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Workshop Program 

 

Tutorials  (S101, Blackboard talks in S102) 

 

Jun. 28 (Wed.) 

10:00-11:30 Wei-Shan Dong 

Baidu Research 

A Brief Introduction to Machine Learning 

11:30-14:00 Lunch 

14:00-15:30 Matthias Rupp 

FHI Berlin 

[Blackboard] Machine Learning for Quantum 

Mechanics 

15:30-16:00 Break 

16:00-17:30 Juan Carrasquilla 

D-Wave System 

Machine Learning Phases of Matter 

Jun. 29 (Thur.) 

10:00-11:30 Xun Gao 

Tsinghua IIIS 

[Blackboard] Quantum Machine Learning 

11:30-14:00 Lunch 

14:00-15:30 Hai-Jun Zhou 

ITP, CAS 

[Blackboard] Message Passing for Graphical 

Models 

15:30-16:00 Break 

16:00-17:30 Giuseppe Carleo 

ETH Zurich 

[Blackboard] Neural Network Quantum States 

Jun. 30 (Fri.) 

10:00-11:30 Yang Qi 

MIT 

Guiding Monte Carlo Simulations with 

Machine Learning 

11:30-14:00 Lunch 

14:00-15:30 Miles Stoudenmire 

UC Irvine 

[Blackboard] Tensor Network States and 

Algorithms 

15:30-16:00 Break 

16:00-17:30 Yi-Zhuang You 

Harvard 

Machine Learning and Tensor Network 

Holography 

   

   

   



 

Conference  (S101) 

 

Jul. 3 (Mon.) 

09:00-09:15 Fu-Chun Zhang 

KITS, UCAS 

Welcome and Opening 

09:15-10:00 Giuseppe Carleo 

ETH Zurich 

Neural-network Quantum States 

10:00-10:45 Masatoshi Imada 

Univ. of Tokyo 
Simulating quantum many body problems of 

fermions and quantum spins 

10:45-11:15 Break 

11:15-12:00 Xun Gao 

Tsinghua IIIS 

Efficient Representation of Quantum Many-

body States with Deep Neural Networks 

12:00-14:00 Lunch 

14:00-14:45 Juan Carrasquilla 

D-Wave System 

A neural network perspective on the Ising 

gauge theory and the toric code 

14:45-15:30 Ye-Hua Liu 

ETH Zurich 

Learning Phase Transitions with/without 

Confusion 

15:30-16:00 Break 

16:00-16:45 Frank Yi Zhang 

Cornell Univ. 

Quantum Loop Topography for Machine 

learning-on topological phase, phase 

transitions, and beyond 

16:45-17:30 Ehsan Khatami 

San Jose State Univ. 
Machine learning phases of strongly-

correlated fermions 

Jul. 4 (Tue.) 

09:00-09:45 Masayuki Ohzeki 

Tohoku Univ. 

Sparse modeling: how to solve the ill-posed 

problem 

09:45-10:30 Junya Otsuki 

Tohoku Univ. 

Sparse modeling approach to analytical 

continuation and compression of imaginary-

time quantum Monte Carlo data 

10:30-11:00 Break 

11:00-11:45 Richard Scalettar 

UC Davis 

Magnetic Phase Transitions and Unsupervised 

Machine Learning 

11:45-12:15 Ce Wang 

Tsinghua Univ. 

Machine Learning for Frustrated Classical Spin 

Models 

12:15-14:00 Lunch 

14:00-14:45 Giacomo Torlai 

Univ. of Waterloo 
Neural-Network Quantum State Tomography 

for Many-Body Systems 



14:45-15:30 Maria Schuld 

Kwazulu-Natal 

Machine learning with quantum circuits: 

Constructing a distance-based binary classifier 

through quantum interference  

15:30-16:00 Break 

16:00-16:45 Pan Zhang 

ITP, CAS 

Mean-field-based spectral method for 

unsupervised learning: from PCA to non-

backtracking and its generalizations 

16:45-17:30 Hai-Ping Huang 

RIKEN 

Spontaneous symmetry breaking in machine 

learning: a replica theory 

Jul. 5 (Wed.) 

09:00-09:45 Kieron Burke 

UC Irvine 

Machine-learning density functionals 

09:45-10:30 Matthias Rupp 

FHI Berlin 

Unified Representation for Machine Learning 

of Molecules and Crystals 

10:30-11:00 Break 

11:00-11:45 Jun Li 

Univ. of Waterloo & 

CSRC 

A Separability-Entanglement Classifier via 

Machine Learning 

11:45-12:15 Yue-Chi Ma 

Tsinghua IIIS 

Transforming Bell's Inequalities into State 

Classifiers with Machine Learning 

12:15-14:00 Lunch 

14:00-15:30 Hartmut Neven 

Google 

[Public Lecture] An Update from the Google 

Quantum Artificial Intelligence Lab 

15:30-16:00 FREE 

Jul. 6 (Thur.) 

09:00-09:45 Dong-Ling Deng 

UMD 

Machine learning quantum states and 

entanglement 

09:45-10:30 Ivan Glasser 

MPIQO 

The geometry of Neural Network States, 

String-Bond States and chiral topological order 

10:30-11:00 Break 

11:00-11:45 Yi-Chen Huang 

Caltech 

Neural network representation of tensor 

network and chiral states 

11:45-12:15 Jing Chen 

IOP, CAS 

On the Equivalence of Restricted Boltzmann 

Machines and Tensor Network States 

12:15-14:00 Lunch 

14:00-14:45 Jun-Wei Liu 

MIT 

Self-Learning Monte Carlo Method 



14:45-15:15 Li Huang 

CAEP 
Accelerated Monte Carlo simulations with 

restricted Boltzmann machines  

15:15-15:45 Break 

15:45-16:30 Miles Stoudenmire 

UC Irvine 

Machine Learning with Tensor Networks 

16:30-18:00 [Rump Session]  

18:00 [Conference Dinner]  

Jul. 7 (Fri.) 

09:00-09:45 Xiao-Yan Xu 

IOP, CAS 

Self-Learning quantum Monte Carlo method in 

interacting fermion systems 

09:45-10:15 Huitao Shen 

MIT 

Self-learning Monte Carlo Method: Continuous 

Time Algorithm 

10:15-10:45 Break 

10:45-11:15 Nobuyuki Yoshioka 

Univ. of Tokyo 

Machine Learning Phases of Disordered 

Topological Superconductors 

11:15-11:45 Satoru Tokuda 

AIST 

Bayesian spectral deconvolution: How many 

peaks are there in this spectrum? 



Abstract 

 

 

A Brief Introduction to Machine Learning 

Wei-Shan Dong (Baidu Research) 

 

This tutorial aims to provide a brief introduction to the core concepts of machine learning 

and how machine learning help us solving real-world problems. I will take binary 

classification as a starting point to introduce the general formulation of supervised learning, 

and meanwhile, to show the basic ideas of several popular machine learning algorithms, 

including Support Vector Machines (SVM), Logistic Regression (LR), and Neural Networks 

(aka Deep Learning). I will also share some experiences of machine learning applications 

from the industry’s point of view. 

 

 

[Blackboard] Neural-network Quantum States  

Giuseppe Carleo (ETH Zurich) 

 

Machine-learning-based approaches are being increasingly adopted in a wide variety of 

domains, and very recently their effectiveness has been demonstrated also for many-body 

physics [1-4]. In this seminar I will present recent applications to quantum physics. 

 

First, I will discuss how a systematic machine learning of the many-body wave-function can 

be realized. This goal has been achieved in [1], introducing a variational representation of 

quantum states based on artificial neural networks. In conjunction with Monte Carlo 

schemes, this representation can be used to study both ground-state and unitary dynamics, 

with controlled accuracy. Moreover, I will show how a similar representation can be used 

to perform efficient Quantum State Tomography on highly-entangled states [5], previously 

inaccessible to state-of-the art tomographic approaches. 

 

I will then briefly discuss, recent developments in quantum information theory, 

concerning the high representational power of neural-network quantum states. 

 

[1] Carleo, and Troyer -- Science 355, 602 (2017). 

[2] Carrasquilla, and Melko -- Nat. Physics doi:10.1038/nphys4035 (2017) 

[3] Wang -- Phys. Rev. B 94, 195105 (2016) 

[4] van Nieuwenburg, Liu, and Huber -- Nat. Physics doi:10.1038/nphys4037 (2017) 

[5] Torlai, Mazzola, Carrasquilla, Troyer, Melko, and Carleo -- arXiv:1703.05334 (2017) 

 

 

 



 

 

 

A neural network perspective on the Ising gauge theory and the toric code 

Juan Carrasquilla (D-Wave System) 

 

I will discuss a supervised learning perspective on the Ising gauge theory and demonstrate 

potential problems of doing that by constructing adversarial examples that scrutinize the 

model's ability to sort ground states from excited states. I will show an analytical solution 

that addresses these issues and will show connections of the solution to the ground state 

of the toric code. 

 

 

Quantum Loop Topography for Machine learning on topological phase, phase transitions, 

and beyond 

Frank Yi Zhang (Cornell Univ.) 

 

Despite rapidly growing interest in harnessing machine learning in the study of quantum 

many-body systems, there has been little success in training neural networks to identify 

topological phases. The key challenge is in efficiently extracting essential information from 

the many-body Hamiltonian or wave function and passing the information to a neural 

network. When targeting topological phases, this task becomes particularly challenging as 

topological phases are defined in terms of non-local properties. Here we introduce 

Quantum Loop Topography: a procedure of constructing a multi-dimensional image 

containing essential information on the phase of the corresponding "sample" Hamiltonian 

or wave function, by evaluating relevant operators at independent Monte Carlo steps. Such 

operators take semi-local loop structures, and are determined by either the characteristic 

responses or the quasi-particle statistics of the targeted phase. Feeding the Quantum Loop 

Topography into a fully-connected neural network with a single hidden layer, we 

demonstrate that the architecture can be effectively trained to distinguish Chern insulator 

and fractional Chern insulator, as well as Z2 quantum spin liquid, with high efficiency and 

fidelity. Given the versatility of the procedure that can handle different lattice geometries, 

disorder, interaction and even degeneracy our work paves the route towards powerful 

applications of machine learning in the study of topological quantum matters, phase 

transitions, and beyond. 

 

[1] Yi Zhang, Roger G. Melko, and Eun-Ah Kim, arXiv-eprint(2017); Yi Zhang, and Eun-Ah Kim, Phys. Rev. 

Lett. 118, 216401 (2017) [Editors’ Suggestion and Viewpoint]. 

 

 



 

 

Machine learning phases of strongly-correlated fermions 

Ehsan Khatami (San Jose State Univ.) 

 

Machine learning offers an unprecedented perspective for the problem of classifying phases 

in condensed matter physics. I will present the first application of neural network machine 

learning techniques to distinguish finite-temperature phases of the strongly-correlated 

fermions. I will show that a convolutional network trained on auxiliary field configurations 

produced by quantum Monte Carlo (QMC) simulations of the 3D Hubbard model can 

correctly predict the magnetic phase diagram of the model at the average density of one 

(half filling). I will then discuss a transfer-learning approach in which a network that is 

trained at half filling can predict the magnetic phase transition away from half filling in the 

presence of the QMC "sign problem". 

 

 

Sparse modeling: how to solve the ill-posed problem 

Masayuki Ohzeki (Tohoku Univ.) 

 

Lack of information hampers the inference of the explicit appearance from measurements. 

However, if you solve some optimization problem, you can get the exact answer from less 

number of measurements. This is an innovative technology known as the compressed 

sensing by use of the sparseness of the answer. I will talk about the basic concept of the 

compressed sensing and its application to the various realms of researches. In addition, I 

will introduce the dictionary learning to obtain the sparse representation of the target. Both 

of the technologies leads to a revolution on the various fields involved in the measurements. 

This is the sparse modeling. I will also show our recent contribution to the realm of many-

body physics. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Magnetic Phase Transitions and Unsupervised Machine Learning  

Richard Scalettar (UC Davis) 

 

We will describe the application of unsupervised machine learning techniques to phase 

transitions in several classical spin models- the square and triangular-lattice Ising models, 

the Blume-Capel model, a highly degenerate biquadratic-exchange spin-one Ising (BSI) 

model, and the 2D XY model.  We find that quantified principal components from principal 

component analysis (PCA) not only allow exploration of different phases and symmetry-

breaking, but can distinguish phase transition types and locate critical points. We show that 

the corresponding weight vectors have a clear physical interpretation, which are particularly 

interesting in the frustrated models such as the triangular antiferromagnet, where they can 

point to incipient orders. The failure to capture the ‘charge’ correlations (vorticity ) in the 

BSI model (XY model) from raw spin configurations point to some of the limitations of PCA.  

In the second part of the talk, we will show what PCA can distinguish concerning quantum 

phase transitions in the ground state of the Periodic Anderson and honeycomb lattice 

Hubbard Hamiltonians. 

 

 

Machine Learning for Frustrated Classical Spin Models 

Ce Wang (Tsinghua Univ.) 

 

In this talk, we will apply the machine learning method to study classical XY model on 

frustrated lattices, such as triangle lattice and UnionJack lattice. The low temperature 

phases of these frustrated models exhibit both U(1) and Z2 chiral symmetry breaking, and 

therefore they are characterized by two order parameters, and consequently, two 

successive phase transitions as lowering the temperature. By using classical Monte Carlo to 

generate a large number of data to feed computer, we use methods such as the principle 

component analysis (PCA) to analyze these data. We find that the PCA method can 

distinguish all different phases and locate phase transitions, without prior knowledge of 

order parameters. Our analysis pave a way to machine learning studies of more 

sophisticated models. 

 

 

 

 



 

 

Neural-Network Quantum State Tomography for Many-Body Systems 

Giacomo Torlai (Univ. of Waterloo) 

 

The reconstruction of an unknown quantum state from simple experimental 

measurements, quantum state tomography (QST), is a fundamental tool to investigate 

complex quantum systems, validate quantum devices and fully exploit quantum resources.  

 

In this talk, I will introduce a novel scheme for QST using machine-learning [1]. The wave-

function of an arbitrary many-body system is parametrized with a standard neural network, 

which is trained on raw data to approximate both the amplitudes and the phases of the 

target quantum state. This approach allows one to reconstruct highly-entangled states and 

reproduce challenging quantities, such as entanglement entropy, from simple 

measurements already available in the experiments. I will show the main features of the 

“Neural-Network QST” and demonstrate its performances on a variety of examples, ranging 

from the prototypical W state, to unitary dynamics and ground states of many-body 

Hamiltonians in one and two dimensions.  

 

[1] G. Torlai, G. Mazzola, J. Carrasquilla, M. Troyer, R. G. Melko and G. Carleo, arXiv:1703:05334 

 

Machine learning with quantum circuits: Constructing a distance-based binary classifier 

through quantum interference 

Maria Schuld (Kwazulu-Natal) 

 

While machine learning is an increasingly popular method to learn about quantum 

systems, the vice versa approach - using quantum computers to solve machine learning 

tasks - has also been investigated in recent years. Sometimes referred to as 'quantum-

assisted machine learning', the central question is whether quantum information 

processing can add anything to machine learning research. The most common strategy is to 

search for speedups by outsourcing the optimization task in well-known learning classical 

techniques to quantum devices. In this talk I will argue for a different approach which starts 

with the framework of quantum algorithms to find out what (new) types of learning models 

quantum circuits naturally give rise to. As a toy example I will present a simple interference 

circuit that realises a binary classifier by computing distances between data points in 

parallel. Such a quantum classifier can be implemented on small scale quantum computers 

available today. 



 

 

Spontaneous symmetry breaking in machine learning: a replica theory 

Hai-Ping Huang (RIKEN) 

  

Learning hidden features in unlabeled training data is called unsupervised learning. 

Understanding how data size confines learning process is a topic of interest not only in 

machine learning but also in cognitive neuroscience. The merit of unsupervised feature 

learning puzzles the community for a long time, and now as deep learning gets popular and 

powerful, a theoretical basis for unsupervised learning becomes increasingly important but 

is lacked so far. Our simple statistical mechanics model substantially advances our 

understanding of how data size confines learning, and opens a new perspective for both 

neural network training and related statistical physics studies. 

 

 

Machine-learning density functionals 

Kieron Burke (UC Irvine) 

 

I will introduce modern density functional theory and the search for good approximate 

functionals.  I will then discuss two recent works, one in which we do the first ever machine-

learned DFT molecular dynamics simulation, and the other in which we show how ML can 

produce the exact density functional for strongly correlated solids (at least in 1d).  All 

papers/preprints available from http:dft.ps.uci.edu. 

 

 

A Separability-Entanglement Classifier via Machine Learning 

Jun Li (Univ. of Waterloo & CSRC) 

 

The problem of determining whether a given quantum state is entangled lies at the heart of 

quantum information processing, which is known to be an NP-hard problem in general. 

Despite the proposed many methods – such as the positive partial transpose (PPT) criterion 

and the $k$-symmetric extendibility criterion – to tackle this problem in practice, none of 

them enables a general, effective solution to the problem even for small dimensions. 

Explicitly, separable states form a high-dimensional convex set, which exhibits a vastly 

complicated structure. In this work, we build a new sepaFrability-entanglement classifier 

underpinned by machine learning techniques. Our method outperforms the existing 

methods in generic cases in terms of both speed and accuracy, opening up the avenues to 

explore quantum entanglement via the machine learning approach. 

 

http://dft.ps.uci.edu/


 

 

Transforming Bell's Inequalities into State Classifiers with Machine Learning 

Yue-Chi Ma (Tsinghua IIIS) 

 

Quantum information science has profoundly changed the ways we understand, store, and 

process information. A major challenge in this field is to look for an efficient means for 

classifying quantum states. For instance, one may want to determine if a given quantum 

state is entangled or not. However, %no effective solution exists for the NP-hard complexity 

of this problem in general. Moreover, the process of a complete characterization of 

quantum states, known as quantum state tomography, is a resource-consuming operation. 

An attractive proposal would be the use of Bell's inequalities as an entanglement witness, 

where only partial information of the quantum state is needed. The problem is that 

entanglement is necessary but not sufficient for violating Bell's inequalities, making it an 

unreliable state classifier. Here we aim at solving this problem by the methods of machine 

learning. More precisely, given a family of quantum states, we randomly picked a subset of 

it to construct a quantum-state classifier, accepting only partial information of each 

quantum state. Our results indicated that these transformed Bell-type inequalities can 

perform significantly better than the original Bell's inequalities in classifying entangled 

states. We further extended our analysis to three-qubit and four-qubit systems, performing 

classification of quantum states into multiple species. These results point to a new direction 

where machine learning can be utilized for solving practical problems in quantum 

information science. 

 

 

 

 

 

 

 

 

 

 

 



 

 

[Public Lecture] An Update from the Google Quantum Artificial Intelligence Lab  

Hartmut Neven (Google) 

 

In this talk I will report about ongoing efforts at the Google Quantum AI Lab to engineer a 

processor that is capable of passing the quantum supremacy frontier. This is defined as the 

moment when a quantum processor becomes capable of executing a computational task in 

a short time, say one second, while even the fastest classical supercomputer cannot perform 

this task within a reasonable time frame, say one year. Once the supremacy milestone is 

achieved we plan to offer access to our quantum processors via Google Cloud for 

researchers and practitioners to be able to explore their potential computational powers. I 

will discuss which useful application we hope to run on such near-term quantum processors 

which have passed the quantum supremacy frontier but do not yet possess enough qubits 

to perform quantum error correction. I will discuss three application areas: quantum 

simulation, quantum enhanced optimization and quantum neural networks. In particular I 

will report on i) a recent breakthrough in quantum simulation that suggests that one only 

needs a circuit of depth O(n) to perform electronic structure calculations involving n spin 

orbitals ii) quantum parallel tempering, a newly designed quantum enhanced optimization 

technique, that uses the physics of many body delocalization to escape local minima and 

finally iii) first experiments to train quantum neural networks.  

 

 

Machine learning quantum states and entanglement 

Dong-Ling Deng (UMD) 

 

Recently, machine learning has attracted tremendous interest across different 

communities. In this talk, I will briefly introduce a new neural-network representation of 

quantum many-body states and show that this representation can describe certain 

topological states in an exact and efficient fashion. I will talk about the entanglement 

properties, such as entanglement entropy and spectrum, of those quantum states that can 

be represented efficiently by neural networks. I will also show that neural networks can be 

used, through reinforcement learning, to solve a challenging problem of calculating the 

massively entangled ground state for a model Hamiltonian with long-range interactions. 

 

 

 

 

 

 

 

 

 



 

 

 

The geometry of Neural Networks States, String-Bond States and chiral topological order 

Ivan Glasser (MPIQO) 

 

Neural Networks Quantum States have been recently introduced as an Ansatz for describing 

the wave function of strongly correlated quantum many-body systems. We show that fully 

connected Neural Networks States are String-Bond States with a particular non-local 

geometry and low bond dimension, while convolutional Neural Networks states are 

Entangled Plaquette states. This provides a generic way of enhancing the power of Neural 

Networks State and a natural generalization to systems with larger local Hilbert space. While 

it remains a challenge to describe states with chiral topological order using traditional 

Tensor Networks, we show that due to their non-local geometry Neural Networks States 

can describe exactly a lattice Fractional Quantum Hall state. In addition, we give numerical 

evidence that Neural Networks States can approximate a chiral spin liquid, where Entangled 

Plaquette States and local String-Bond States fail. Finally we discuss the limitations of these 

states and argue that a suitable combination of different classes of states can in general be 

used to target the ground state of a many-body Hamiltonian. 

  

 

Neural network representation of tensor network and chiral states 

Yi-Chen Huang (Caltech) 

 

We study the representational power of a Boltzmann machine (a type of neural network) in 

quantum many-body systems. We prove that any (local) tensor network state has a (local) 

neural network representation. The construction is almost optimal in the sense that the 

number of parameters in the neural network representation is almost linear in the number 

of nonzero parameters in the tensor network representation. Despite the difficulty of 

representing (gapped) chiral topological states with local tensor networks, we construct a 

quasi-local neural network representation for a chiral p-wave superconductor. This 

demonstrates the power of Boltzmann machines. 

 

 

 

 

 

 

 

 

 

 

 



 

 

On the Equivalence of Restricted Boltzmann Machines and Tensor Network States 

Jing Chen (IOP, CAS) 

 

Restricted Boltzmann machine (RBM) is one of the fundamental building blocks of deep 

learning. RBM finds wide applications in dimensional reduction, feature extraction, and 

recommender systems via modeling the probability distributions of a variety of input data 

including natural images, speech signals, and customer ratings, etc.  

 

We build a bridge between RBM and tensor network states (TNS) widely used in quantum 

many-body physics research. We devise efficient algorithms to translate an RBM into the 

commonly used TNS. Conversely, we give sufficient and necessary conditions to determine 

whether a TNS can be transformed into an RBM of given architectures. Revealing these 

general and constructive connections can cross-fertilize both deep learning and quantum-

many body physics. Notably, by exploiting the entanglement entropy bound of TNS, we can 

rigorously quantify the expressive power of RBM on complex datasets. The discussion of 

different topological sectors of toric code can be directly applied to RBM.  Insights into TNS 

and its entanglement capacity can guide the design of more powerful deep learning 

architectures. On the other hand, RBM can represent quantum many-body states with 

fewer parameters compared to TNS, which may allow more efficient classical simulations. 

It is interesting that entanglement is not the only issue to represent RBM of TNS, such as 

AKLT. With the bridge, we also find that the shift-invariant RBM [5] increases the expressive 

power of entanglement. 

 

Other three works "Quantum Entanglement in Neural Network States" [2] and "Efficient 

Representation of Quantum Many-body States with Deep Neural Networks"[3], “Neural 

network representation of tensor network and chiral states” [4] will be also talked about. 

These four papers have some overlaps but from different view angles.  

 

[1]J. Chen, S. Cheng, H. Xie, L. Wang, and T. Xiang, arXiv:1701.04831 [Cond-Mat, Physics:quant-Ph, Stat] 

(2017). 

[2]D.-L. Deng, X. Li, and S. D. Sarma, arXiv:1701.04844 [Cond-Mat, Physics:quant-Ph] (2017). 

[3]X. Gao and L.-M. Duan, arXiv:1701.05039 [Cond-Mat, Physics:quant-Ph] (2017). 

[4]Y. Huang and J. E. Moore, arXiv:1701.06246 [Cond-Mat] (2017). 

[5]G. Carleo and M. Troyer, Science 355, 602 (2017). 

 

 

 

 

 

 

 



 

 

 

Accelerated Monte Carlo simulations with restricted Boltzmann machines 

Li Huang (CAEP) 

 

Despite their exceptional flexibility and popularity, Monte Carlo methods often suffer from 

slow mixing times for challenging statistical physics problems. We present a general strategy 

to overcome this difficulty by adopting ideas and techniques from the machine learning 

community. We fit the unnormalized probability of the physical model to a feed-forward 

neural network and reinterpret the architecture as a restricted Boltzmann machine. Then, 

exploiting its feature detection ability, we utilize the restricted Boltzmann machine to 

propose efficient Monte Carlo updates to speed up the simulation of the original physical 

system. We implement these ideas for the Falicov-Kimball model and demonstrate an 

improved acceptance ratio and autocorrelation time near the phase transition point. 

 

 

Machine Learning with Tensor Networks 

Miles Stoudenmire (UC Irvine) 

 

The development of tensor network descriptions of quantum wavefunctions has been a 

crucial advance in physics, leading to controlled algorithms for computing properties of 

quantum many-body systems and rigorous insights into subtle phases of matter. But 

tensor networks are actually a very general tool, and can in principle be applied to many 

problems outside of physics too. 

 

I will describe a way to use tensor networks to parameterize certain machine learning 

models, related to kernel learning and support vector machines. Specializing to matrix 

product state networks yields an training algorithm scaling significantly better than previous 

methods for similar models. I will discuss some new results on initializing these models and 

applying them to larger input spaces. Finally, I will discuss connections to related ideas in 

the machine learning literature and discuss future insights that tensor networks could 

provide. 

 

 

 

 

 

 

 

 

 



 

 

Self-Learning quantum Monte Carlo method in interacting fermion systems 

Xiao-Yan Xu (IOP, CAS) 

 

Self-learning Monte Carlo method is a powerful general-purpose numerical method 

recently introduced to simulate many-body systems. In this work, we extend it to interacting 

fermion quantum system in the framework of widely used determinantal quantum Monte 

Carlo. The new method can generally reduce the computational complexity, and moreover 

can greatly reduce the autocorrelation time near a critical point. This enables us to simulate 

interacting fermion system on a $100\times 100$ lattice even at the critical point for the 

first time, and obtain critical exponents with high precision. 

 

 

Machine Learning Phases of Disordered Topological Superconductors 

Nobuyuki Yoshioka (Univ. of Tokyo) 

 

A topological superconductor (TSC) is a superconductor (SC) with a bulk gap characterized 

by a nontrivial topological invariant, which reflects the global property of the wave functions 

[1]. While the concrete expression of the topological number for the translationally 

invariant system is widely known, our understanding of the disordered SCs is limited. In this 

work, we investigate the phases of two-dimensional disordered TSC in the class DIII using 

the state-of-the-art machine learning technique which outperforms other methods in image 

recognition, i.e., the convolutional neural network (CNN) [2]. 

 

With the surging development of experimental research, there is a growing demand for 

investigation in the class DIII system, or the spin-rotation-symmetry-breaking Bogoliubov de 

Gennes system with time reversal symmetry, since some candidate materials are believed 

to belong here (e.g. CuxBi2Se3, FeTexSe1-x). There are two valid ways to model such 

systems. One is so-called Chalker-Coddington network model [3], which 

phenomenologically formulates the propagation and the scattering of the electrons. The 

other method we consider in this work is the tight-binding model, whose parameters re ect 

the microscopic information and hence expected to be in a good connection with 

experimental works. The Z 2 topological invariant exhibited in this class is re ected in the 



real-space distribution of the quasiparticle according to the bulk-edge correspondence. 

Hence, we give the machine the distribution as a “picture” with some label to learn the 

structure and perform the supervised learning [4,5]. In our presentation, we compare the 

result to the phase diagram obtained by other methods (See Fig. 1), namely the transfer 

matrix and non-commutative geometry [6], and discuss the accuracy and the validity of the 

new technique 

 

Figure 1: Phase diagram of helical superconductor with disorder. The red, green and blue 

regions denote thermal metal, topological, and trivial states, respectively, and their depth 

correspond to the confidence of the machine. 

 

[1] A. P. Schnyder, S. Ryu, A. Furusaki, and A. W. W. Ludwig, Phys. Rev. B 78, 195125 (2008). 

[2] Y. LeCun, Y. Bengio, and G. Hinton, Nature 521, 436 (2015). 

[3] I. C. Fulga et al., Phys. Rev. B 86, 054505 (2012). 

[4] T. Ohtsuki and T. Ohtsuki, J. Phys. Soc. Jpn 85, 123706, (2016). 

[5] T. Ohtsuki and T. Ohstuki, J. Phys. Soc. Jpn 86, 044708 (2016). 

[6] H. Katsura and T. Koma, arXiv:1611.01928 (2016). 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Bayesian spectral deconvolution: How many peaks are there in this spectrum?  

Satoru Tokuda (AIST) 

 

There is a fundamental problem in identifying the peaks in noisy complex spectra: How 

many peaks are there in this spectrum? We propose a framework based on Bayesian 

inference, which enables us to separate multipeak spectra into the appropriate single peaks 

statistically. Our framework efficiently enables us to seek not just global minima solutions 

of fitting parameters of each peak function to the given spectrum but also local minima 

solutions by using the exchange Monte Carlo (EMC) method. In addition, we can also 

calculate Bayesian free energy, which is a criterion of the appropriate peak number and the 

noise level, because seeking the fitting parameter by the EMC method is regarded as 

sampling from the probability density of the fitting parameter. In our presentation, we 

demonstrate how efficient our framework is and also discuss the inseparability of the peak 

number and the noise level in Bayesian inference, based on the relationship between 

Bayesian inference and statistical physics.  
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