Characterizing Quantum Phase Transitions of Symmetry-Protected Topological Phases with Surface Critical Behavior

Long Zhang (张龙)

Kavli Institute for Theoretical Sciences, UCAS

Collaborators: Fa Wang, Chengxiang Ding, and Wenan Guo

Outline

- Introduction
 - SPT and AKLT phase
- 2D AKLT phase model
 - Model and phase diagram
 - Bulk and surface critical behavior
- Columnar model
- Summary

Symmetry-protected topological phase

- SPT is distinct from the vacuum only in the presence of certain symmetry. Gu and Wen, PRB (2009)
- Properties
 - Gapped bulk state without anyon excitations
 - Gapless or degenerate surface state
 - Surface states transform projectively under the symmetry

• Spin-1 Heisenberg chain Haldane, PRL (1983)

$$H = \sum_{i} \mathbf{S}_{i} \cdot \mathbf{S}_{i+1}$$

• Spin-1 AKLT chain Affleck, Kennedy, Lieb, and Tasaki, PRL (1987)

$$H = \sum_{i} \mathbf{S}_{i} \cdot \mathbf{S}_{i+1} + \frac{1}{3} (\mathbf{S}_{i} \cdot \mathbf{S}_{i+1})^{2}$$

• Spin-1 AKLT chain Affleck, Kennedy, Lieb, and Tasaki, PRL (1987)

- Gapped, nondegenerate ground state in p.b.c.

• Spin-1 AKLT chain Affleck, Kennedy, Lieb, and Tasaki, PRL (1987)

- Gapped, nondegenerate ground state in p.b.c.
- Dangling bonds in o.b.c.: gapless surface states
- Surface states transform as spin 1/2
- Protected by spin rotation symmetry Gu and Wen, PRB (2009)

2D AKLT state

- 2D square lattice Affleck, Kennedy, Lieb, and Tasaki, PRL (1987)
 - Gapped ground state
 - Nondegenerate in p.b.c.

2D AKLT state

- 2D square lattice Affleck, Kennedy, Lieb, and Tasaki, PRL (1987)
 - Gapped ground state
 - Nondegenerate in p.b.c.
 - Spin-1/2 AF chain in o.b.c.
 - Gapless! Lieb et al, Ann. Phys. (1961)
 - Protected by spin rotation and translation symmetries Chen et al, PRB (2011)

Relation of 1D and 2D AKLT

• 2D AKLT from stacked 1D AKLT, weak SPT

Relation of 1D and 2D AKLT

• 2D AKLT from stacked 1D AKLT, weak SPT

Protected by spin rotation and translation

Relation of 1D and 2D AKLT

• 2D AKLT from stacked 1D AKLT, weak SPT

Protected by spin rotation and translation

The physical consequence of breaking the symmetry that protects the SPT?

Phase transition and universality

- Spontaneous symmetry breaking
- Local order parameter
- Critical exponents are determined by symmetry and spatial dimension.

$$\begin{split} \xi &\sim |g - g_c|^{-\nu} \\ m &\sim (g_c - g)^{\beta} \\ C(r) &\sim r^{-(d-2+\eta)} \end{split}$$

A simple model

• Heisenberg model on decorated square lattice

$$H = J \sum_{\langle ij \rangle} \mathbf{S}_i \cdot \mathbf{S}_j + J' \sum_{\langle ij \rangle'} \mathbf{S}_i \cdot \mathbf{S}_j,$$

• We consider AF inter-UC coupling, J' = 1.

L. Zhang and F. Wang, PRL **118**, 087201 (2017).

J

- J = 0: AKLT phase
 - Disjoint dimers
 - Free surface: dangling bonds
 - Spin-1/2 Heisenberg chain, gapless

- Three quantum critical points
 - Disorder to Neel order
 - Spin rotational symmetry breaking

Bulk QCP universality

- J_{c1} : trivial to Neel order
- J_{c2} and J_{c3} : AKLT to Neel order
- All consistent with 3D O(3) universality class dictated by Landau theory.

	J_c	z	ν	η	β
J_{c1}	1.064382(13)	1.0008(16)	0.7060(13)	0.0357(13)	0.3663(8)
J_{c2}	0.603520(10)	1.001(5)	0.7052(9)	0.031(4)	0.3642(13)
J_{c3}	-0.934251(11)	0.9999(13)	0.7052(15)	0.0365(10)	0.3659(9)
3D O(3)	_	_	0.7073(35)	0.0355(25)	0.3662(25)

3D O(3): Guida and Zinn-Justin, J. Phys. A 31, 8103 (1998) L. Zhang and F. Wang, PRL **118**, 087201 (2017).

What is the physical consequence of SPT? What if gapless surface is formed?

Surface critical behavior

- Across bulk phase transition, long range order is induced on surfaces.
- Surface singularities at bulk critical point
- Intimately related to the bulk QCP.

Surface critical exponents

• Surface susceptibility $\chi_{1,1} = \partial m_1 / \partial h_1 \sim L^{-(d+z-1-2y_{h1})}$

Surface critical exponents

• Surface susceptibility

$$\chi_{1,1} = \partial m_1 / \partial h_1 \sim L^{-(d+z-1-2y_{h_1})}$$

• Spin correlation functions $C_{\parallel}(r) \sim r^{-(d+z-2+\eta_{\parallel})}, \quad C_{\perp}(r) \sim r^{-(d+z-2+\eta_{\perp})}$

Surface critical exponents

• Surface susceptibility

$$\chi_{1,1} = \partial m_1 / \partial h_1 \sim L^{-(d+z-1-2y_{h_1})}$$

- Spin correlation functions $C_{\parallel}(r) \sim r^{-(d+z-2+\eta_{\parallel})}, \quad C_{\perp}(r) \sim r^{-(d+z-2+\eta_{\perp})}$
- Scaling relations Barber, PRB (1973); Lubensky and Rubin, PRB (1975)

$$\begin{aligned} 1 - \eta_{\parallel} &= -(d + z - 1 - 2y_{h_1}), \\ 2\eta_{\perp} &= \eta_{\parallel} + \eta. \end{aligned}$$

I_{c1} : trivial phase to Neel order

- Surface susceptibility $\chi_{1,1}(L) \sim c + a L^{-(2-2y_{h1})}$
- Surface correlations $C_{\parallel,\perp}(L/2) \sim L^{-(1+\eta_{\parallel,\perp})}$

 y_{h_1}

0.813(2)

 J_{c1}

3D classical

Heisenberg

 η_{\parallel}

1/LL. Zhang and F. Wang, PRL **118**, 087201 (2017).

$J_{c2,3}$: AKLT to Neel order

- Qualitatively different from J_{c1}: "special"
- New universality classes of surface criticality due to gapless surface state

L. Zhang and F. Wang, PRL 118, 087201 (2017).

Is this surface universality class generic for SPT phase transitions?

Columnar model

- Bulk dimer-Neel QCP: 3D O(3) class
- Surface configurations
 - Cut 1: trivial surface
 - Cut 2: dangling bonds, gapless surface

Trivial surface: ordinary transition

Bulk QCP + trivial surface = ordinary 3D O(3)

SPT surface: special transition

Bulk QCP + gapless surface = special 3D O(3)

Breaking translation: crossover

- AKLT: spin rotation and translation
- Breaking translation, surface state is gone.
- Surface critical behavior crosses over from special to ordinary class.

Summary

- SPT does not change the bulk symmetry breaking universality class.
- SPT transition is characterized a new universality class of surface critical behavior.
 - Interplay of gapless surface and critical bulk states

Thank you for your attention!