Optical Manipulation of Magnetism in a Correlated Electron System

Department of Physics Tohoku University Sendai, Japan

Sumio Ishihara

New Frontier of Strongly Correlated Electron Material, August 6-24, 2018 Kavli ITS Beijing, China

Outline

 [1] Excitonic insulating state in a correlated material as an orbital physics
 J. Nasu (Tokyo Tech.), M. Naka (Waseda Univ.)
 T. Tatsuno (Tohoku Univ.), T. Watanabe (Chiba Tech.)

> Phys. Rev. B **93**, 205136 (2016) J. Phys. Soc. Jpn. 85, 083706 (2016)

[2] Double exchange interaction in non-equilibrium state

A. Ono (Tohoku Univ.) J. Ohara (Hokkaido Univ.), Y Kanamori (Tohoku Univ.)

Phys. Rev. Lett. 119, 207202 (2017) (Editors' suggestion) Phys. Rev. B 88, 085107 (2013)

Band insulator v.s. Mott insulator

Excitonic insulator (EI)

Perovskite cobaltites

Perovskite cobaltites

La_{1-x}Sr_xCoO₃

• LaCoO₃ : LS Insulator to HS (IS) metal with increasing T

LS Insulator to FM metal with x

Strain on thin film

Strain on thin film

PRL 111, 027206 (2013)

Ion substitution (II)

Tsubouchi-Itoh et al. Phys. Rev. B 66, 052418 (2002)

 $R_{1-x}A_xCoO_3$ (R: Pr A: Ca, Sr, Ba)

J. Kuneš and P. Augustinský PRB 89, 115134 (2014) J. Kuneš and P. Augustinský PRB 90, 235112 (2014)

a candidate of excitonic insulator (EI)

Excitonic Insulators

Semiconductor, Semimetal

Electron-Hole binding energy > band gap

Condensation of macroscopic number of excitons

Mott(61) Knox (63) Keldysh(65), Jerome-Rice-Khon (1967) Halperin, Rice, Solid State Physics, 21 (1968) Fukuyama (1971), Kuramoto(1978)

Excitonic Insulators

Different symmetries in c & f bands No direct hybridization

$$\mathcal{H}_t = -\sum_{\langle ij \rangle \sigma} t\left(c^{\dagger}_{i\sigma} f_{j\sigma} + H.c.\right)$$

Spontaneous symmetry breaking

$$c^{\dagger}cf^{\dagger}f \rightarrow -c^{\dagger}f\langle f^{\dagger}c\rangle$$

Order parameter

$$N^{-1} \langle \sum_{i} c_{i}^{\dagger} f_{i} \rangle e^{iQr_{i}}$$
$$|EI\rangle \sim N^{-1} \sum_{i} \left(u + v c_{i}^{\dagger} f_{i} \right) |0\rangle$$

Analogy with Superconductivity

Non-conserved

$$\langle f^{\dagger}f \rangle - \langle c^{\dagger}c \rangle$$
 (EI)
$$\langle f^{\dagger}f \rangle + \langle c^{\dagger}c \rangle$$
 (EC)

 $\langle f'f \rangle + \langle c'c \rangle$ (SC)

Excitonic Insulators

- **Ta**₂NiSe₅
- Flat dispersion observed in ARPES

Y. Wakisaka et al., PRL 103, 026402 (2009).

- Y. Wakisaka et al., J. Supercond. Nov. Magn. 25, 1231 (2012).
- T. Kaneko, T. Toriyama, T. Konishi, and Y. Ohta, PRB 87, 035121 (2013).
- T. Kaneko and Y. Ohta, PRB 90, 245144 (2014).

IT-TiSe2

J. Ishioka et al, PRL. 105, 176401 (2010).H. Watanabe, K. Seki, and S. Yunoki, PRB 91, 205135 (2015).

Approach from Band Ins.

Ni -2.0

Mott physics / Mottness (?)

Perovskite cobaltites

Theoretical approaches

Two band Hubbard with energy difference

Local states

Pseudo-spin operator

El order parameter

orbital
spin
$$\tau_{S_z}^{x} = (|HS(S_z)\rangle\langle LS| + |LS\rangle\langle HS(S_z)|)$$
 $\sim f^{\dagger}c + c^{\dagger}f$ $\tau_{S_z}^{y} = -i(|HS(S_z)\rangle\langle LS| - |LS\rangle\langle HS(S_z)|)$ $\sim f^{\dagger}c - c^{\dagger}f$ $\tau_{S_z}^{z} = |HS(S_z)\rangle\langle HS(S_z)| - |LS\rangle\langle LS|$ $\sim f^{\dagger}f - c^{\dagger}c$

Low energy model

$$\begin{split} \mathcal{H}_{eff} &= E_0 - h_z \sum_i \tau_i^z + J_s \sum_{\langle ij \rangle} \vec{S}_i \cdot \vec{S}_j + J_z \sum_{\langle ij \rangle} \tau_i^z \tau_j^z \\ & \text{Band gap} \\ & \text{LS-HS int.} \\ & + J_x \sum_{\langle ij \rangle \Gamma} \tau_i^x \tau_j^x + J_y \sum_{\langle ij \rangle \Gamma} \tau_i^y \tau_j^y \\ & \text{Exciton-exciton interaction} \\ \end{split}$$

XYZ-like model with transverse field

If no pair-hopping, then $J_x \equiv J_y$ XXZ-like model with transverse field

Y. Kanamori, H. Matsueda and S. Ishihara Phys. Rev. Lett. 107, 167403 (2011), Phys. Rev. B 86, 045137 (2012)

J. Kuneš and P. Augustinský PRB 89, 115134 (2014), PRB 90, 235112 (2014)

C. D. Batista, PRL 89, 166403 (2002)

L. Balents, PRB 62 2346 (2000)

G. Khalliuline, PRL 111 197201(2013)

Symmetry

$$\mathcal{H}_{eff} = E_0 - h_z \sum_i \tau_i^z + J_s \sum_{\langle ij \rangle} \vec{S}_i \cdot \vec{S}_j + J_z \sum_{\langle ij \rangle} \tau_i^z \tau_j^z$$
$$+ J_x \sum_{\langle ij \rangle \Gamma} \tau_{i\Gamma}^x \tau_{j\Gamma}^x + J_y \sum_{\langle ij \rangle \Gamma} \tau_{i\Gamma}^y \tau_{j\Gamma}^y$$

Symmetry & Conservation

	S^x, S^y, S^z Total spin angular momentum				O(3)	
	$\sum_{i} (n_i^a + n_i^b)$	Total electron number			U(1)	
	If no pair-hopping	$J_x = J_y$	Flor	tron number (difference $U(1)$	
	$\sum_{i} \tau_i^z \sim \sum_{i} (n_i^a - n_i^b)$			between c/f bands		
				ative phase	$a HS\rangle + e^{i\theta}b LS\rangle$	
	$ \tau_{\Gamma}^x \to -\tau_{\Gamma}^x \qquad \tau_{\Gamma}^y $	$\rightarrow -\tau_{\Gamma}^{y}$	Z_2	Relative sign	$a HS angle\pm b LS angle$	

Symmetry of El order parameter

Collective mode and symmetry

Meaning of sign degree of freedom

From more general point of view

$$\Box \ \tau_{\Gamma}^{x} \to -\tau_{\Gamma}^{x} \qquad \tau_{\Gamma}^{y} \to -\tau_{\Gamma}^{y} \qquad \qquad Z_{2} \quad \text{Relative sign} \qquad a|HS\rangle \pm b|LS\rangle$$

Ferroelastic Cubic-monoclinic

Phase diagram at T=0

Mean field approximation 2dim square lattice

Phase diagram

Two El phases

Spin nematic order

5 orbital model

5 orbital model

Magnetic Excitation

AFM Spin wave in Sxx (Transverse)

S^{xx}(Transverse) and S^{zz}(Longitudinal) (due to LS-HS mixing)) $a|HS\rangle + b|LS\rangle$

Spin wave in spin nematic order

c.f G. Khalliuline, PRL 111 197201(2013)

Magnetic susceptibility (T=0)

Magnetic field effect

J. Kuneš et al. (Sci. Rep. 2016)

Phys. Rev. B 93, 220401 (2016)

A Ikeda, T Nomura, Y. H. Matsuda, A. Matsuo, K. Kindo, and K. Sato

Magnetic field induced EI

Summary

Mott Insulator vs. Band Insulator: El is a possible candidate

Ground state

- Two EI phases
- Breaking Z2 symmetry in El phase (In no-pair hopping, U(1))
- •Nematic spin order in EI(LS)

Collective excitations

- Magnons : Longitudinal excitation
- Excitonic mode (Higgs mode)

Good targets for X-ray / Neutron spectroscopies

Magnetic field effect

- Transverse v.s longitudinal susceptibilities
- •H induced El

Phys. Rev. B **93**, 205136 (2016) J. Phys. Soc. Jpn. 85, 083706 (2016)

Outline

[1] Excitonic insulating state in a correlated material

J. Nasu (Tokyo Tech.), M. Naka (Waseda Univ.) T. Tatsuno (Tohoku Univ.), T. Watanabe (Chiba Tech.)

J. Nasu, T.Watanabe, M.Naka, and SI, Phys. Rev. B 93, 205136 (2016)
T. Tatsuno, E. Mizoguchi, J. Nasu, M. Naka, and SI, J. Phys. Soc. Jpn. 85, 083706 (2016)

[2] Double exchange interaction in non-equilibrium state

A. Ono (Tohoku Univ.) J. Ohara (Hokkaido Univ.), Y Kanamori (Tohoku Univ.)

A. Ono and SI, Phys. Rev. Lett. 119, 207202 (2017)

(Editors' suggestion) J. Ohara, Y. Kanamori and SI, Phys. Rev. B 88, 085107 (2013)

Non-eq. dynamics in correlated materials

Optical manipulation of magnetism

Ultrafast demagnetization

E. Beaurepaire, J. Merle, et al. PRL (1996)

Light induced spin crossover

S. Ohkoshi, et al. Nat. Chem. (2010)

Fe2[Nb(CN)8]·(4-pyridinealdoxime)8·2H2O

Ultrafast magnetization reverse

K. Vahaplar, et al. PRL (2009)

Gd22Fe68.3Co9.8

Optical excitation of skyrmion

Manipulation of exchange interaction

Superexchange interaction in Mott insulator

J. H. Mentink, K. Balzer, and M. Eckstein, Nat. Commun. (2015).

Spin-orbital exchange interaction in orbital degenerate Mott insulator

M. Eckstein, J. H. Mentink, and P. Werner, arXiv:1703.03269v1

Double exchange interaction

DEx interaction in solids

Colossal Magneto Resistance

Urushibara et al. JPSJ

Magnetic semiconductor

EuSe

From A. Yanase, and T. Kasuya, J. Phys. Soc. Jpn. 25,(1968).

And more

Molecular magnet

[(PY5Me2)2V2(m-5,6-dmbzim)]31 in 14.3.5MeCN.Et2O

B. Bechlars, et al. Nat. Chem. 2, 362 (2010).

Anomalous Hall effect

Y. Taguchi, et al. 2001 Science 291

Photo irradiation in DEx system

Tomioka-Tokura et al. PRB ('04)

AFM exchange interaction Coulomb interaction in addition to original DEx interaction

Optical pump-probe

Photo irradiation as a carrier doping

Theoretical demonstration

K. Satoh and SI JMMM 130, 798-800 (2007)

Real time simulation

H. Matsueda & SI, JPSJ76, 083703, ('07)

Y. Kanamori, H. Matsueda and SI PRL 103, 26740 ('09)

Y. Kanamori, H. Matsueda and SI, PRB 82, 115101 ('10)

Pump-probe spectra

Photo-induced AFM/CO to metallic FM

AFM-CO insulator

FM metal

0.5000 0.8000 0.7000 0.6000 0.5000 0.4000 0.3000 0.2000 0.1000

Theoretical demonstration

Koshibae-Furukawa-Nagaosa PRL 03, 266402 (2009) EPL 94, 27003 (2011) 10/ 1-1 $(\times 10^{-3})$ $S(\vec{q})$ $S(\vec{q})$ $S_1(\vec{q})$ 1.0 0.1⁰(j) 0.0⁰(i) π ⁰(k) π $-\pi$ $-\pi$ π AFM FM

Weak excitation (~1 photon/100sites)

AFM to FM

Ground state in DEx model

DEx interaction revisit

(pure) Double Exchange Model

$$H = -t \sum_{\langle i,j \rangle \sigma} c_{i\sigma}^{\dagger} c_{j\sigma} - 2J_{\rm H} \sum_{i} \boldsymbol{S}_{i} \cdot \boldsymbol{s}_{i}$$

- No AF interaction
- Classical localized spin
- FM metallic GS (mainly 1/4 filling)

Model & Method

Conduction electrons

Wave function

$$|\Psi(\tau)\rangle = \prod_{\nu=1}^{N_{\rm e}} \psi_{\nu}^{\dagger}(\tau)|0\rangle \qquad \qquad H(\tau) = \sum_{\nu} \varepsilon_{\nu}(\tau)\tilde{c}_{\nu}^{\dagger}(\tau)\tilde{c}_{\nu}(\tau)$$

Time evolution

 $\psi^{\dagger}_{\nu}(\tau + \delta\tau) = e^{iH(\delta\tau)\delta\tau}\psi^{\dagger}_{\nu}(\tau)e^{-iH(\delta\tau)\delta\tau}$

2-dimensional square N = 8×8-12×12 sites (PBC/APBC)

Vector potential

$$t \to t e^{iA(\tau)}$$

Linearly polarized CW / Pulse field

Localized classical spins

Landau–Lifshitz–Gilbert (LLG) equation

$$\frac{d\boldsymbol{S}_i}{d\tau} = \boldsymbol{h}_i^{\text{eff}} \times \boldsymbol{S}_i + \alpha \boldsymbol{S}_i \times \frac{d\boldsymbol{S}_i}{d\tau}$$

 $\alpha:$ Gilbert damping factor

Randomness in initial spins

$$A \sim \mathrm{MV/cm}$$

 $\omega \sim t$

Koshibae-Furukawa-Nagaosa PRL(09)

Animation

CW field: $A_0/t = 2.0$, $\omega/t = 1.0$

Time profiles

A. Ono, and SI, Phys. Rev. Lett. (2017) (Editor suggestion) arXiv:1705.00240v1

Cluster Size & Light Polarization dependences

Cluster size

At early time domain

CW

Excitation inside of the lower band : $\langle n \rangle = 1$ and 0 are intermingled. Band width reduction : Dynamical localization

A. Ono, and SI, Phys. Rev. Lett. (2017) (Editor suggestion) arXiv:1705.00240v1

Dynamical localization at early time domain

D. H. Dunlap and V. M. Kenkre, PRB 34, 3625 (1986)
Y. Kayanuma, Phys. Rev. A 50, 843 (1994).
N. Tsuji, T. Oka, H. Aoki, and P. Werner, PRB 85, 155124 (2012).
K. Yonemitsu and K. Nishioka, JPSJ 84, 054702 (2015).
Ishikawa, S. Iwai et al.Nature commun. 5, 5528(2014)
A. Ono and SI Phys. Rev. B 95, 085123 (2017)
and more

T. Ishikawa, SI, K. Yonemitsu, S. Iwai et al. Nature commun. 5, 5528(2014)

Dynamical localization at early time domain

Time average of the kinetic energy in early time domain

$$K \equiv (\Delta T)^{-1} \int_{\Delta T} d\tau \langle \mathcal{H}_t \rangle$$

 $t_{\rm eff} = t J_0(A_0/\omega)$

Dynamical localization scenario works well at early stage

Key parameters for the FM-to-AFM conversion

Key parameters for the FM-to-AFM conversion

Steady NEq AFM state

CW

(iv): Steady AFM state

Electron distribution is almost uniform in the lower band

Steady NEq AFM state

Energy difference E(AF)-E(F) with uniform electron distribution

AFM steady state gives lower energy in wide range

Beyond the CW light

Transient spin structure

Intermediate time domain ($\tau = 200/t$) Larger cluster (L = 16)

CW

Vortex-like magnetic structure

Summary

Double exchange interaction in non-eq. state revisited

FM to AFM conversion by strong light field

Non-eq. electron distribution

Topological texture in transient state

Experimental confirmation

Candidates: cubic/layered manganites Pulse + CW method : more realistic transient optical spectra tr. magnetic x-ray diffraction tr. ARPES (BZ folding) tr. Ramman (AFM magnon)

A. Ono and SI, Phys. Rev. Lett. 119, 207202 (2017) (Editor suggestion) A. Ono and SI, Phys. Rev. B 95, 085123 (2017)

