Symmetry-enforced Genons

Meng Cheng

Yale University

Collaborators: Jong Yeon Lee (Harvard) Matteo Ippoliti, Michael Zaletel (Princeton)

Workshop on Topological Matter and Quantum Computing, KITS, Beijing

Search for non-Abelian Excitations

Non-Abelian topological phases

NONABELIONS IN THE FRACTIONAL QUANTUM HALL EFFECT

Gregory MOORE

Department of Physics, Yale University, New Haven, CT 06511, USA

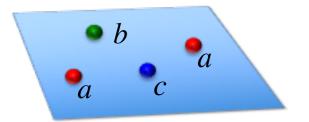
Nicholas READ

Departments of Applied Physics and Physics, Yale University, New Haven, CT 06520, USA

Received 31 May 1990 (Revised 5 December 1990)

VOLUME 66, NUMBER 6	PHYSICAL REVIEW LETTERS	11 FEBRUARY 1991
Non-A	belian Statistics in the Fractional Quantum Hall S	itates
	X. G. Wen	
School of N	atural Sciences, Institute of Advanced Study, Princeton, New Jer. (Received 5 October 1990)	sey 08340
The fractional qua	antum Hall states with non-Abelian statistics are studied. Those a	states are shown to
-	non-Abelian topological orders and are identified with some of th	
E. E	re found to be described by non-Abelian Kac-Moody algebras. It in the associated properties are robust against any kind of small pe	-
PACS numbers: 73.20	Dx, 05.30d	

Non-Abelian Anyons



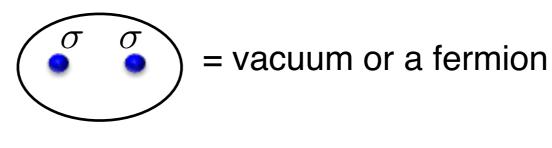
Finite-energy topological quasiparticle excitations Quasiparticle types *a*, *b*, *c*, ...

Degenerate ground states in the presence of multiple anyons

They can not be distinguished locally (thus good qubits)

Example: Ising anyons or Majorana zero modes

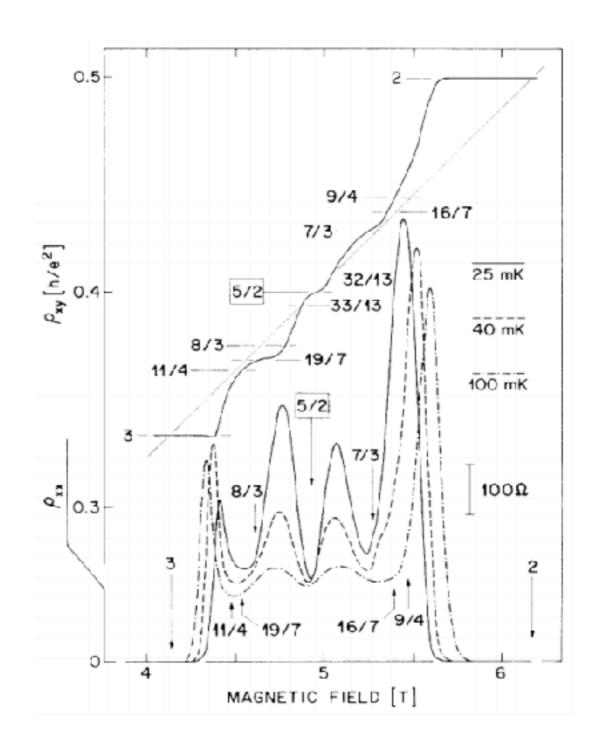
n Ising anyons has 2^{*n*/2-1} GSD



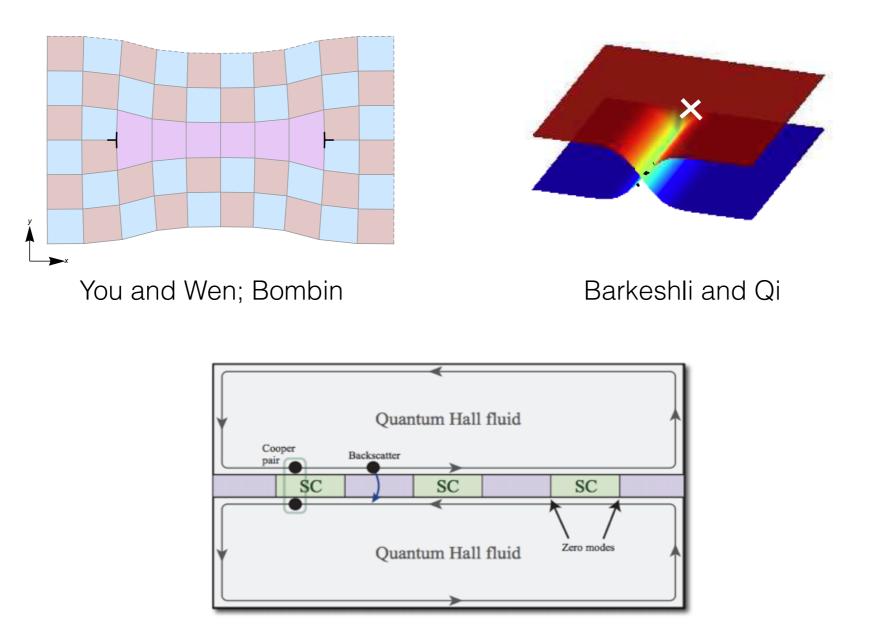
 $\sigma\times\sigma=1+\psi$

Read and Green; Kiatev

Candidate: 5/2 FQH?



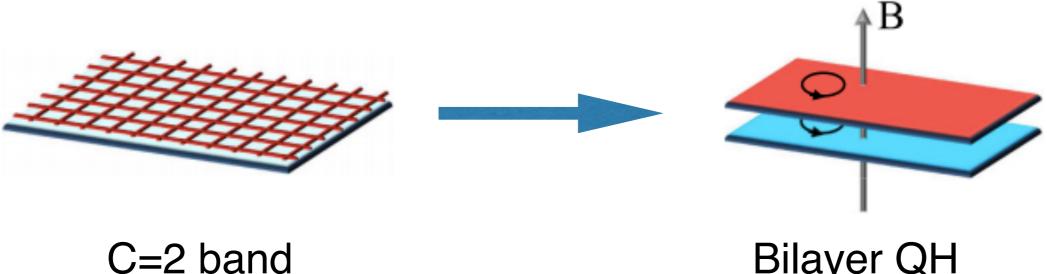
Non-Abelian Defects



Cheng; Clarke et al; Lindner et al;

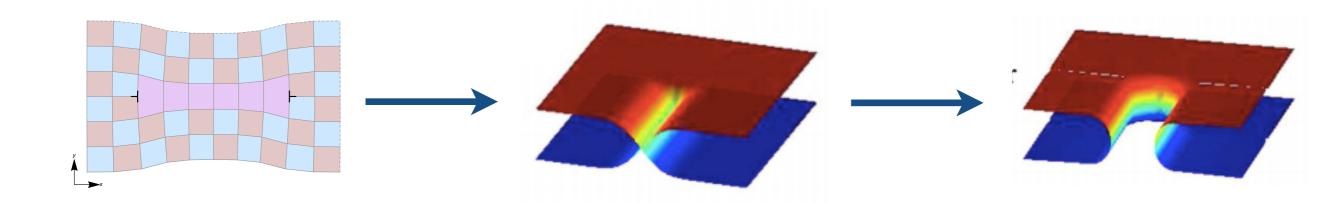
Defects in Abelian topological phases can harbor non-Abelian zero modes

Genons = Non-Abelian Dislocations



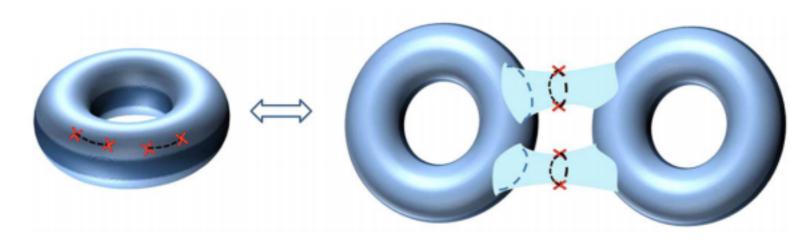
Bilayer QH

Unit translation = layer exchange



Figures from Barkeshli and Qi, PRX 2012

Non-Abelian Degeneracy

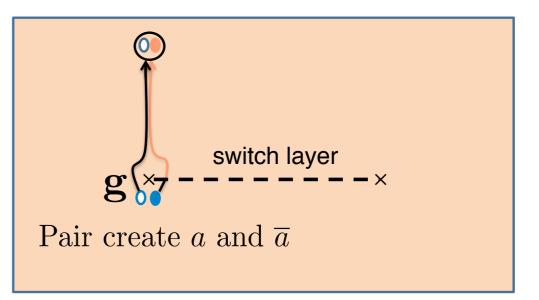


Figures from Barkeshli and Qi, PRX 2012

Each pair of dislocations adds a "wormhole" n pairs of dislocations = (n+1)-genus surface for a single layer

Topological Symmetry

$$X \times X = \sum_{a} (a, \bar{a})$$
 X "absorbs" (a, \bar{a})



Genons = translation symmetries change anyon types

(symmetry-enriched topological phases)

Barkeshli et al, 2014

Part I: Genons from Lieb-Schultz-Mattis

based on Cheng, arXiv:1804.10122

Spinless Fermions with Particle-Hole Symmetry

Square or triangular lattices (one fermion mode per site)

$$H = -\sum_{\langle ij \rangle} (t_{ij}c_i^{\dagger}c_j + \text{h.c.}) + \sum_{ij} V_{ij} \left(n_i - \frac{1}{2}\right) \left(n_j - \frac{1}{2}\right) + \dots$$

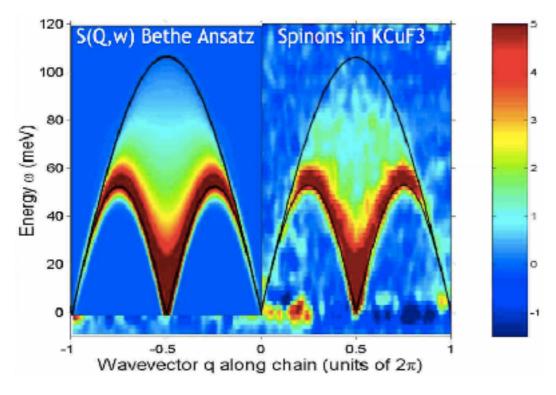
Particle-hole (PH) symmetry: $c_i \rightarrow c_i^{\dagger}$ e.g. $t_{ij} = \pm i$

With charge conservation, PH implies half-filling. Not necessary

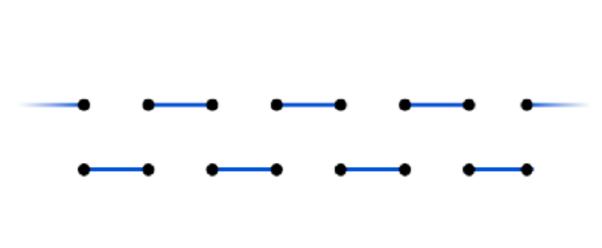
Symmetry: lattice translations and PH

Lieb-Schultz-Mattis Theorem

S=1/2 spin chains have either degenerate GS's or vanishing gap **Assumption:** short-ranged *H* with SO(3) and translation symmetries



Gapless spinons

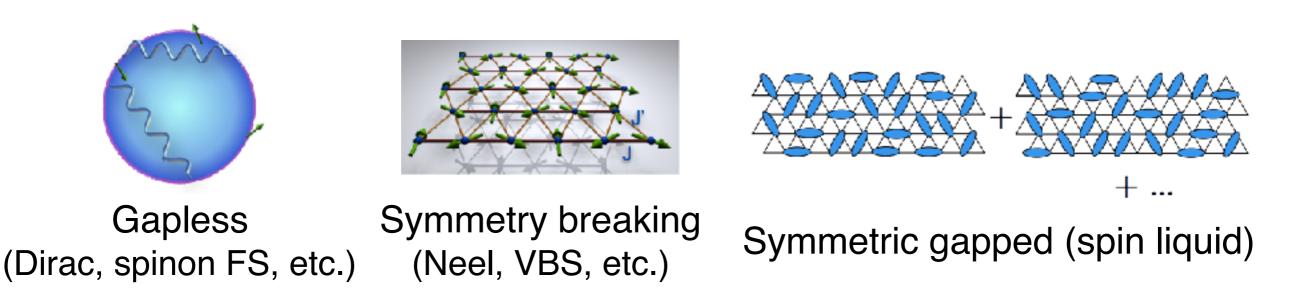


Spontaneous dimerization

Lieb-Schultz-Mattis-Oshikawa-Hastings

Odd # of spin-1/2's per unit cell

Translation and spin SO(3)



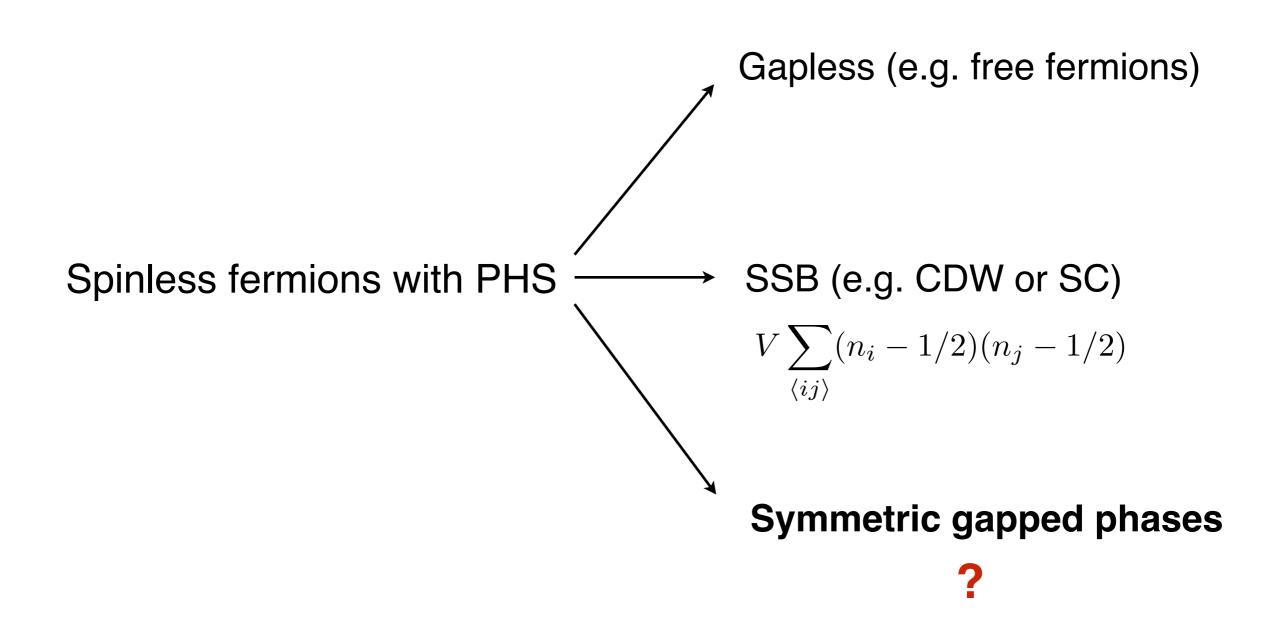
Further generalizations: Spin-1/2 \longrightarrow Kramers doublets

Translations \longrightarrow space group

Watanabe et al; Po et al; ...

Images from Leon Balents

Fermionic LSMHO Theorem



Proof of Fermionic LSMHO

PHS generated by
$$U = \prod_{i} (c_i + c_i^{\dagger})$$

 $Uc_i U^{\dagger} = c_i^{\dagger}$

Put the system on a $L_x \ge L_y$ torus with even # of sites

$$c_{x+L_x,y} = c_{x,y+L_y} = c_{x,y}$$

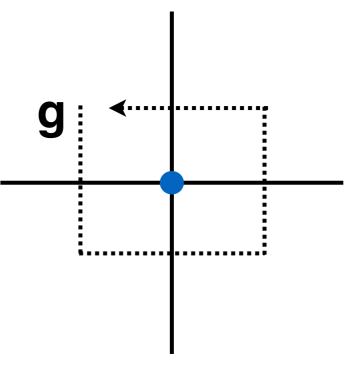
 $T_x U = (-1)^{L_y(L_x-1)} U T_x$

 (L_x, L_y) Algebra GSD even, even $T_x U = UT_x$ no implication even, odd $T_x U = -UT_x$ at least 2-fold

Why are there Genons?

"Flux insertion":

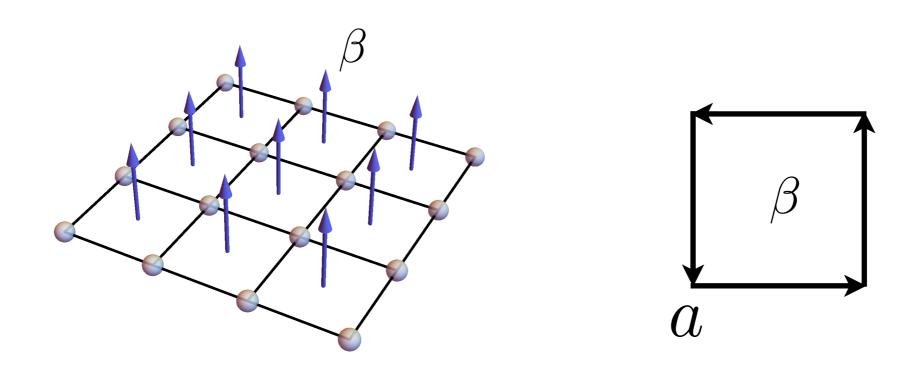
Drag a Z₂ flux around a unit cell \sim locally apply PHS to the unit cell $c_i \rightarrow c_i^{\dagger}, n_i \rightarrow 1 - n_i$



An additional fermion appears after a Z₂ flux moves around a unit cell

Where can this fermion come from in the low-energy effective topological theory?

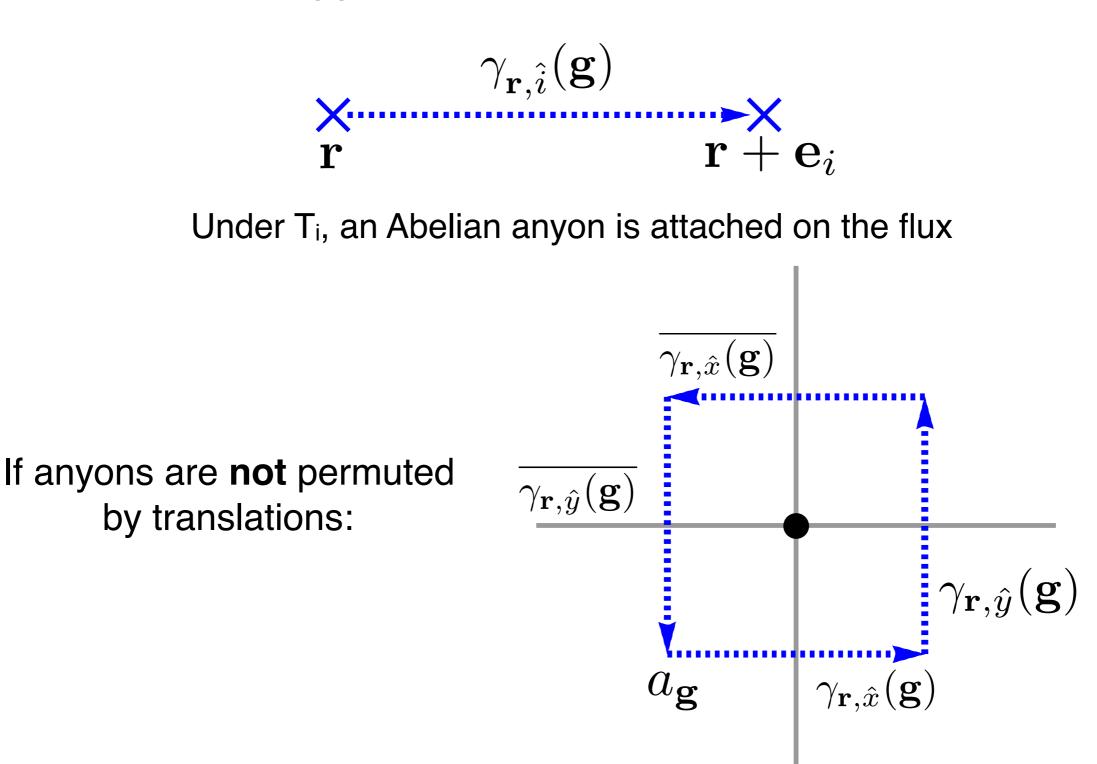
Fractionalization of Translation Symmetry



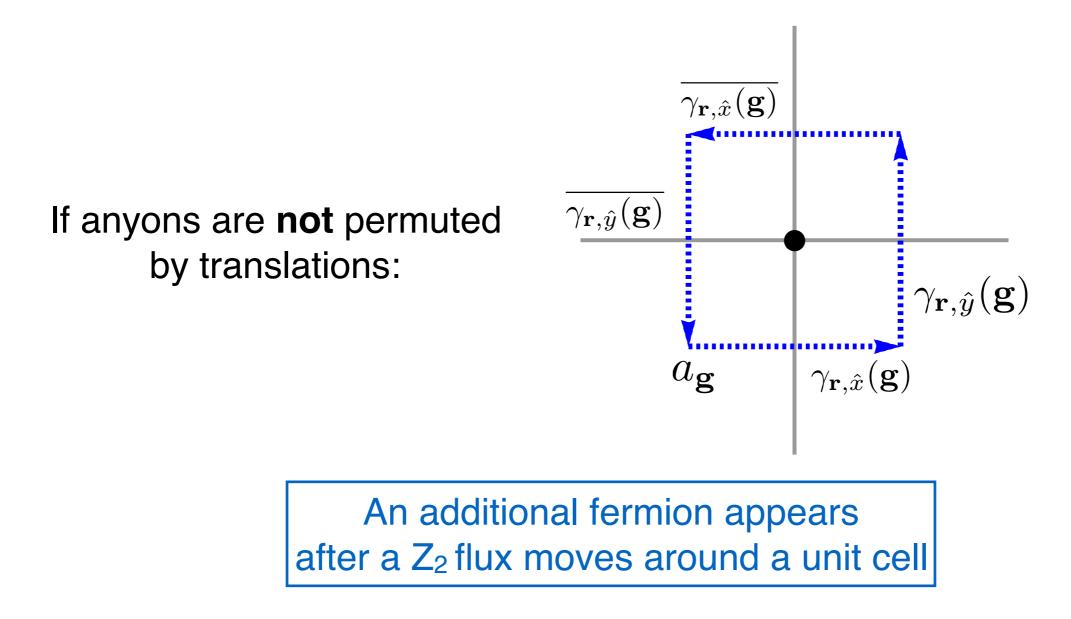
When anyons move on the lattice they see a background (Abelian) flux

Anyonic "Spin-Orbit" Coupling

What happens to the Z₂ flux when it moves?



Necessity of Having Genons

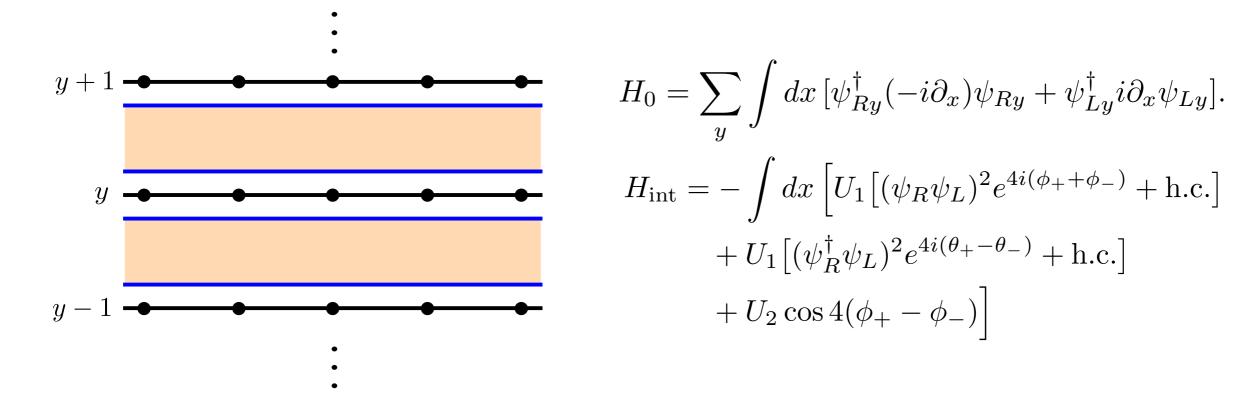


But the background anyon can be transformed by g

$$\mathbf{g}(\beta) = \beta \times f$$

Impossible because $\ \theta_{\mathbf{g}(\beta)} = \theta_{\beta}, \theta_{\beta \times f} = -\theta_{\beta}$

Example: Z₄ topological order



Z₄ topological order generated by charge e and flux m

$$\mathbf{g}: e \to e^3, m \to m^3$$

 $T_y: e \to e, m \to me^2 f$

Ising dislocations

Side Note: U(1) LSMHO for Fermions

More "traditional" setting: fractional filling

Bosons at half-filling Spins with $S^z=0$ Z₂ topological order (e.g. Z₂ spin liquid, chiral spin liquid)

Fermions at half-filling

At least Z₄ topological order

Take-home message: topological order of spinless fermions can be interesting!

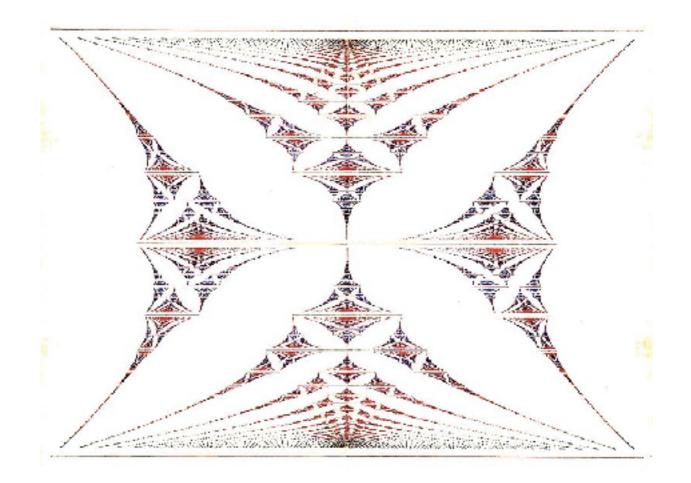
Bultinck and Cheng

Part I: Genons in Fractional Chern Insulators

J. Lee, M. Ippoliti, MC, M. Zaletel, in preparation

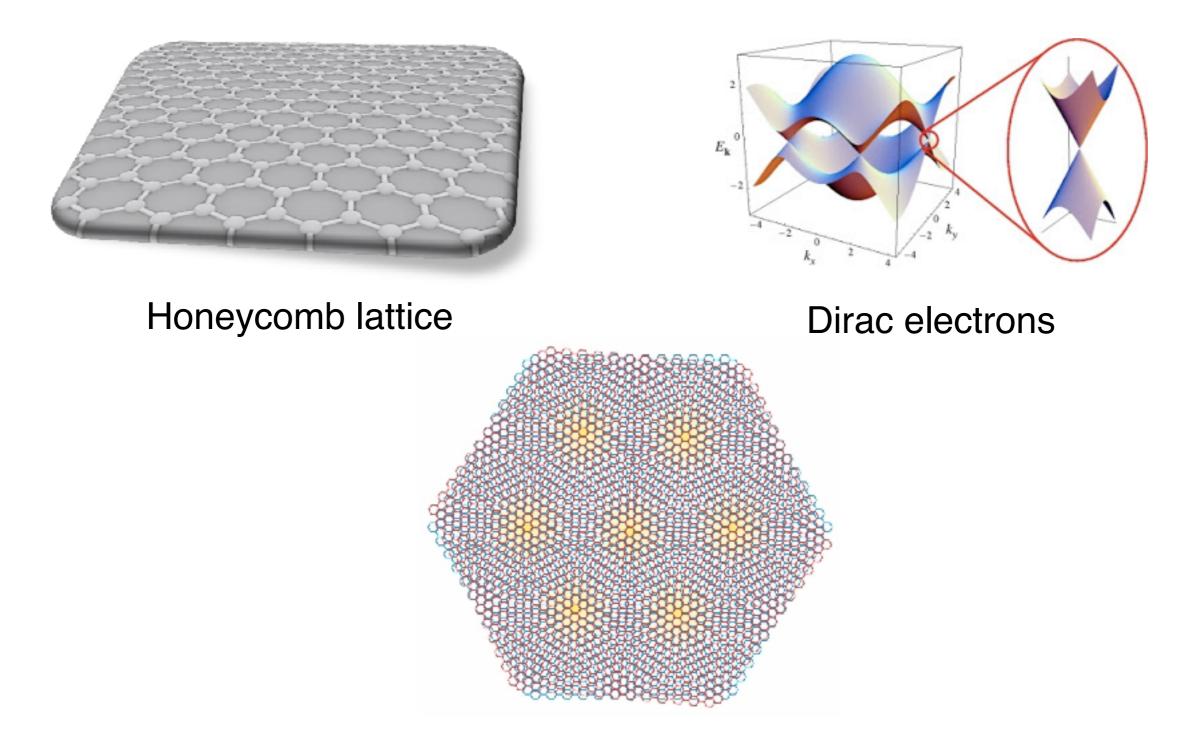
Hofstadter's Butterfly

Tight-binding electrons in a magnetic field or Landau level in a weak periodic potential



But usually unit cells are too small.

Moire Pattern in Twisted Bilayer Graphene



Moire pattern allows for realization of Hofstadter physics!

E. Spanton et al, arXiv:1706.06116

Quantum Hall States in Hofstadter Bands

Two filling factors: Electrons per flux quanta Electrons per site S

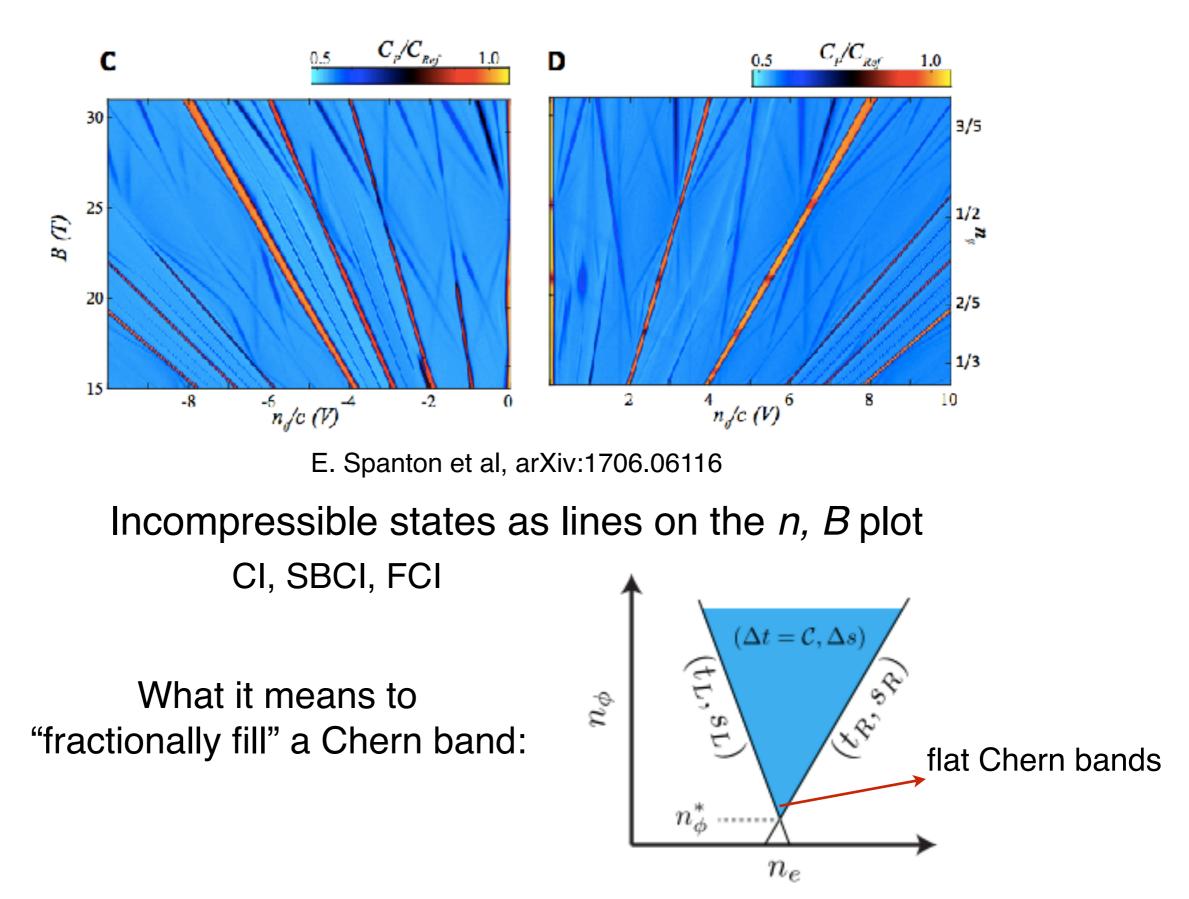
$$n_e = t\phi + s$$

Streda's formula:
$$t = \frac{\partial n_e}{\partial \phi} = \frac{h}{e^2} \sigma_{xy}$$

Nonzero s indicates strong lattice effect

"IQH"-like states: t, s are integers

Wannier Plot



Flat Chern Bands and Emergent Symmetries

We can find a (C, S) band when

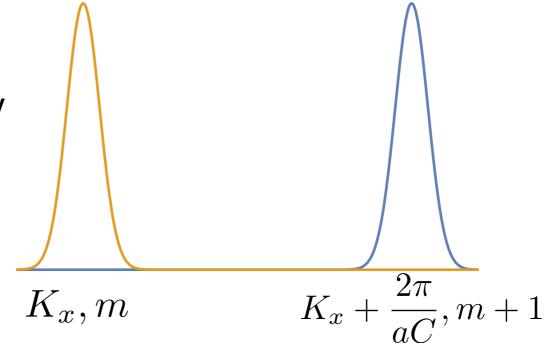
$$\phi = \frac{p}{q} = \phi_* + \bar{\phi}, \, \bar{\phi} = \frac{1}{qC}$$

Interested in the small ϕ limit

Chern bands $\,\approx\,$ ICI continuum LLs

Form Wannier orbitals $|K_x,m
angle$

Tunneling suppressed exponentially in the $\bar\phi\to 0\,$ limit



Flat Chern Bands and Emergent Symmetries

Magnetic translation symmetry:

$$T_{x}|K_{x},m\rangle_{\text{shift}} = e^{iaK_{x} - \frac{2\pi im}{C}}|K_{x},m\rangle_{\text{shift}},$$
$$T_{y}|K_{x},m\rangle_{\text{shift}} = e|K_{x} + \bar{\phi}G_{x},m + S\rangle_{\text{shift}},$$
$$T_{i} = \tau_{i}T_{i}(a)$$

 $T_i(a)$ acts on the LLs as continuum translations τ_i acts on the layer index

They become independent in the $\bar{\phi} \rightarrow 0$ limit

$$\mathbb{Z} \times \mathbb{Z} \longrightarrow \mathbb{Z}_C \times \mathbb{Z}_C \times \mathbb{R} \times \mathbb{R}$$

$$\tau_x^C = \tau_y^C = 1, \tau_x \tau_y = e^{-\frac{2\pi i S}{C}} \tau_y \tau_x$$

Symmetry-Enriched Structure of FCIs

Two kinds of "background charge"

"vison" v created by adiabatically inserting a flux quanta

> "anyon per site" *a* created by inserting one more site

$$a\tau_y(a)\tau_y^2(a)\cdots\tau_y^{C-1}(a)=v^S$$

Emergent constraint

Example: C=2 Band

Natural guess: generalized Halperin 331 states at 1/4 filling

$$\prod_{i < j} (z_i - z_j)^3 \prod_{i < j} (w_i - w_j)^3 \prod_{i,j} (z_i - w_j)$$
$$K = \begin{pmatrix} 3 & 1\\ 1 & 3 \end{pmatrix}$$

But does the (331) have to have genons? Yes

Proof: Suppose there are no genons. Then

$$v^{-1} = a^2$$

But *v* is uniquely fixed by Hall conductance! No solution for *a*

Summary

LSMHO theorem for spinless fermions with particle-hole symmetry

Fermionic LSMHO requires genons to exist in symmetric gapped phases

Mapping from Chern bands to multiple-layer QH

SET constraints in Hofstadter Chern bands