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Generic phase diagram of unconventional superconductors 
Superconducting dome next to a magnetically ordered phase
Non-Fermi liquid metal above the superconducting dome 

Introduction 

magnetic order

superconductivity

Fermi liquid

pressure, doping, ...

Temperature

bad metal
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Connection between spin-freezing and Sachdev-Ye model 
Sachdev-Ye model as an effective model describing the spin-
freezing crossover regime
Behavior of out-of-time-order correlation functions 

Introduction 

magnetic order

superconductivity

bad metal

Fermi liquid

pressure, doping, ...

Temperature
peculiar non-FL exponents
⌃(!) ⇠

p
!
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Method 

Dynamical mean field theory DMFT: mapping to an impurity problem

Impurity solver: computes the Green’s function of the correlated site

Bath parameters = “mean field”: optimized in such a way that the 
bath mimics the lattice environment

t

�latt � �imp

Glatt � Gimp

kt

lattice model impurity model 

Georges and Kotliar, PRB (1992)
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CT-QMC solvers allow efficient simulation of multiorbital models

Relevant cases:

4 electrons in 3 orbitals: Sr2RuO4

3 electrons in 3 orbitals, J<0: A3C60

6 electrons in 5 orbitals: Fe-pnictides

Hloc = �
�

�,⇤

µn�,⇤ +
�

�

Un�,⇥n�,⇤

+
�

�>⇥,⇤

U ⌅n�,⇤n⇥,�⇤ + (U ⌅ � J)n�,⇤n⇥,⇤

�
�

�⇧=⇥

J(⇥†
�,⇤⇥

†
⇥,⇥⇥⇥,⇤⇥�,⇥ + ⇥†

⇥,⇥⇥
†
⇥,⇤⇥�,⇥⇥�,⇤ + h.c.)

Method Werner et al., PRL (2006)
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Phase diagram for 

Metallic phase: “transition” from Fermi liquid to spin-glass
Narrow crossover regime with self-energy

3-orbital model
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3-orbital model
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Spin-freezing leads to a small “quasi-particle weight” z

3-orbital model

(a) (b) (c)
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Spin-spin and orbital-orbital correlation functions 

3-orbital model
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Decay of spin correlations 

3-orbital model

spin-freezing crossover 
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Consider the local susceptibility        

and its dynamic contribution

3-orbital model

subtract the (frozen) long-time value

�
loc

=
Z �

0

d⌧hSz(⌧)Sz(0)i

��
loc

=
Z �

0

d⌧ [hSz(⌧)Sz(0)i � hSz(�/2)Sz(0)i ]

Hoshino & Werner
PRL 115, 247001 (2015)
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Consider the local susceptibility        and its dynamic contribution

Crossover regime is characterized by large local moment fluctuations

3-orbital model
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“quasi-particle weight” z

Hund coupling J: Strongly correlated metal far from the Mott transition 

3-orbital model

from De’ Medici, Mravlje & Georges, PRL (2011)
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“quasi-particle weight” z

Hund coupling J: Strongly correlated metal far from the Mott transition 

3-orbital model

large local moment fluctuationsfrom De’ Medici, Mravlje & Georges, PRL (2011)
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Strontium Ruthenates

A self-energy with frequency dependence                      implies an 
optical conductivity 

�(�) � �1/2

�(⇥) � 1/⇥1/2
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Strongly correlated despite moderate U

                   

Pnictides
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Strong doping and temperature dependence of electronic structure

                   

Pnictides

BaFe2As2:

conventional FL metal in the
underdoped regime

non-FL properties near 
optimal doping

incoherent metal in the 
overdoped regime

Werner et al.
Nature Phys. 8, 331 (2012)
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Strong doping and temperature dependence of electronic structure

                   

Pnictides Werner et al.
Nature Phys. 8, 331 (2012)
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Identify ordering instabilities by divergent lattice susceptibilities

Calculate local vertex from impurity problem
Approximate vertex of the lattice problem by this local vertex
Solve Bethe-Salpeter equation to obtain lattice susceptibility

The following orders (staggered and uniform) are considered:

diagonal orders: 
charge, spin, orbital, spin-orbital

off-diagonal orders: 
orbital-singlet-spin-triplet SC, orbital-triplet-spin-singlet SC

Long-range order Hoshino & Werner
PRL 115, 247001 (2015)

Tuesday, August 21, 18



(a) (b) (c)

AFM

FM

SC

Normal

AFM

FM

SC
Normal

[ar
b. 
un
it]

 0

 0.5

 1

 1.5

 2

 2.5

 0  0.5  1  1.5  2  2.5  3
 0

 0.5

 1

 1.5

 2

 2.5

 0  0.5  1  1.5  2  2.5  3

Spin-freezing
crossover

Spin-freezing
crossover

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0  0.5  1  1.5  2  2.5  3

FM
AFM

SC

3-orbital model, Ising interactions

                   

Long-range order

AFM near half-filling

FM at large U away from 
half-filling

spin-triplet superconductivity 
in the spin-freezing 
crossover region

Hoshino & Werner
PRL 115, 247001 (2015)

Tuesday, August 21, 18



3-orbital model, Ising interactions (lower temperature)
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Tc dome and non-FL metal phase next to magnetic order

Generic phasediagram of unconventional SC without QCP!
            

Long-range order

(a) (b)

Spin-freezing
crossover

AFM FM

SC

Normal

Spin-freezing
crossover

SC

Normal

Fermi
liquid

Fermi
liquid 0

 0.02

 0.04

 0.06

 0.08

 0.1

 1  1.5  2  2.5  3
 0

 0.02

 0.04

 0.06

 0  0.5  1  1.5  2

bad metal bad metal

Hoshino & Werner
PRL 115, 247001 (2015)

Tuesday, August 21, 18



Tc dome and non-FL metal phase next to magnetic order

Need spin-anisotropy (SO coupling) for high Tc

probably relevant for: Sr2RuO4, UGe2, URhGe, UCoGe, ...            

Long-range order
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Pairing induced by local spin fluctuations

Effective interaction which includes bubble diagrams: 

Effective inter-orbital same-spin interaction

Long-range order

Weak-coupling argument inspired by Inaba & Suga, PRL (2012)

Ũ↵�(q) = U↵� �
X

�

U↵���(q)Ũ��(q)

Ũ
1",2"(0) = U 0 � J � [2UU 0 + (U 0 � J)2 + U 02]�

loc

in the weak-coupling regime: �
loc

= ��
loc

Hoshino & Werner
PRL 115, 247001 (2015)

Supplementary material for
“Superconductivity from emerging magnetic moments”

Shintaro Hoshino1,2 and Philipp Werner2
1Department of Basic Science, The University of Tokyo, Meguro, Tokyo 153-8902, Japan

2Department of Physics, University of Fribourg, 1700 Fribourg, Switzerland
(Dated: October 7, 2015)

Effective attraction from purely repulsive interactions

Here, we explain how local fluctuations can induce a pairing among repulsively interacting electrons. We follow
Ref. 1 that deals with a three-component fermion system. In the weak-coupling regime, the effective interactions that
incorporate bubble diagrams can be written in general form as

Ũαβ(q) = Uαβ −
∑

α1

Uαα1χα1(q)Ũα1β(q), (1)

where q = (q, iνm) with q denoting the wave vector and νm = 2πmT a bosonic Matsubara frequency. For the present
three orbital Hubbard model, the indices are given by α = (γ,σ) where γ = 1, 2, 3 and σ =↑, ↓. The bare interactions
are given by Uγσ-γσ = 0, Uγ↑-γ↓ = U , Uγ↑-γ′↓ = U ′, Uγ↑-γ′↑ = U ′−J (γ ̸= γ′). The dynamical susceptibility is defined
by χα(q) = −

∑
k gα(k)gα(k+ q) where gα(k) is the single-particle Green function for electrons with flavor α. For the

case of degenerate orbitals considered in our paper, we do not need the index α in the susceptibility.
In the DMFT approximation, only the local part of the vertex corrections is taken into account [2]. Hence we

replace the susceptibility by the local one, χloc(iνm). (This replacement is not essential for the pairing: the effective
attraction can be derived even when we consider the q-dependent susceptibility, as discussed in Ref. 1.) By solving
Eq. (1), the static interaction among 1 ↑ and 2 ↑ electrons can be explicitly derived as

Ũ1↑-2↑(0) =
U ′ − J + (J2 − 2UU ′ − 2U ′J)χloc + (U ′ − J)(U2 − 2J2 + 4U ′J)χ2

loc

[1− (U − J)χloc][1− (U + 2J)χloc][1 + (U − 2U ′ + J)χloc][1 + (U + 4U ′ − 2J)χloc]
, (2)

where we consider the static component: χloc = χloc(0). The diagrams up to second-order in the interactions are
shown in Fig. 1. In this approximation the effective interaction is given by

Ũ1↑-2↑(0) ≃ U ′ − J − [2UU ′ + (U ′ − J)2 + U ′2]χloc. (3)

Thus if the second-order terms dominate the bare interaction U ′ − J , the effective interaction Ũ1↑-2↑ can become
attractive even though the bare interaction is repulsive. Hence, Eq. (3) shows that strong local fluctuations induce a
pairing among electrons. This argument is valid in the case of weak interactions, where no local moments are formed.
In this regime, the relation ∆χloc = χloc holds (see Eq. (2) in the main text for the definition of ∆χloc).
In the above argument, the local susceptibility can be identified as the magnetic and charge susceptibilities, which

have the same value in the weak-coupling limit. With increasing repulsive Coulomb interactions, the magnetic
susceptibility is enhanced and the charge one is suppressed. Hence we expect that in the regime considered in the
main text, the local magnetic fluctuations primarily contribute to the pairing among electrons in the multi-orbital
Hubbard model. Indeed our DMFT+CTQMC calculations demonstrate a clear connection between superconductivity
and local spin susceptibility. We note that the present discussion cannot be applied to the local-moment regime with
∆χloc ̸= χloc. In this case the expansion from the strong-coupling limit should work as an effective theory.

FIG. 1: Effective attractive interactions from bubble diagrams up to second order.
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2-orbital model (U=bandwidth=4)

Negative J and orbital freezing

spin-triplet SCspin-singlet SC
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2-orbital model (U=bandwidth=4)

Mapping between J<0 and J>0:

Negative J and orbital freezing

✓
di,1#
di,2"

◆
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Away from half-filling: SC dome peaks near orbital freezing line 

Negative J and orbital freezing

line of maximum orbital fluctuations
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Orbital freezing seen in the decay of the (imaginary-time) orbital-
orbital correlation function 

fermi liquid metal:

orbital-frozen metal:

Orbital freezing crossover line: maximum of orbital fluctuations 

Negative J and orbital freezing

ho(⌧)o(0)i, o = n1 � n2

ho(⌧)o(0)i ⇠ 1/⌧2 (⌧ large)

Fermi liquid orbital-frozen
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��

orb
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R �
0

d⌧ [ho(⌧)o(0)i � ho(�/2)o(0)i]

Steiner et al.
PRB 94, 075107 (2016)
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Orbital freezing seen in the decay of the (imaginary-time) orbital-
orbital correlation function 

fermi liquid metal:

orbital-frozen metal:

Orbital freezing crossover line: maximum of orbital fluctuations

Orbital fluctuations induce attractive interaction for on-site pairs
Effective interaction which includes bubble diagrams: 

Negative J and orbital freezing Steiner et al.
PRB 94, 075107 (2016)

ho(⌧)o(0)i, o = n1 � n2

ho(⌧)o(0)i ⇠ const > 0

��

orb
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P

� U↵���(q)Ũ��(q)

) Ũ = U � 4U 0[U 0 + |J |]��
orb

+O(U3)

ho(⌧)o(0)i ⇠ 1/⌧2 (⌧ large)

analogous to:  Inaba & Suga, PRL (2012)
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Hoshino & Werner (2016)50
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Hoshino & Werner (2016)Cuprates

Unconventional SC in the spin-freezing regime
Strontium ruthenates 
Uranium-based SC
Pnictides
CrAs, MnP
...

Unconventional SC in the orbital-freezing regime
Alkali-doped fullerides 

What about cuprates? Can spin-freezing play any role in a single-band 
2D Hubbard model?

naive answer: NO,  correct answer: YES

Werner, Hoshino & Shinaoka 
PRB 94, 245134 (2016)
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Cuprates

Mapping to an effective two-orbital model:

Slater-Kanamori interaction with                                                 
nnn hopping translates into a crystal-field splitting 

single site

t 2t

t’
G0,ij

c

f

U J~
U’~
U~

δ

basis
transf.

DMFT
embedding approx.

=3

c1 = 1�
2
(d1 + d3) c2 = 1�

2
(d2 + d4)

f1 = 1�
2
(d1 � d3) f2 = 1�

2
(d2 � d4)

=3

� = 2t�

=3
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c1 = 1p
2
(d1 + d3), c2 = 1p

2
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Mapping to an effective two-orbital model:

Slater-Kanamori interaction with                                                 
nnn hopping translates into a crystal-field splitting 

Hoshino & Werner (2016)Cuprates
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Phasediagram (1-site/2-orbital DMFT)
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Phasediagram (2-site/2-orbital cluster DMFT)

Hoshino & Werner (2016)Cuprates
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Phasediagram (2-site/2-orbital cluster DMFT)

Hoshino & Werner (2016)Cuprates
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Hoshino & Werner (2016)Cuprates
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loc�(c)
12 + O(Ũ5)
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d-wave SC induced by local spin fluctuations

Transformation of the d-wave order parameter:

Effective attractive interaction:

Leading contribution:

Werner, Hoshino & Shinaoka 
PRB 94, 245134 (2016)
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Spin/orbital freezing as a universal phenomenon in unconventional 
superconductors

Strontium ruthenates 
Uranium-based SC
Pnictides
Fulleride compounds
Cuprates
...

Pairing induced by local spin or orbital fluctuations

Bad metal physics originates from fluctuating/frozen moments

Hoshino & Werner (2016)Summary I
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Sachdev-Ye model
Spin-S quantum Heisenberg model with infinite-range Gaussian-
random interactions

Fermionize spins, calculate saddle-point solution in the large-M limit 

Hoshino & Werner (2016)Connection to Sachdev-Ye model

H =

1p
NM

X

i>j

JijSi · Sj

P (Jij) ⇠ exp[�J2
ij/(2J

2
)]

N ! 1 : number of sites

S : SU(M) spin operator (M large)

G�1(i!n) = i!n � ⌃(i!n), ⌃(⌧) = �J2G(⌧)G(�⌧)G(⌧)

Sachdev & Ye, PRL (1993)

=) G(i!) ⇠ 1/
p
!n, ⌃(i!n) ⇠ i

p
!n, hSa

i (⌧)S
a
i (0)i ⇠ 1/⌧
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=) G(i!) ⇠ 1/
p
!n, ⌃(i!n) ⇠ i

p
!n, hSa

i (⌧)S
a
i (0)i ⇠ 1/⌧

Sachdev-Ye model

Same non-Fermi liquid exponents as in the spin-freezing crossover 
region 

Hoshino & Werner (2016)Connection to Sachdev-Ye model
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Sachdev-Ye model: recent extensions

Sachdev-Ye-Kitaev (SYK) model: Fermionic version with Gaussian-
random interaction tensor (same saddle point equations)

Lattice of “SYK atoms”:

Hoshino & Werner (2016)Connection to Sachdev-Ye model

H lattice =
X

r,r0,l

tr,r0c
†
r0,lcr,l +

X
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FIG. 1: (a) A two-dimensional lattice where each site contains N orbitals (represented by di↵erent

colors). The hoppings, tcrr0 , between any neighboring sites (colored arrows) are diagonal in orbital-index.

Each site is identical and the system is translationally invariant. (b) The internal structure of a single site

with N orbitals. The on-site interactions, U c

ijk`

, are quartic in the fermion operators, with all orbital

indices unequal.

It is believed that the properties of the SYK model are self-averaging, in the sense that the

correlation functions of a typical realization are close to those of the mean, up to 1/N corrections. In

Appendix B, we demonstrate that the standard deviations and higher cumulants of the correlation

functions in our model are suppressed by powers of 1/N . We therefore expect that the correlation

functions in our model are self-averaging in the large N limit, as in the single-site SYK model.

A. Fermion Green’s Function

The fermion Green’s function can be analyzed diagrammatically, such that the large-N saddle-

point solution reduces to studying the following set of equations self-consistently,

Gc(k, i!) =
1

i! � "
k

� ⌃c(k, i!)
, (2a)

⌃c(k, i!) = �U2

c

ˆ
k

1

ˆ
!
1

Gc(k1

, i!
1

) ⇧c(k + k

1

, i! + i!
1

), (2b)

⇧c(q, i⌦) =

ˆ
k

ˆ
!
Gc(k, i!) Gc(k + q, i! + i⌦), (2c)

HSYK
=

1

(2M)

3/2

X

ijkl

Uijklc
†
i c

†
jckcl, M = number or orbitals

Chowdhury et al, arxiv:1801.06178
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Hoshino & Werner (2016)Connection to Sachdev-Ye model
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jckcl, M = number or orbitals

Sachdev-Ye model: recent extensions

Sachdev-Ye-Kitaev (SYK) model: Fermionic version with Gaussian-
random interaction tensor (same saddle point equations)

Lattice of “SYK atoms”:

high T: local physics dominates
       same as SYK

low T: Fermi-liquid metal

Chowdhury et al, arxiv:1801.06178
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Interaction tensor

Gaussian-random interaction tensor is unphysical

        for a Slater-Kanamori interaction with M=2,3,5 orbitals

Switch to density-density interactions                          and focus on 
inter-orbital terms (            terms)

Hoshino & Werner (2016)Connection to Sachdev-Ye model
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Interaction tensor

Gaussian-random interaction tensor is unphysical

        for a Slater-Kanamori interaction with M=2,3,5 orbitals

Switch to density-density interactions                          and focus on 
inter-orbital terms (            terms)

Hoshino & Werner (2016)Connection to Sachdev-Ye model
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Tuesday, August 21, 18



Interaction tensor

Gaussian-random interaction tensor is unphysical

Physically meaningful and much simpler model: 

Density-density interactions with                                                    
random-bimodal distribution

average interaction is the                                                                
“Hubbard U”

difference between the two                                                               
interactions is the Hund coupling

This model has the same saddle point equations as the SY(K) model

Hoshino & Werner (2016)Connection to Sachdev-Ye model

 0

 0.5

 1

P(
U α

β)

b)

J

Uav Uαβ

same spin opposite spin
U’-J U’

large M

Werner, Kim & Hoshino
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Important point: interaction vertex in the second order diagram is 
Hund coupling

Consequence: no Hund coupling, no interesting non-FL properties

Same equations as for the SYK lattice model          same physics:
non-FL properties (                                                         ) at high T
FL metal at low T

Hoshino & Werner (2016)Connection to Sachdev-Ye model

Hartree diagram:       
monopole interaction

2nd order diagram:       
Hund coupling effect

⌃(i!n) ⇠
p
!n, hSz(⌧)Sz(0)i ⇠ 1/⌧

Werner, Kim & Hoshino
arxiv:1805.04102
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Hoshino & Werner (2016)Connection to Sachdev-Ye model
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Interpretation of the generic DMFT phase diagram

As filling increases, local moments                                                     
appear due to effect of Hund coupling

As these moments form, the “Kondo                                              
screening temperature” drops, resulting                                              
in a bad metal with frozen moments

The SY equations describe the                                                            
spin-freezing crossover regime                                                         
characterized by fluctuating moments                                                  

The SY equations also naturally explain                                             
the connection to superconductivity

Werner, Kim & Hoshino
arxiv:1805.04102
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Connnection to superconductivity

Effective interaction which takes account of  “polarization bubble”:

From                              follows                     and thus

Hoshino & Werner (2016)Connection to Sachdev-Ye model

G(i!n) ⇠ 1/
p
!n

P (i!n) = � 1p
2⇡ ˜J

log(

˜J/!n) ) Ue↵(! ! 0) ! �1

P (⌧) ⇠ 1/⌧

Ue↵(i!n) = Ũ + J̃P (i!n)J̃ , P (⌧) = G(⌧)G(�⌧)

Werner, Kim & Hoshino
arxiv:1805.04102
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Out-of-time-order correlation functions

probes chaotic nature of quantum systems

Conjecture: universal bound on growth rate of OTOCs

SYK model saturates this bound on chaos

Question: nontrivial behavior of OTOCs in the spin-freezing 
crossover regime of multi-orbital Hubbard models?

Hoshino & Werner (2016)Outlook 

OTOC(t, t0) = hA(t)B(t0)A(t)B(t0)i

OTOC(t, t0) = c0 + c1 exp[�(t� t0)] + . . . , �  2⇡�

Tsuji & Werner  
in preparation

Larkin & Ovchinnikov, JETP (1969)

Maldacena, Shenker, Stanford, J. High Energy Phys. (2016)
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Hoshino & Werner (2016)Outlook 

OTOC(t, t0) = hA(t)B(t0)A(t)B(t0)i
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Out-of-time-order correlation functions

Exponential decay of OTOC in the spin-freezing crossover regime

Similar to ED results for finite-M SYK model Fu & Sachdev, PRB (2016)

Tsuji & Werner  
in preparation
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Summary II 

SY equations can be derived from M-orbital Hubbard model with 
bimodal-distributed density-density interactions

SY equations describe the spin-freezing crossover regime and the 
superconductivity at low T

Non-Fermi liquid behavior arises from Hund coupling

Spin-OTOC exhibits exponential decay in the fluctuating moment 
regime (similar to finite-M SY model)

Spin-freezing:  P. Werner, E. Gull, M. Troyer and A. Millis, PRL 101, 166405 (2008)
Connection to superconductivity:  S. Hoshino and P. Werner, PRL 115, 247001 (2015)
Connection to A3C60:  K. Steiner, S. Hoshino, Y. Nomura and P. Werner, PRB 94, 075107 (2016) 
Connection to cuprates:  P. Werner, S. Hoshino and S. Shinaoka, PRB 94, 245134 (2016)
Connection to Sachdev-Ye model:  P. Werner, A. Kim and S. Hoshino, arxiv:1805.04102
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