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Outline

 A brief introduction to Kitaev honeycomb model

 The construction of exactly solvable models

 Generating new models: 1D, 2D and 3D

 A particular example in 2D: a Mott insulator model 

 3D examples and possible realization in real 

materials



Kitaev Honeycomb model

Kitaev (2006)

 Exact solvability

 Quantum paramagnet 

 SU(2) invariant ground state

 Emergent SU(2) symmetry

 Fractional spin excitations

 Topologically distinct phases

 Two spins per unit cell

Spin-1/2 model (compass model)

Feng, Zhang, Xiang (2007); Chen, Nussinov (2008)

Brick-wall representation



Existing generalizations

 Spin-1/2 models in 2D

 Yao, Kivelson (2007); Yang, Zhou, Sun (2007); Baskaran, Santhosh, Shankar 

(2009); Tikhonov, Feigelman (2010); Kells, Kailasvuori, Slingerland, Vala (2011); …

 Spin-1/2 models in 3D

 Si, Yu (2007); Ryu (2009); Mandal, Surendran (2009); Kimchi, Analytis, Vishwanath

(2014); Nasu, Udagawa, Motome (2014); Hermanns, O'Brien, Trebst (2015); 

Hermanns, Trebst (2016); …

 Multiple-spin interactions

 Kitaev (2006); Lee, Zhang, Xiang (2007); Yu, Wang (2008); …

 SU(2)-invariant models

 F. Wang(2010); Yao, Lee (2011); Lai and O. I. Motrunich (2011); …

 Higher spin models

 Yao, Zhang, Kivelson (2009); Wu, Arovas, Hung (2009); Chern (2010); Chua, Yao, 

Fiete (2011); Nakai, Ryu, Furusaki (2012); Nussinov, van den Brink, (2013); …



Our goals

 Provide some generic rules for searching generalized Kitaev

spin-1/2 models in arbitrary dimensions.

 Constrict ourselves on spin-1/2 models.

 Demonstrate some models of particular interest.



Construction of spin-1/2 models

Basic idea: ① Construct exactly solvable 1D spin chains and ② then 

couple them to form a connected lattice in arbitrary dimensions.

Steps:

① Construct spin-1/2 chains that can be exactly solved by  the 

Jordan-Wigner transformation.

② Couple these chains to form a connected lattice on which the 

spin-1/2 model can be still exactly solved by the Jordan-Wigner 

transformation.

Parquet rules:

① Elementary rules

② Supplementary rules



Sites and links on a lattice

 Consider a 𝒅-dimensional cube, 𝒅 = 𝟐, 𝟑, 𝟒,⋯
 Site labelling: 𝒏 = 𝒏𝟏, 𝒏𝟐, ⋯ , 𝒏𝒅 , 1 ≤ 𝒏𝒋 ≤ 𝑳𝒋, 𝒋 = 1,⋯,𝒅

 Ordering of sites

 Define a number,𝑵 = 𝒏𝟏 + σ𝒋=𝟐
𝒅 𝒏𝒋 − 𝟏 ς

𝒍=𝟏
𝒋−𝟏

𝑳𝒋 , for each site 𝒏;

 If 𝑵 < 𝑴, then 𝒏 < 𝒎.
 Link: a pair of sites (𝒏,𝒎)

 Local link: σ𝒋=𝟏
𝒅 𝒏𝒋 −𝒎𝒋 = 𝟏

 Nonlocal link: σ𝒋=𝟏
𝒅 𝒏𝒋 −𝒎𝒋 > 𝟏

ordering of sites local and nonlocal links



Construction rules 

Interactions

 𝐻𝑙𝑜𝑐𝑎𝑙
(2)

: local two−spin terms, 𝐽
𝑛,𝑛+1
𝛼𝛽

𝜎𝑛
𝛼𝜎

𝑛+1
𝛽

and 𝐽𝑛,𝑛+𝑘
𝑧𝑧 𝜎𝑛

𝑧𝜎𝑛+𝑘
𝑧 ;

 𝐻𝑛𝑜𝑛𝑙𝑜𝑐𝑎𝑙
(2)

: nonlocal two−spin terms, 𝐽𝑛𝑚
𝑧𝑧 𝜎𝑛

𝑧𝜎𝑚
𝑧 ;

 𝐻𝑛𝑜𝑛𝑙𝑜𝑐𝑎𝑙
(𝑀)

: nonlocal multiple−spin terms, 𝐽𝑛𝑚
𝛼𝛽
𝜎𝑛
𝛼 ς𝑛<𝑙<𝑚𝜎𝑙

𝑧 𝜎𝑚
𝛽
, etc.,

where 𝛼, 𝛽 = 𝑥, 𝑦, and 𝑘 = 1,⋯ , መ𝑑.

Model Hamiltonian

𝐻 = 𝐻𝑙𝑜𝑐𝑎𝑙
(2)

+ 𝐻𝑛𝑜𝑛𝑙𝑜𝑐𝑎𝑙
(2)

+ 𝐻𝑛𝑜𝑛𝑙𝑜𝑐𝑎𝑙
(𝑀)



 Firstly, divide the lattice into white (w) and black (b)  sublattices

arbitrary.

 Elementary rules:

① For a (local or nonlocal) link (𝑛,𝑚):
an 𝑥-bond is allocated for 𝑛 ∈ 𝑤 and 𝑚 ∈ 𝑏;  

a 𝑦-bond is allocated for 𝑛 ∈ 𝑏 and 𝑚 ∈ 𝑤;  

an 𝑥𝑦-bond is allocated for 𝑛 ∈ 𝑤 and 𝑚 ∈ 𝑤; 

a 𝑦𝑥-bond is allocated for 𝑛 ∈ 𝑏 and 𝑚 ∈ 𝑏;

② Different 𝑧-bonds are not allowed to share the 

same site.

𝝈𝒏
𝒙𝝈𝒎

𝒙

𝝈𝒏
𝒚
𝝈𝒎
𝒚

𝝈𝒏
𝒙𝝈𝒎

𝒚

𝝈𝒏
𝒚
𝝈𝒎
𝒙

Construction rules 

beyond compass models 

𝒙𝒚−bond

𝒛−bond

𝒙−bond

𝒚−bond

𝒚𝒙−bond

𝝈𝒏
𝒛𝝈𝒎

𝒛



Exactly solvability: quadratic fermion terms

Construction rules 

Jordan-Wigner transformation Majorana fermion representation

𝑱
𝒏,𝒏+𝟏

𝜶𝜷
𝝈𝒏
𝜶𝝈

𝒏+𝟏

𝜷

𝑱𝒏𝒎
𝜶𝜷

𝝈𝒏
𝜶 ෑ

𝒏<𝒍<𝒎
𝝈𝒍
𝒛 𝝈𝒎

𝜷

All the possible quadratic γ−fermion
terms by J−W transformation.



Exactly solvability: biquadratic fermion terms

Construction rules 

Majorana fermion representation

" − ": 𝑛 & 𝑚 ∈ the same sublattice
" + ": 𝑛 & 𝑚 ∈ opposite sublattice

𝐽𝑛𝑚
𝑧𝑧 𝜎𝑛

𝑧𝜎𝑚
𝑧

 Elementary rules:

① …

② Different 𝑧-bonds are not allowed 

to share the same site.

𝐷𝑛𝑚, 𝐷𝑛′𝑚′ = 0, 𝐷𝑛𝑚, 𝐻 = 0.

𝐷𝑛𝑚 ∶ a set of good quantum #s

𝐷𝑛𝑚
2 = 1 ⇒ 𝐷𝑛𝑚 = ±1

Static 𝒁𝟐 gauge field

 The eigenstates can be divided into
different sectors according to 𝐷𝑛𝑚 .

 In each sector, allowed spin terms are
trasformed to quadratic γ−fermion
terms.



To lift the local degeneracy: couple isolated 𝜼𝒏 using nonlocal terms

Construction rules 

Separation of degrees of freedom
Majorana fermion representation

It is possible that some isolated 𝜂𝑛 do not show up in 𝐻𝜂 ⇒ local degeneracy

quadratic 𝛾−fermion termsquadratic 𝜂−fermion terms



Construction rules 

quadratic 𝛾−fermion termsquadratic 𝜂−fermion terms

Duality

 A similar duality relates topological trivial and 

non-trivial phases in interacting Kitaev chains.

J.J. Miao, H.K. Jin, F.C. Zhang, YZ (2017)

𝑤 ⟺ 𝑏
𝛾 ⟺ 𝜂

A way to construct new models



Shortcut multiple-spin interactions

Construction rules 

New multiple-spin interaction



 Supplementary rules:

① To add 𝜂-fermion quadratic terms using a nonlocal link (𝑛,𝑚): 𝑛 and 𝑚
are not allowed to  coincide with site connected by existing z-bonds in the 

original Hamiltonian constructed subjected to the two elementary rules.

② To add shortcut multiple-spin interactions: for a step along the 1-direction, 

the two-spin term should be 𝜎𝑙
𝛼𝜎

𝑙+1
𝛽

with 𝛼, 𝛽 = 𝑥, 𝑦; for a step along the 

other directions, the two-spin terms should be 𝜎𝑙
𝑧𝜎𝑙+𝛿

𝑧 with 𝛿 ≠ 1, and 

there must exist a local 𝑧-bond on this step in the original Hamiltonian.

③ In the above, the indices 𝛼 and 𝛽 should be chosen as follows: for 𝑙 ∈ 𝑤
and 𝑙 + 1 ∈ 𝑏, (𝛼, 𝛽) = (𝑥, 𝑥); for 𝑙 ∈ 𝑏 and 𝑙 + 1 ∈ 𝑤, (𝛼, 𝛽) = (𝑦, 𝑦); 
for 𝑙 ∈ 𝑤 and 𝑙 + 1 ∈ 𝑤, (𝛼, 𝛽) = (𝑥, 𝑦); for 𝑙 ∈ 𝑏 and 𝑙 + 1 ∈ 𝑏, 

(𝛼, 𝛽) = (𝑦, 𝑥).

Construction rules 



Generating new models: 1D examples

Three parent models in 1D

𝑤 ⟺ 𝑏
𝛾 ⟺ 𝜂

(1) duality

Dual models in 1D

𝒙𝒚−bond

𝒛−bond

𝒙−bond

𝒚−bond

𝒚𝒙−bond



Generating new models: 1D examples

Three parent models in 1D

(2) split one site and insert a local bond

Models with enlarged unit cell

𝒙𝒚−bond

𝒛−bond

𝒙−bond

𝒚−bond

𝒚𝒙−bond



Generating new models: 1D examples

(3) erase bonds and add nonlocal bonds

𝒙𝒚−bond

𝒛−bond

𝒙−bond

𝒚−bond

𝒚𝒙−bond



Generating new models: from 1D to 2D

Two parent models in 2D

couple through 𝒛−bond

𝒙𝒚−bond

𝒛−bond

𝒙−bond

𝒚−bond

𝒚𝒙−bond



Generating new models: 2D examples

Duality transformation can be performed along each chain independently.

𝒙𝒚−bond

𝒛−bond

𝒙−bond

𝒚−bond

𝒚𝒙−bond



Generating new models: 2D examples

Split sites and insert nonlocal bonds

𝒙𝒚−bond

𝒛−bond

𝒙−bond

𝒚−bond

𝒚𝒙−bond



Generating new models: 3D examples

Two parent models in 3D Three types of unit cells



Elementary plaquette & Flux operator

𝑯𝟎: two−spin interactions

𝑯𝟏: four−spin interactions
→ lift local degeneracy

2D example: a Mott insulator model



2D example: a Mott insulator model

Majorana representation
Jordan-Wigner transformation

Static Z2 gauge field:



2D example: a Mott insulator model

𝑯𝟎: Absence of 𝜼𝟑 → 𝟐𝑳𝒙𝑳𝒚/𝟐−fold degeneracy
𝑯𝟏: Lift the local degeneracy

Majorana representation

Exact solvability: Given 𝑫𝒓 = ±𝟏 → Both 𝑯𝟎 and 𝑯𝟏 are quadratic form.

Separation of degrees of freedom



2D example: a Mott insulator model

Ground state: 𝝅 − flux state, 𝝓𝒑 = −𝟏, on every plaquette

𝑯𝟏: Free Majorana fermions 𝜼𝟑 on a square
lattice, coupled to a static 𝒁𝟐 gaugefield 𝑫𝒓

Lift the local degeneracy

Energy dispersion: 𝝅 − flux state



2D example: a Mott insulator model

Boundary conditions: open BC vs. periodic BC

Boundary terms — JW transformation

Fluxes on edge plaquettes

Open boundary condition Periodic boundary condition

 Good quantum #s: 𝐷 Ԧ𝑟

 2𝐿𝑦-fold degeneracy: Majorana

zero modes at edges

 Good quantum #s: {𝜙𝑝, Φ𝑥, Φ𝑦}

 𝑍2 global fluxes:  Φ𝑥, Φ𝑦



2D example: a Mott insulator model

Degrees of freedom: a 𝟑 × 𝑳𝒙 × 𝑳𝒚 lattice

 Possible spin states: 23𝐿𝑥𝐿𝑦

 Possible fermion states: 23𝐿𝑥𝐿𝑦+1

 {𝜙𝑝, Φ𝑥, Φ𝑦}: 2
𝐿𝑥𝐿𝑦+1

 {𝜂 Ԧ𝑟,3, 𝛽Ԧ𝑟,1, 𝛽Ԧ𝑟,2, 𝛽Ԧ𝑟,3}: 2
2𝐿𝑥𝐿𝑦

Half of the states in the fermion 

representation are unphysical.

Projection: to remove the unphysical states

Origin: {𝜙𝑝, Φ𝑥, Φ𝑦} is presumed.

① For a given set of {𝜙𝑝, 𝛷𝑥, 𝛷𝑦}, the projection 𝑃 survives half fermionic states 

with compatible 𝐹.

② A physical spin excitation should be composed of even number of fermions.

total fermion # parity:

Deductions: 



2D example: a Mott insulator model

Ground states: topological degeneracy

 Ground states: 𝝅 − flux states

 Unprojected degenerate ground states: 

Φ𝑥 = ±1,Φ𝑦 = ±1

 Topological degeneracy: ∆𝐸 ∝ 1/𝐿

 Projection: survives 3 ground states

 𝑃| ۧ𝐺 Φ𝑥=Φ𝑦=1 = 0 for 𝐿𝑥 , 𝐿𝑦 = 𝑒𝑣𝑒𝑛

 Pairing terms vanish at 𝑞𝑥 = 𝑞𝑦 = 0

 Robust against disorders

3-fold topological degeneracy on a torus



2D example: a Mott insulator model

Bulk spinon excitations

 𝝅 − flux states: magnetic unit cell

 6 sites in each magnetic unit cell

 Six bands for 𝛽-Majorana fermions

 Two point nodes:  0,0 and (0, π)

 Dirac-like dispersion around nodes



2D example: a Mott insulator model

Breaking time-reversal symmetry (TRS)

 Magnetic field

 3rd order perturbation: exactly solvable

 Chern numbers

 5th order perturbation: open a gap for 𝜂3 MFs



2D example: a Mott insulator model

Breaking time-reversal symmetry (TRS)

 Z2 vortices

 PBC: even # of vortices

 A pair of vortices

 One Majorana zero mode (MZM) 

in each vortex core center

 Extra double degeneracy due to 

MZMs?

 MZM changes Fermion # parity 

→ Projection removes half states.

 4-fold GS degeneracy regarding 

global fluxes Φ𝑥 and Φ𝑦

 𝟐𝒏 well-separated vortices

 2𝑛+1-fold degeneracy



2D example: a Mott insulator model

Summary

 Mott insulator model: odd number of spin-1/2 per unit cell.

 Algebraic quantum spin liquid ground state.

 Ground states are of three-fold topological degeneracy.

 Bulk spinon excitations: two Dirac nodes.

 Breaking TRS

 Topologically nontrivial spinon bands: odd Chern numbers.

 Z2 vortices obey non-Abelian statistics.



More models in 3D

Si, Yu (2007); Ryu (2009); Mandal, Surendran (2009); Kimchi, Analytis, Vishwanath (2014); Nasu, 

Udagawa, Motome (2014); Hermanns, O'Brien, Trebst (2015); Hermanns, Trebst (2016)

Generate new models from an existing model.

hyperhoneycomb hyperoctagon



Possible material realization

Metal organic framework (MOF)

Hyerhoneycomb: Cu-network

Zhang, Baker, …, Pratt, et. al. (2018)



Summary

 Construct a class of generalized Kitaev spin-1/2 

models in arbitrary dimensions

 Beyond the category of quantum compass models

 Provide some methods to generate new models 

from existing models.

 A particular 2D example: Pristine Mott insulator.



Thank you for attention


