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Spin phenomena

Rashba Effect Spin Hall Effect

Orbital polarization (angular momentum) + Spin-orbit coupling
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Electric vs magnetic

Dipole-dipole 
interaction?

è Coulomb interaction in 
combination with the   
exclusion principle

Factor of ~104 too small! Lesson : Helectric >> Hmagnetic

• Heisenberg Hamiltonian ĤH = −J
!
S1 ⋅
!
S2

Ferromagnet
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I. Rashba effect

II. Intrinsic spin Hall effect

III. Observation of hidden Berry curvature
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Rashba Hamiltonian JETP Lett. (1984)

𝐻'( = 𝛼( 𝑘×�̂� . �⃗�

Relativistic effect
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A ‘small’ problem in energy scale

Factor of 105!
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Questions to answer
A proper model should explain… 

• Band splitting & spin degeneracy lifting

• Energy scale of the split

• Chiral spin structure (including chirality)

• The role of atomic SOC parameter a

• Asymmetric charge distribution

• Chiral orbital angular momentum structure

• Conventional interpretation explains only one of them!
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Nature Physics 5, 398 (2009)

Bi2Se3 surface states
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Circular dichroism in ARPES

Rashba states
= Chiral spin states

S. R. Park et al, PRL 108, 046805 (2012) 

Bi2Se3 surface state data with
two circular polarizations
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CD ARPES & Chiral OAM

Left circularRight circular CD-ARPES

Measures ~OAM

<orbital>
<spin>

J=1/2

S. R. Park et al, PRL 108, 046805 (2012) 
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OAM revives

Bloch state R              Ym
l xs

(a) Atomic (b) HCF

pz

px, py

OAM 
quenched

(c) HSOC≫ HCF

J3/2

J1/2

OAM 
revives

p orbitals

With strong spin-orbit coupling

OAM in atomic orbital

PRL 101, 076402 (2008)

‘J’ state
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When we have both L & k…

Bloch state in consideration = OAM + linear momentum

Phase flow

Two sides look 
different! 

What does this to wave ftn?

Simulation

R              Ym
l xs

Ym
l

𝑒23.4⃗
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Asymmetric charge distribution

low

high
k = 0.1π,Lx = − 12
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k = 0.05π,Lx = 12
z

y Electron density

z
0.1p & 1/2
.05p & 1/2

0.1p & -1/2

Combination of OAM & k results  in an asymmetric charge distribution 
(electric polarization)
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Bloch state

Electron density

z
z

y

Electric field

+
Linear momentum

Orbital angular 
momentum

+

Asymmetric charge
distribution

Electric energy

ES

𝜓3 𝒓

OAM induced large energy scale

• Interference effect within a Bloch wave function   
• being complex 𝜓3 𝒓

𝐻'7 = −𝛼7 𝐿×𝑘 . 𝐸;
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Chiral OAM & Rashba

<orbital>
<spin>

• Asymmetric charge (‘electric polarization’) determined by 

• Energy from 

• Chiral structure determined by OAM

• Spin chirality follows from SOC

p ~

L×

k

U = −
p ⋅

Es ~ (


L×

k ) ⋅

Es ~ (eA
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G K MM

Single layer of Bi 
with 3 V/A

LDA on single layer of Bi w/ external field

J. S. Hong, et al., Scientific Reports 5, 13488 (2015)

LDA results reveal asymmetric charge distribution for Rashba states
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OAM based Hamiltonian for Rashba effect

ĤRashba =αR ẑ × p( ) ⋅σ̂
Conventional Rashba (spin)

Crystal field + atomic SOC + Electrostatic

spin OAM

PRL 108, 046805 (2012); 
PRB  85, 195402 (2012); 
PRB  88, 205408 (2013)

New Hamiltonian (orbital)

𝐻'7 = −�⃗� . 𝐸; = −𝛼7 𝐿×𝑘 . 𝐸;

𝐻'"## = 𝜀3 + 𝛼𝐿 . 𝑆 − 𝛼7 𝐿×𝑘 . 𝐸;
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Summary on Rashba

PRL 107, 156803 (2011); PRL 108, 046805 (2012); PRB 85, 195402 (2012); PRB 88, 205408 (2013)
Sci. Rep. 5, 13488 (2015); J. Electr. Spectr. Rel. Phenom, 201, 6 (2015)

<orbital>
<spin>

J=1/2

Effective Hamiltonian

𝐻'( = 𝛼( �⃗�×𝑘 . �̂�

𝐻'7 = −𝛼7 𝐿×𝑘 . 𝐸@ + 𝜆𝐿 . �⃗�

• Orbital angular momentum induces asymmetric charge distribution which 

can result in a large energy term

• Chiral OAM structure exists in Rashba states resulting from the energy term

• Spin chirality follows the OAM chirality through SOC

• OAM plays the essential role in Rashba effect.



Center for Correlated Electron Systems

I. Rashba effect

II. Intrinsic spin Hall effect

III. Observation of hidden Berry curvature
Is OAM important in other phenomena?
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Anomalous and spin Hall effects

• Non-magnetic metallic system
• Spin accumulation

𝐵↓𝐵↑

• Ferromagnetic system
• Hall effect without external B-field

𝐵↓𝐵↑
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• Evaluation of current    
operator

• Very general formula

• AHE in terms of Berry 
curvature

Anomalous Hall effect

• No true microscopic  picture
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Issues in spin Hall effect

• Issues
1. Role of SOC?

2. Sign reversal issue? (Pt vs Ta)

è Need a more intuitive picture

è OAM Hamiltonian can help
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Rashba vs Spin Hall

kykx

zEs

L

• Rashba case • Spin Hall case

Inversion symmetry breaking
from intrinsic field

Inversion symmetry breaking
applied field

Ek k

L

Band is spin degenerate
Degeneracy lifted𝐻'7 = −𝛼7 𝐿×𝑘 . 𝐸;



Center for Correlated Electron Systems

Spin Hall effect from the new Hamiltonian
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H0 = !
2k2 / 2m

+α
!
L ⋅
!
S

ΔE = H1

J = ½ case

x
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z

L

W

d

OAM

SAM

𝐻D = −𝛼7 𝐿×𝑘 . 𝐸E

• causes OAM dependent transverse motion 
• behaves like an effective magnetic field
• should be related to Berry curvature

* Spin Hall current is by-product due to SOC

−𝛼7 𝐿×𝑘 . 𝐸E
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𝑉G;H = 𝑗G
@J2K𝜌GG𝑊 =

𝑛𝑒𝛼7𝐸E𝑘#O𝜌GG𝑊
2𝜋

=
𝑛𝑒𝛼7𝑘#O𝑗E𝜌EE𝜌GG𝑊

2𝜋
≈ 𝑛𝑒𝛼7𝑘#O𝑊𝜌O𝑗E ∝ 𝜌O

kx

ky

Sz= +1

Sz= -1

SHE current (intuitive)

Spin current within dkx :

Total spin current :

• J = ½ case

ç well known result from AHE

is the number of states per unit -space 

𝑗G
@J2K =

𝑛𝑒ℏ𝑘T
𝜋O𝑚"

V 𝑘G
3W

X3W
𝑑𝑘E = 𝑛𝑒ℏ𝑘T𝑘#O 2𝜋𝑚"⁄

		= 𝑛𝑒𝛼7𝐸E𝑘#O 2𝜋⁄

𝑛
4𝜋O

2𝑒ℏ𝑘G
𝑚"

Δ𝑘G𝑑𝑘E =
𝑛
4𝜋O

2𝑒ℏ𝑘G
𝑚"

2𝑘T𝑑𝑘E =
𝑛𝑒ℏ𝑘T
𝜋O𝑚"

𝑘G𝑑𝑘E

← 𝑘T = 𝛼7𝑚"𝐸E/ℏ

Spin Hall voltage :
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Connection to Berry phase - I

Spin dependent effective B-field

Spin Hall effect

w
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OAM driven intrinsic spin Hall effect
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This contains 𝐿
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Connection to Berry phase - II

Spin dependent effective B-field
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Berry curvature 

PRB 47, 1651 (1993)

~

HintSpin Hall effect

!↓!↑

𝐴(𝑘)

�⃗�~𝛼7𝐿×𝑘

𝑃 = V �⃗�
�

�

𝑑e𝑘~V 𝛼7𝐿×𝑘
�

�

𝑑e𝑘

Dipole moment of asymmetric charge distribution 
(momentum dependent)

Polarization 

𝐴 𝑘 ~𝛼7𝐿×𝑘?
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Rigorous theory

𝐴(𝑘) ≈ 𝜆J@ 𝐿×𝑘

𝐵 𝑘 ≈ 2𝜆J@ 𝐿

*To appear in PRL, Aug 2018

Daegeun Jo,1
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Summary on SHE

• OAM plays the key role in intrinsic SHE

• OHE is generated even when SOC=0

• OHE is more fundamental than SHE (SHE is a concomitant effect    

of OHE through SOC)

• Berry connection and curvature are directly related to 𝐿
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I. Rashba effect

II. Intrinsic spin Hall effect

III. Observation of hidden Berry curvature
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Spin & valley in 1ML TMDC

Different valleys
What is ‘valley’?

Xiao et al., PRL 108, 196802 (2012)

Orbital angular momentum!

m=0

m=+2m=0

m=-2

-KK

@ -K @ K

2l𝜆𝐿 . 𝑆 è

OAM
Spin
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Valley, OAM & Berry curvature in TMDC
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Valley, 
OAM & 
Berry curvature

Berry curvature all but gone?

1 ML (no inversion) 2 ML (inversion)
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‘Hidden’ spin polarization & its observation

NaCaBi

Prediction

WSe2

Preferentially looking 
at surface

Observation



Center for Correlated Electron Systems

Hidden Berry curvature?
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re localized to a layer?)

• If so, can we observe it? How?
è CD-ARPES
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Circular dichroism ARPES

PRL 107, 156803 (2011); PRL 108, 046805 (2012); PRB 85, 195402 (2012); PRB 88, 205408 (2013)
Sci. Rep. 5, 13488 (2015); J. Electr. Spectr. Rel. Phenom, 201, 6 (2015)

Left circularRight circular CD-ARPES

Measures ~OAM

<orbital>
<spin>

J=1/2

Surface sensitive
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θ
ϕ

Mirror plane

ℎ𝜈
ϕ ϕ

Two contributions

• Breaking mirror symmetry
• Geometrical contribution 
• odd function of f

• Complexity of the wave function
• OAM contribution
• Proportional to OAM

θ
ϕ

ℎ𝜈
ϕ ϕ

Let’s make this an even function
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CD	=	IRCP	- ILCP

-K -KΓ

No	OAM No	OAM

-K -KΓ

m=	-2 m =	-2

CD	=	IRCP	- ILCP

θ
ϕ

Mirror plane

ℎ𝜈
ϕ ϕ

Expected CD pattern

Geometrical contribution; odd function OAM contribution; even function

• Actual data contains both geometrical and OAM contributions
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K KΓ

m=	2 m =	2
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Extracting geometrical and OAM contributions

CD-ARPES è

Anti-symmetric è
component

Symmetric è
component

17.2%

-38.9%

21.4%

24.9%

WSe2
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@ -K

@ K

Even (OAM) and odd (geometrical) components

Odd (geometrical) component

Even (OAM) component

• Two different data sets (K-K and K’-K’) show 
exactly same (opposite) behavior for            
odd (even) components
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@ -K

@ K

Even (OAM) and odd (geometrical) components

Odd (geometrical) component

Even (OAM) component

• We measured ~OAM by CD-ARPES

• Did we measure (hidden) Berry curvature?
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CD vs Berry curvature vs OAM

CD-ARPES
(from surface layer)

Berry curvature
(for 1 ML)

OAM (Lz)
(for 1 ML)
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Along the high symmetry cuts

S. H. Cho et al, under review
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Summary on ‘hidden’ Berry curvature

• Local nature of the Berry curvature (within a layer)

• ‘Hidden Berry curvature’ in inversion symmetric bulk

• OAM of the top-layer measured by CD-ARPES 

• Similarity between CD, Berry curvature and OAM, indicating B

erry curvature ~ OAM in this system 

• Experimental measurement of hidden Berry curvature


