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Difficulty: Curse of Dimensionality
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Hilbert space is too large !! How to describe it??



The Physical Relevant Corner

Physical Constraints:
locality (area law)

Hilbert Space
Global Symmetry:
translational-invariant
Internal Symmetry:
Gauge Symmetry
\
Avay Lasw physica] many-body quantum state

low description complexity?



Hamiltonian
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succinct description but not quite useful
hard to extract information



Solving Many-body Problem

finding ground state is particularly interesting

rlrgg;wmw — A(@ly) with (lyp) =1

QMA-hard for gapless system

intrinsic difficulty
NP-hard for gapped system

if Quantum PCP conjecture is true
QMA-hard

gap between theory and practice:
heuristic algorithm (intuition
& extra information for special instance)
worst-case vs. typical case



Some Previous Approach
to tackle many-body problem

Mean-field assumption pr ~n—soo |V1){(¥1| @ -+ @ |1g) (Vi ]
success for bosonic system (Quantum de Finetti)
fail for other strong correlated system
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Some Previous Approach
to tackle many-body problem

very successful for 1D system:
MPS faithfully represent at least gapped system

polynomial time to extract information
heuristic algorithm: DMRG, TEBD, etc
polynomial time algorithm to find ground state

Landau, Zeph, Umesh Vazirani, and Thomas Vidick. "A polynomial time
algorithm for the ground state of one-dimensional gapped local
Hamiltonians." Nature Physics 11.7 (2015). 566-569.

Arad, |., Landau, Z., Vazirani, U., & Vidick, T. (2016). Rigorous RG
algorithms and area laws for low energy eigenstates in 1D. arXiv preprint
arXiv:1602.08828.



Some Previous Approach
to tackle many-body problem

Schuch, N., Wolf, M. M., Verstraete, F., & Cirac, J. I. (2007). Computational complexity of
projected entangled pair states. Physical review letters, 98(14), 140506.

Anshu, A., Arad, |., & Jain, A. (2016). How local is the information in tensor networks of

matrix product states or projected entangled pairs states. Physical Review B, 94(19),
195143.

Schwarz, M., Buerschaper, O., & Eisert, J. (2016). Approximating local observables on
projected entangled pair states. arXiv preprint arXiv:1606.06301.

fail for 2D system:
1. unknown whether PEPS is enough
2. extract information is hard
. #P-hard in general case
ii. best known approximation algorithm:
superpolynomial time under assumptions
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Neural Network Zoo

A mostly complete chart of

Neural Networks
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Deconvolutional Network (DN) Deep Convolutional Inverse Graphics Netv

Deep Feed Forward (DFF)

Perceptron (P) Feed Forward (FF) Radial Basis Network (RBF)
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Recurrent Neural Network (RNN)
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Liquid State Machine (LSM) Extreme Learning Machine (ELM)

Echo State Netw
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Kohonen Network (KN)  Support Vector Machine (SVM)

Generative Adversarial Network (GAN)
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Deep Residual Network (DRN)
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Deep Belief Network (DBN)
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http://www.asimovinstitute.org/neural-network-zoo/

natural to use generative model
to represent quantum state



(RBM)

Restricted Boltzmann Machine

represent quantum state by neural network itself .

V
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Restricted Boltzmann Machine
(RBM)

Carleo, Giuseppe, and Matthias Troyer. "Solving the quantum many-body
problem with artificial neural networks." Science 2017.

numerical methods (combined with Monte Carlo)
transverse field Ising: —hp_oi =) _oio;
anti-ferromagnetic Heisenberg:™” > ofof + 0l + oi0;}.
better than MPS (i.J)

Deng, Dong-Ling, Xiaopeng Li, and S. Das Sarma. "Exact machine learning
topological states." arXiv preprint arXiv:1609.09060 (2016).

exact representation for topological states
SPT: 1D cluster state
topological order: toric code



Restricted Boltzmann Machine
(RBM)

Chen, J., Cheng, S., Xie, H., Wang, L., & Xiang, T. (2017). On the
Equivalence of Restricted Boltzmann Machines and Tensor Network States.

arXiv preprint arXiv:1701.04831. |
restricted Boltzmann Machine —> Tensor Network

Tensor Network —> RBM with given architecture

Deng, Dong-Ling, Xiaopeng Li, and S. Das Sarma. "Quantum Entanglement

in Neural Network States." PhysRevX.7.021021. .
area law (local connection)

random RBM: entanglement spectrum, not thematize

Huang, Yichen, and Joel E. Moore. "Neural network representation of tensor
network and chiral states." arXiv preprint arXiv:1701.06246 (2017).

using Grassmann number
(RPN T
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Limitation of RBM

G0 e e e

Copy from

limitation to represent
Tensor Network
(given architecture)

Chen, J., Cheng, S., Xie, H., Wang, L., & Xiang, T. (2017). On
the Equivalence of Restricted Boltzmann Machines and
Tensor Network States. arXiv preprint arXiv:1701.04831.



Limitation of RBM

Universal Approximation Theorem

In order to approximate probability distribution with k
boolean variables, the number of hidden neurons is at
most 2AKk without constraints on architecture

(analog to bond dimension in MPS)

Le Roux, Nicolas, and Yoshua Bengio. "Representational power of restricted Boltzmann
machines and deep belief networks." Neural computation 20.6 (2008): 1631-16409.

reasonable to consider:
Efficient Representation:
poly(n) parameters
without constraints on architecture



Limitation of RBM

under reasonable complexity assumptions
RBM can not represent the following state efficiently:

state generated by efficient quantum computer
PEPS and other tensor network state
ground state of local gapped Hamiltonian

not closed in a quantum phase and dynamics !

otherwise polynomial hierarchy collapse
(a generalization of P=NP)

Gao, Xun, and Lu-Ming Duan. "Efficient Representation of Quantum Many-body States with
Deep Neural Networks." arXiv preprint arXiv:1701.05039 (2017).



5 Proof of
Limitation for RBM

U(v) for RBM /
' v v v
can be tactorized 1 _9 9 1>‘>< vy
U2 U2 U2 (3
RBM: x.

hidden neurons are P/poly: can be solved

conditionally independent in polynomial size circuit
the circuit not easy to construct

P/poly: ¥(v) no need to know
polynomial-size boolean circuit ¥(:) | how to construct
input of function v RBM (circuit) !




5 Proof of
Limitation for RBM

cluster state: ignore the colors

. state generated from
simple dynamics on
simple initial state

ground state of

II. ground state of

B Z o H o; gapped, local, commuting
1 7€neighbors of 1 Hamiltonian
time evolution on |+)®¥ i PEPS
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5 Proof of
Limitation for RBM

GWD state.
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cluster state with single qubit unitary Gao, Xun, Sheng-Tao Wang,

and Lu-Ming Duan. "Quantum

blue: z-axis with angles, then Hadamard Supremacy for Simulating A

_ Translation-Invariant Ising Spi
green: Hadamara red Model." Phys.Rev.Lett. 2017



5 Proof of
Limitation for RBM

translational invariant ! only depends on size

cluster state Is resource state In
measurement-based quantum computing

#P-hara (much harder than NP).
U(v) of GWD state

< =

universal qguantum computing

Z ledge configuration)|Hamiltonian Path?

counting the number of True /



5 Proof of
Limitation for RBM

translational invariant ! only depends on size

if U(v) of GWD state can be represented by RBM efficiently

widely believed not true:

polynomial hierarchy collapse !
generalization P=NP, very unlikely

P#P g PP/poly

extend to approximate case in terms of trace distance
with another reasonable complexity assumptions
related to quantum supremacy  °°gle’s quantum supremacy plan

Boixo, Sergio, et al. "Characterizing

for sampling random quantum circuit quantum supremacy in near-term

supported by quantum chaos theory Sencssman sty



5 Proof of
Limitation for RBM

under reasonable complexity assumptions
RBM can not represent the following state efficiently:

state generated by efficient quantum computer
PEPS and other tensor network state
ground state of local gapped Hamiltonian

not closed in a quantum phase and dynamics !

otherwise polynomial hierarchy collapse
(a generalization of P=NP)



a Characterize RBM state

Although limitation of RBM
still useful in practice

how to characterize the state
represented by RBM?
string-bond state?



Deep Boltzmann Machine

(a) Restricted
Boltzmann Machine

"
i\

(c) Fully-connected  (d) Fully-connected Boltzmann Machine
Boltzmann Machine — Deep Boltzmann Machine  Ggo, Xun, and Lu-Ming Duan.

DBM with 2 hidden layers captures  'Efficient Representation of
Quantum Many-body States

fully-connected Boltzmann Machine  with Deep Neural Networks."
arXiv preprint arXiv:

and deeper DBM 1701.05039 (2017).

e @@ |

‘ ﬁ- visible neuron |
|

@ hidden neuron |



Deen Neural
1 Deep Boltzmann Machine .

Deep vs. Shallow
DBM can represent the following state efficiently:

quantum computing or dynamics: O(nT

rcwt depth or evolution time
ground state: O/Q_ (n + log D)

number of local terms

ehergy gap In Hamiltonian
gapless, even non-local

tensor network state: O(D*'n) D: bond dimension
d: coordination humber

closed in a quantum phase and dynamics



Deep Neural
5 Proof of Power of
Deep Boltzmann Machine Networks
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Proof of Power of

Deep Boltzmann Machine
Quantum Computing or Dynamics
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Deep Neural
5 Proof of Power of
Deep Boltzmann Machine Networks

Quantum Computing or Dynamics

dynamics: quantum simulation

Lloyd, S. Universal quantum simulators. Science 273, 1073 (1996).

Poulin, D., Qarry, A., Somma, R. & Verstraete, F. Quantum simulation of time-dependent hamiltonians and the convenient
illusion of hilbert space. Physical review letters 106, 170501 (2011).

Berry, D. W., Childs, A. M., Cleve, R., Kothari, R. & Somma, R. D. Simulating hamiltonian dynamics with a truncated
taylor series. Physical review letters 114, 090502 (2015).

closed under a quantum phase:
simulating adiabatic evolution



Proof of Power of
Deep Boltzmann Machine

Tensor Network

Az, ...z, local tensor

C

. . ‘— using quantum computing gadget:

Tensor Network State
|A) = Z Ag, oz X1, )
:Ul,... 7CUC

local tensor gadget

- /

/
y at most square of
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)\ K') \.A ~_ Hilbert space dimension

Deep Boltzmann Machine

rule | simulates contraction of bond index



see also

Proof of Power of

Deep Boltzmann Machine

Tensor Network

Chen, J., Cheng, S., Xie, H., Wang, L., & Xiang, T. (2017). On the Equivalence of
Restricted Boltzmann Machines and Tensor Network States. arXiv preprint arXiv:

1701.04831.

Huang, Yichen, and Joel E. Moore. "Neural network representation of tensor network and
chiral states." arXiv preprint arXiv:1701.06246 (2017).

why not use universal approximate theorem

representing Ay, ..., directly ?

toric code

- -

O )

physical property is very
sensitive to local tensor !

Tijkl:1_>Tijkl:17 lfl+j+k+l:01110d2
Tijkl:O_)TijkIZG: lfl+]+k'+l:11110d2

Chen, X., Zeng, B., Gu, Z. C., Chuang, |
solongas ¢ # 0 L., & Wen, X. G. (2010). Tensor product

topological entanglement representation of a topological ordered
entropy disappears ! phase: Necessary symmetry conditions.
Physical Review B, 82(16), 165119.



Proof of Power of
Deep Boltzmann Machine

Ground State

inspired by
Berry, D. W., Childs, A. M., Cleve, R., Kothari, R., & Somma, R. D. (2015). Simulating
Hamiltonian dynamics with a truncated Taylor series. Physical review letters, 114(9),

090502. using Taylor series instead of Trotter decomposition:
exponential improvement on precision
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Proof of Power of
Deep Boltzmann Machine

Ground State '
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Potential of

Deep Boltzmann Machine

non-local even non-sparse property

(compared to PEPS):
proved result for representing ground state beyond 1D

appropriate for highly entanglement state

like time-evolution

expected to have less parameters

deeper compared to RBM

harder to extract information or training ?

both

P-complete (computing local observable)



Training DBM

Extract Information > . Prfn

prototype Monte- W‘O |¢> — Z Dhan
Carlo algorithm h
Pr’ sasy to compute
Ph
Metroplis algorithm Pr(h — h’') = min (1, ph’)
Ph

f and g are easy to compute

fluctuation is too large? the same problems also
local minimum? occur in RBM ?



Training DBM

seems hard to train (sign problem)

inevitable! (intrinsic) trade off between
representational power & computational difficulty

even though
our work shows we can benefit a lot from depth
like In deep learning

quasi DBM/RBM
fewer neurons in the second hidden layer



Summary

Restricted Boltzmann Machine:
limitation for dynamics (quantum phase), PEPS, GS
tool of proof: complexity theory
conjecture, string-bond state

Deep Boltzmann Machine:

most of physical states (physical relevant corner?)
dynamics, tensor network
ground state (even gapless & non-local)

Training Deep Boltzmann Machine:

Prototype Monte Carlo
connection with other fields



