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Quantum Adiabatic Algorithm (QAA)

* Unique among possible quantum algorithms
because it is “general purpose” — most
optimization problems can formulated to use it
(also QAA is technically universal)

* Devices meant to implement it have been
constructed (D-Wave), so it may be the first
algorithm to run on an actual quantum
computer

* Still not clear whether there are any problems
for which the QAA is more efficient than
various classical optimization algorithms
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Basics of the QAA

A quantum computer evolves according to the time-dependent Hamiltonian

t
Hyoo = (1 _ —) H; + —H;

L
Here H. is any sufficiently simple Hamiltonian, e.g.,: H; = hg Z crg”’)

ground state  [;) = 272 (|0) — [1)), (|0) = [1)), -~ (|0) = [1))

and Hcis a complicated Hamiltonian whose ground state encodes the solution
to the optimization problem, e.g.,

L L
Hf =Y hoot +7) o™o™ b, €[-1,1]

n=I1 n=1

Specification of {h } determines an instance (or a realization) of the optimization problem.



Random-field Ising Model with t-dependent transverse field

7 A

Variable Number L of spins on the Ring



Adiabaticity

* If t, is large enough, then the adiabatic theorem tells that |;)
will evolve into |lIJ'f> at t = t;, and that \‘Ijﬂis the ground state
of H, thus solving the optimization problem.
How large is large enough for t;? Simple arguments (see, e.g., Messiah,
1961) say that if we define the minimum gap as:

Amin = min |[Fq (t) — Eo (t)]

0<t<tp

Then  tp >>C ||(dH/dt)?|| / AZ,

If A_.. = O(L") the algorithm is efficient but if A . = O(exp (-L))
then the algorithm is inefficient
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Topological Picture of the QAA

21t 27t
* Consider an expanded time evolution: H,,,, (t) = cos (t_) H; + sin (t_) H;
D D
* And an effective mean field on the nth spin:

o (E2) 21 g (00 0) o (2)

(n)
h, f

D D

Perfect adiabatic evolution gives
M,=0 and Berry phase = .
Deviations from rt indicate

X breakdown of the algorithm.

\ STANDARD QAA

QAA x 4 = TOPOLOGICAL QAA



Breakdown of Adiabatic Berry Phase Accumulation
Spin % Particle in a t-dependent B-field.

dd/dt |

Sharp Breakdown of adiabatic
accumulation at a fairly well-
defined driving speed.
Destruction of Topology =
Destruction of QAA!

Gritsev and
Polkovnikov,

AT PNAS 109, 6457
dh/dt (2011)



Topological Cancellation

Define a time-dependent Hamiltonian H,(t) with
instantaneous eigenstates |n(t) > :

Then there will be transitions between the |n(t) >. But if we

define H = Hy(t) + H,(t), with
BERRY CONNECTION TERM
m) f:)t Hy|n)(n| ALSO “COUNTER-DIABATIC”

>

TERM |
T ]:‘m)

”1- T

Then if the initial state is |n(t) >, the final state is also |n(t) >.
For a single spin these equations reduce to . .
Hy(t) = —B(t)-d/2 and Hy(t) = —p5 0

MV Berry, J. Phys. A 42, 365303 (2009)



Application to the QAA

We propose to add the topological term to the
Hamiltonian that will suppress the unwanted transitions:

Hoa ©) = fi (o) Bt gy (12 ) -+ 1.0

fi(0) = fr(1)=1; f;(1)=f¢(0) = H,(0) =H.(1) =0

H, must vanish at both endpoints: at t=0 because it is not easy
to diagonalize, at t=ty because it must not change the
optimization problem.

H. involves the instantaneous eigenstates, which we do not
know how to calculate efficiently: must approximate!



Single-particle Approximation

. 5 [ Tt , .o [ Tt
Now we choose fi (t) = cos o ) fr(t) = sin 5
D tD

hoh,, sin ( Tt ) cos (l)
and H;(t) = — E 2o 2o o)
2 x4 Q 4 [ =t Y
, 2tp {ha sin (‘}fﬂ) + hz cos (Eﬂ

as our approximation to H..
It’s necessary that the turn on and turn off are quadratic
— otherwise it is impossible to get H (t=0) = H (t=t;) =0



Non-interacting Spins: J=0

L7
U(t =tp)|° |

is the success probability.
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Weakly Interacting Spins: (J=0.1)

.- 2
P, = |(n|¥(t =tp)|

is the probability of ending in
the state |n >.

Round points are with steering
Square points are without
10% realizations of the disorder
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Py = |(0

the state |0 >.

Round points are with steering

Interacting Spins: (all J)
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Single-spin Approximation: Remarks

* The algorithm is straightforward to implement.

* The calculation of the steering Hamiltonian is efficient.

* The speedups are very considerable for small J,
sayJ<0.5.

* At intermediate coupling 1< J < 10, single-spin steering is
actually detrimental (but see below).

* At very large J, single-spin steering makes no difference.
* Can we improve?




Cluster Approximation

* We search for the spin with smallest h_..

* The idea is that this spin is determined by the interaction and
neighboring spins: it “feels” the interaction most strongly.

* This spin is chosen as the center of a cluster for which Hs is computed
numerically using the exact many-spin Berry formula.

* The other spins are treated as before.
* This is the first step in a cluster expansion for the method.



Cluster approach

z
y h;
‘ x| | l ! * For a spin with weak z-field, dynamics is

governed by neighbors.

* Number spins so that h; is the smallest
z-field.

* Apply exact Berry steering to spins
numbered as 0, 1 and 2.

* To the rest of the spins, apply 1-spin
steering.




Interacting Spins: Cluster Approximation

Percentage of realizations with
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Conclusions, Discussion

* We add a topological cancellation term to the QAA Hamiltonian that
suppresses single-spin transitions.

* The single-spin method shows significant improvements on the
standard QAA for random spin systems with weak to moderate
interaction strengths.

* The simplest cluster expansion of the cancellation term also gives a
speedup in the range of moderate interactions — this suggests that
systematic improvement is possible.

* H, and H; are stoquastic, but H. is not.

* We have not investigated the scaling behavior of the method — its local
character so far would suggest a constant speedup, but the method in
general need not be local.



Landau-Zener-Majorana tunneling
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LZM Tunneling is the Problem
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min
Seems to be a very accurate criterion
in the problems known to date,

indicating that individual avoided
Level crossings are the main obstacle to
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I the efficiency of the QAA.

Young, Knysh, Smelyanskiy, PRL 101, 170503 (2008)



