface Fe

Phase Diagram

Diagonal Double Stripe Order

Origin of complex magnetic order:

- Doping due to excess iron ? (e.g. Ducatman, Fernandes, Perkins, Phys. Rev. B 90, 165123)
- Quantum fluctuations ? (e.g. Ducatman, Perkins, Chubukov, Phys. Rev. Lett. 109, 157206)
- Structural distortion driving double-stripe order (Glasbrenner et al., Nat. Phys. 11, 954)

E.E. Rodriguez et al., Phys. Rev. B84, 064403 (2011)

Magnetic structure of $Fe_{1,1}Te/Fe_{1,2}Te$

Relationship with field angle

Resulting structure

Spins order in a complex staggered structure forming two different spin spirals along both Fe-Fe directions.

Construcing a magnetic phase diagram

Magnetic Phase Diagram

Phase Diagram

Origin of complex magnetic order:

- Doping due to excess iron ? (e.g. Ducatman, Fernandes, Perkins, Phys. Rev. B 90, 165123)
- Quantum fluctuations ? (e.g. Ducatman, Perkins, Chubukov, Phys. Rev. Lett. 109, 157206)
- Structural distortion driving double-q order (Glasbrenner et al., Nat. Phys. 11, 954)

E.E. Rodriguez et al., Phys. Rev. B84, 064403 (2011)

Phase Diagram

N. Katayama *et al., J. Phys. Soc. Jpn.* **79**, 113702 (2010); Y. Mizuguchi and Y. Takano, *J. Phys. Soc. Jpn.* **79**, 102001 (2010)

see Aluru et al., arxiv/1711.10389

Controlling Symmetry Breaking Electronic States

Symmetry Breaking Electronic States in Iron Pnictides

T.-M. Chuang *et al.*, Science **327**, 181 (2010)

Symmetry breaking QPI

excess iron atoms that reside between the iron-chalcogenide planes. <u>A</u> possible explanation for the symmetry-breaking excitations seen in our sample is strain, for example, building up during cooldown because of thermal contraction, which might impose a small asymmetry in the orbital couplings. High sensitivity of iron-based superconductors to small strains

Sci. Adv. 1, e1500206 (2015)

Strain-tuning in quantum materials

Divergent nematic response in BaFe2As2

Chu JH et al., Science, 337, 710 (2012)

Strain-induced enhancement of Superconductivity Steppke A *et al.*, *Science*, **355**, eaaf9398 (2017)

STM Strain-device

Voltage leads

piezo-electric actuator

brass body

- Strain due to anisotropic thermal contraction (300 -> 4 K) ~ ≤0.3%
- Strain levels achieved by voltage tuning were ≤0.01%

Rev. Sci. Instr. 88, 093705 (2017)

STM Strain-device

Voltage leads

piezo-electric actuator

brass body

• Strain due to anisotropic thermal contraction (300 -> 4 K) $\sim \leq 0.3\%$

 Strain levels achieved by voltage tuning were ≤0.01%

LiFeAs

FOV displacement demonstrates strain tuning

Structure of LiFeAs

black dashed - unstrained ($\pm 5.8 \text{ mV}$) red-dashed - V = -300 V

Modulated Phase in strained LiFeAs

Unstrained LiFeAs 15 mV, 0.25 nA Inset: -50 mV, 0.3nA

Origin of the modulation

Superconductivity forms on top of modulated state

Modulated superconductivity

Modulated superconductivity

Modulated superconductivity

positive bias

negative bias

Vortex cores in modulated phase

Phase diagram

Nature Communications 9, 2602 (2018)

Reconstruction of the Fermi surface?

Umezawa *et al.*, Phys. Rev. Lett. **108**, 037002 (2012), also Allan *et al.* Science **336**, 563 (2012)

Dip-hump features – coupling to the spin resonance

Replica features due to inelastic tunneling

Nat. Commun. 8, 15996 (2017)

Dip-hump features – coupling to the spin resonance

Nat. Commun. 8, 15996 (2017)

Spin Resonance

N. Qureshi *et al.*, *Phys. Rev. Lett.* **108**, 117001 (2012) see also A.E. Taylor *et al.*, *Phys. Rev. B* **83**, 220514 (2011)

Summary

- Magnetic imaging of emergent orders
- Manipulation of surface magnetic order

• Strain-tuning of emergent phases

The End