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Search for non-Abelian Excitations
Non-Abelian topological phases



Non-Abelian Anyons

a

b

c
a Finite-energy topological quasiparticle excitations

Quasiparticle types a, b, c, …

Degenerate ground states in the presence of multiple anyons

They can not be distinguished locally 
(thus good qubits)

Example: Ising anyons or Majorana zero modes

n Ising anyons has 2n/2-1 GSD

= vacuum or a fermion� �

� ⇥ � = 1 +  

Read and Green; Kiatev



Candidate: 5/2 FQH?



Non-Abelian Defects

Defects in Abelian topological phases can harbor non-Abelian zero modes
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y

You and Wen; Bombin Barkeshli and Qi

Cheng; Clarke et al; Lindner et al;



Genons = Non-Abelian Dislocations

C=2 band Bilayer QH

Unit translation = layer exchange
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y

Figures from Barkeshli and Qi, PRX 2012



Non-Abelian Degeneracy

Each pair of dislocations adds a “wormhole”
n pairs of dislocations = (n+1)-genus surface for a single layer

Figures from Barkeshli and Qi, PRX 2012
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Pair create a and a

g
switch layer

X ⇥X =
X

a

(a, ā)

X “absorbs” (a, ā)

Topological Symmetry

Barkeshli et al, 2014

Genons = translation symmetries change anyon types

(symmetry-enriched topological phases)



Part I: Genons from Lieb-Schultz-Mattis
based on Cheng, arXiv:1804.10122



Spinless Fermions with Particle-Hole Symmetry
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Square or triangular lattices (one fermion mode per site)

ci ! c†iParticle-hole (PH) symmetry:

e.g. tij = ±i

With charge conservation, PH implies half-filling. Not necessary

Symmetry: lattice translations and PH



Lieb-Schultz-Mattis Theorem

Spontaneous dimerization

Gapless spinons

S=1/2 spin chains have either degenerate GS’s or vanishing gap

short-ranged H with SO(3) and translation symmetriesAssumption:



Lieb-Schultz-Mattis-Oshikawa-Hastings

Gapless
(Dirac, spinon FS, etc.)

Symmetry breaking
(Neel, VBS, etc.) Symmetric gapped (spin liquid)

Odd # of spin-1/2’s per unit cell
Translation and spin SO(3)

Images from Leon Balents

�!
�!

Further generalizations: Spin-1/2          Kramers doublets
Translations           space group

Watanabe et al; Po et al; … 



Fermionic LSMHO Theorem

Spinless fermions with PHS

Gapless (e.g. free fermions)

SSB (e.g. CDW or SC)
V
X

hiji

(ni � 1/2)(nj � 1/2)

Symmetric gapped phases
?



Proof of Fermionic LSMHO
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(ci + c†i )PHS generated by 

UciU
† = c†i

Put the system on a Lx x Ly torus with even # of sites

c
x+L

x

,y

= c
x,y+L

y

= c
x,y

T
x

U = (�1)Ly

(L
x

�1)UT
x

(L
x

, L
y

)

even, even

even, odd

T
x

U = UT
x

T
x

U = �UT
x

Algebra GSD
no implication

at least 2-fold



Why are there Genons?

An additional fermion appears 
after a Z2 flux moves around a unit cell

Where can this fermion come from 
in the low-energy effective topological theory?

“Flux insertion”:

Drag a Z2 flux around a unit cell
⇠ locally apply PHS to the unit cell

ci ! c†i , ni ! 1� ni

g



Fractionalization of Translation Symmetry
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When anyons move on the lattice 
they see a background (Abelian) flux



Anyonic “Spin-Orbit” Coupling

r r+ ei

�r,̂i(g)

What happens to the Z2 flux when it moves?

Under Ti, an Abelian anyon is attached on the flux

ag �r,x̂(g)

�r,ŷ(g)

�r,x̂(g)

�r,ŷ(g)

If anyons are not permuted 
by translations:



Necessity of Having Genons

ag �r,x̂(g)

�r,ŷ(g)

�r,x̂(g)

�r,ŷ(g)

If anyons are not permuted 
by translations:

But the background anyon can be transformed by g

g(�) = � ⇥ f

✓g(�) = ✓� , ✓�⇥f = �✓�Impossible because

An additional fermion appears 
after a Z2 flux moves around a unit cell



Example: Z4 topological order
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Z4 topological order generated by charge e and flux m

g : e ! e3,m ! m3

Ty : e ! e,m ! me2f

Ising dislocations



Side Note: U(1) LSMHO for Fermions

More “traditional” setting: fractional filling

Bosons at half-filling
Spins with Sz=0

Z2 topological order
(e.g. Z2 spin liquid, chiral spin liquid)

Fermions at half-filling At least Z4 topological order

Bultinck and Cheng

Take-home message: topological order of spinless fermions  
can be interesting!



Part I: Genons in Fractional Chern Insulators
J. Lee, M. Ippoliti, MC, M. Zaletel, in preparation



Hofstadter’s Butterfly

Tight-binding electrons in a magnetic field
or

Landau level in a weak periodic potential

But usually unit cells are too small.



Moire Pattern in Twisted Bilayer Graphene

Honeycomb lattice Dirac electrons

Moire pattern allows for realization of Hofstadter physics!

E. Spanton et al, arXiv:1706.06116



Quantum Hall States in Hofstadter Bands

Two filling factors:
Electrons per flux quanta

Electrons per site s

(

“IQH”-like states: t, s are integers

Streda’s formula:

ne = t�+ s
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@n

e

@�
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Nonzero s indicates strong lattice effect



Wannier Plot

Incompressible states as lines on the n, B plot
E. Spanton et al, arXiv:1706.06116

What it means to 
“fractionally fill” a Chern band: flat Chern bands

CI, SBCI, FCI



Flat Chern Bands and Emergent Symmetries

We can find a (C, S) band when
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Flat Chern Bands and Emergent Symmetries
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Magnetic translation symmetry:

Ti = ⌧iTi(a)

Ti(a) acts on the LLs as continuum translations
acts on the layer index ⌧i

�̄ ! 0They become independent in the           limit 
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Symmetry-Enriched Structure of FCIs

Two kinds of “background charge”

“vison” v
created by adiabatically inserting a flux quanta

“anyon per site” a
created by inserting one more site

a⌧y(a)⌧
2
y (a) · · · ⌧C�1

y (a) = vS

Emergent constraint



Example: C=2 Band

Natural guess: generalized Halperin 331 states at 1/4 filling
Y
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But does the (331) have to have genons? Yes
Proof: Suppose there are no genons. Then

v�1 = a2

But v is uniquely fixed by Hall conductance! 
No solution for a



Summary

LSMHO theorem for spinless fermions with particle-hole symmetry

Fermionic LSMHO requires genons to exist in symmetric gapped phases

Mapping from Chern bands to multiple-layer QH

SET constraints in Hofstadter Chern bands


