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Difficulty: Curse of Dimensionality1

1	Particle:

Many-Body 
Problem

c0|0i+ c1|1i 2 H

2	Particles: c00|00i+ c01|01i+ c10|10i+ c11|11i
2 H⌦H

Dimension is 2

Dimension is 4

n	Particles:
2 H⌦n

c0···0|0 · · · 0i+ · · ·+ c1···1|1 · · · 1i

Dimension is 2n

|00i+ |11i Entanglement

Hilbert space is too large !! How to describe it??



The Physical Relevant Corner2

Physical Constraints: 
      locality (area law) 

        Global Symmetry: 
translational-invariant 

      Internal Symmetry: 
         Gauge Symmetry

low description complexity?

Many-Body 
Problem



Hamiltonian3

H =
nX

i

Hi

Hi = I1 ⌦ · · ·⌦Hi ⌦ · · ·⌦ In

dimension is bounded by constant

low temperature property min
| i

h |H| i
h | i

ground state
| i

thermal equilibrium property thermal state e��H

tre��H

time evolution e�iHt| 0i some simple state

succinct description but not quite useful 
hard to extract information 

Many-Body 
Problem



Solving Many-body Problem4

finding ground state is particularly interesting

QMA-hard for gapless system 

NP-hard for gapped system  
if Quantum PCP conjecture is true 

QMA-hard

min
| i

h |H| i � �h | i with h | i

gap between theory and practice: 
heuristic algorithm (intuition  

& extra information for special instance) 
worst-case vs. typical case

intrinsic difficulty

= 1

Many-Body 
Problem



Some Previous Approach
to tackle many-body problem1

Mean-field

Quantum	Monte	Carlo

assumption
success for bosonic system (Quantum de Finetti) 

fail for other strong correlated system

h (↵)|H| (↵)i
h (↵)| (↵)i ⇠

X

c

pc(↵)fc(↵) sign problem

⇢k ⇠n!1 | 1ih 1|⌦ · · ·⌦ | kih k|

Many-Body 
Problem

Tensor	Network



Some Previous Approach
to tackle many-body problem2

very	successful	for	1D	system:	
MPS faithfully represent at least gapped system 

polynomial time to extract information 
heuristic algorithm: DMRG, TEBD, etc 

polynomial time algorithm to find ground state

Many-Body 
Problem

Landau, Zeph, Umesh Vazirani, and Thomas Vidick. "A polynomial time 
algorithm for the ground state of one-dimensional gapped local 
Hamiltonians." Nature Physics 11.7 (2015): 566-569.

Arad, I., Landau, Z., Vazirani, U., & Vidick, T. (2016). Rigorous RG 
algorithms and area laws for low energy eigenstates in 1D. arXiv preprint 
arXiv:1602.08828.



Some Previous Approach
to tackle many-body problem2

fail for 2D system: 
1. unknown whether PEPS is enough 
2. extract information is hard 

i. #P-hard in general case 
ii. best known approximation algorithm: 

superpolynomial time under assumptions

Many-Body 
Problem

Schuch, N., Wolf, M. M., Verstraete, F., & Cirac, J. I. (2007). Computational complexity of 
projected entangled pair states. Physical review letters, 98(14), 140506.
Anshu, A., Arad, I., & Jain, A. (2016). How local is the information in tensor networks of 
matrix product states or projected entangled pairs states. Physical Review B, 94(19), 
195143.
Schwarz, M., Buerschaper, O., & Eisert, J. (2016). Approximating local observables on 
projected entangled pair states. arXiv preprint arXiv:1606.06301.



Neural Network Zoo1
Neural 

Network

http://www.asimovinstitute.org/neural-network-zoo/

natural to use generative model 
to represent quantum state



Restricted Boltzmann Machine 
(RBM)1

Neural 
Network

represent quantum state by neural network itself
v

h

 (v) =
X

h

eW(v,h)

| i =
X

v

 (v)|vi

Weight	Function

no intra-layer interactions

W(v,h) = vTWh+ bTv + cTh



Restricted Boltzmann Machine 
(RBM)2

numerical methods (combined with Monte Carlo) 
transverse field Ising:  
anti-ferromagnetic Heisenberg: 

better than MPS

exact representation for topological states 
SPT: 1D cluster state 

topological order: toric code

Neural 
Network

Carleo, Giuseppe, and Matthias Troyer. "Solving the quantum many-body 
problem with artificial neural networks." Science 2017.

Deng, Dong-Ling, Xiaopeng Li, and S. Das Sarma. "Exact machine learning 
topological states." arXiv preprint arXiv:1609.09060 (2016).



Restricted Boltzmann Machine 
(RBM)2

area law (local connection) 
random RBM: entanglement spectrum, not thematize 

Neural 
Network

Deng, Dong-Ling, Xiaopeng Li, and S. Das Sarma. "Quantum Entanglement 
in Neural Network States." PhysRevX.7.021021.

Huang, Yichen, and Joel E. Moore. "Neural network representation of tensor 
network and chiral states." arXiv preprint arXiv:1701.06246 (2017).
using Grassmann number 

quasi-local

Chen, J., Cheng, S., Xie, H., Wang, L., & Xiang, T. (2017). On the 
Equivalence of Restricted Boltzmann Machines and Tensor Network States. 
arXiv preprint arXiv:1701.04831.

restricted Boltzmann Machine —> Tensor Network 
Tensor Network —> RBM with given architecture



Limitation of RBM3
Neural 

Network

Copy from 
Chen, J., Cheng, S., Xie, H., Wang, L., & Xiang, T. (2017). On 
the Equivalence of Restricted Boltzmann Machines and 
Tensor Network States. arXiv preprint arXiv:1701.04831.

limitation to represent 
Tensor Network 

(given architecture)



Limitation of RBM3
Neural 

Network

Universal Approximation Theorem
In order to approximate probability distribution with k 
boolean variables, the number of hidden neurons is at 

most 2^k without constraints on architecture
(analog to bond dimension in MPS)

Le Roux, Nicolas, and Yoshua Bengio. "Representational power of restricted Boltzmann 
machines and deep belief networks." Neural computation 20.6 (2008): 1631-1649.

Efficient Representation: 
poly(n) parameters 
without constraints on architecture

reasonable to consider:



Limitation of RBM3
Neural 

Network
under reasonable complexity assumptions 

RBM can not represent the following state efficiently: 
state generated by efficient quantum computer 

PEPS and other tensor network state 
ground state of local gapped Hamiltonian

not closed in a quantum phase and dynamics !
otherwise polynomial hierarchy collapse 
(a generalization of P=NP)

Gao, Xun, and Lu-Ming Duan. "Efficient Representation of Quantum Many-body States with 
Deep Neural Networks." arXiv preprint arXiv:1701.05039 (2017).



Proof of
Limitation for RBM5

Neural 
Network

 (v) for RBM

can be factorized

RBM: 
hidden neurons are 
conditionally independent

P/poly:  
polynomial-size boolean circuit 

input of function

 (v)
 (·)

v

no need to know 
how to construct 
RBM (circuit) !

P/poly: can be solved  
in polynomial size circuit 

the circuit not easy to construct



Proof of
Limitation for RBM5

Neural 
Network

cluster state:

�
X

i

�x

i

Y

j2neighbors of i

�z

j

ground state of

time evolution on |+i⌦N

J =
⇡

4

i. state generated from 
simple dynamics on 
simple initial state

ii. ground state of 
gapped, local, commuting 

Hamiltonian

iii. PEPS

ignore the colors



Proof of
Limitation for RBM5

Neural 
Network

GWD state:

cluster state with single qubit unitary

blue: z-axis with angles, then Hadamard 
green: Hadamard        red

Gao, Xun, Sheng-Tao Wang, 
and Lu-Ming Duan. "Quantum 
Supremacy for Simulating A 
Translation-Invariant Ising Spin 
Model." Phys.Rev.Lett. 2017



Proof of
Limitation for RBM5

Neural 
Network

cluster state is resource state in  
measurement-based quantum computing

translational invariant ! only depends on size

universal quantum computing
X

|edge configurationi|Hamiltonian Path?i

counting the number of True

#P-hard (much harder than NP): 
 (v) of GWD state



Proof of
Limitation for RBM5

Neural 
Network

translational invariant ! only depends on size

 (v) of GWD stateif can be represented by RBM efficiently

P#P ✓ PP/poly widely believed not true: 
polynomial hierarchy collapse !

extend to approximate case in terms of trace distance 
with another reasonable complexity assumptions

related to quantum supremacy 
for sampling random quantum circuit 
supported by quantum chaos theory 

Google’s quantum supremacy plan 
Boixo, Sergio, et al. "Characterizing 
quantum supremacy in near-term 
devices." arXiv preprint arXiv:
1608.00263 (2016).

generalization P=NP, very unlikely



Proof of
Limitation for RBM5

Neural 
Network

under reasonable complexity assumptions 
RBM can not represent the following state efficiently: 

state generated by efficient quantum computer 
PEPS and other tensor network state 

ground state of local gapped Hamiltonian

not closed in a quantum phase and dynamics !
otherwise polynomial hierarchy collapse 
(a generalization of P=NP)



Characterize RBM state6
Neural 

Network

Although limitation of RBM 
still useful in practice

how to characterize the state  
represented by RBM? 
string-bond state?



Deep Boltzmann Machine        
(DBM)1

Deep Neural 
Networks

DBM with 2 hidden layers captures 
fully-connected Boltzmann Machine 

and deeper DBM

Gao, Xun, and Lu-Ming Duan. 
"Efficient Representation of 
Quantum Many-body States 
with Deep Neural Networks." 
arXiv preprint arXiv:
1701.05039 (2017).



1

Deep vs. Shallow 
DBM can represent the following state efficiently: 

closed in a quantum phase and dynamics

quantum computing or dynamics: O(nT )

O(D2dn)

O

✓
1

�

✓
n+ log

1

✏

◆
m2

◆

tensor network state:

ground state:
circuit depth or evolution time

energy gap
number of local terms 

in Hamiltonian

D: bond dimension 
d: coordination number

Deep Boltzmann Machine
(DBM)

Deep Neural 
Networks

gapless, even non-local



2 Proof of Power of
Deep Boltzmann Machine

Deep Neural 
Networks

gadget: DBM-like function W✓(x, h) =
✓

2
ix+ i⇡xh.

WH(x, h) =
⇡

8
i� ⇡

2
ix� ⇡

4
ih+ i⇡



2

Quantum Computing or Dynamics

Proof of Power of
Deep Boltzmann Machine

Deep Neural 
Networks

�

t+1(· · ·xi

, x

i+1 · · · ) = (�1)xixi+1
�

t

(· · ·x
i

, x

i+1, · · · )
rule II simply multiplication

rule I simulates matrix multiplication

phase gadget is not necessary 
absorbed into bias term

universal set 
for  
quantum computing

H,Z(✓), control-Z



2

Quantum Computing or Dynamics

Proof of Power of
Deep Boltzmann Machine

Deep Neural 
Networks

dynamics: quantum simulation

closed under a quantum phase: 
simulating adiabatic evolution



local tensor

2

Tensor Network

Proof of Power of
Deep Boltzmann Machine

Deep Neural 
Networks

rule I simulates contraction of bond index

|Ai =
X

x1,··· ,xc

A

x1···xc |x1, · · · , xc

i

using quantum computing gadget: 

A
x1···xc

at most square of
Hilbert space dimension



why not use universal approximate theorem 
representing

2

Tensor Network

Proof of Power of
Deep Boltzmann Machine

Deep Neural 
Networks

Huang, Yichen, and Joel E. Moore. "Neural network representation of tensor network and 
chiral states." arXiv preprint arXiv:1701.06246 (2017).

Chen, J., Cheng, S., Xie, H., Wang, L., & Xiang, T. (2017). On the Equivalence of 
Restricted Boltzmann Machines and Tensor Network States. arXiv preprint arXiv:
1701.04831.

see also

A
x1···xc directly ? physical property is very 

sensitive to local tensor !toric code

so long as ✏ 6= 0
topological entanglement

entropy disappears !

Chen, X., Zeng, B., Gu, Z. C., Chuang, I. 
L., & Wen, X. G. (2010). Tensor product 
representation of a topological ordered 
phase: Necessary symmetry conditions. 
Physical Review B, 82(16), 165119.



Proof of Power of
Deep Boltzmann Machine2

Ground State

Deep Neural 
Networks

inspired by
Berry, D. W., Childs, A. M., Cleve, R., Kothari, R., & Somma, R. D. (2015). Simulating 
Hamiltonian dynamics with a truncated Taylor series. Physical review letters, 114(9), 
090502. using Taylor series instead of Trotter decomposition: 

exponential improvement on precision

pseudo quantum circuit: 
non-unitary 

also tensor network



Proof of Power of
Deep Boltzmann Machine2

Ground State

Deep Neural 
Networks



3 Potential of
Deep Boltzmann Machine

Deep Neural 
Networks

non-local even non-sparse property 
(compared to PEPS):

proved result for representing ground state beyond 1D

appropriate for highly entanglement state 
like time-evolution 

expected to have less parameters

deeper compared to RBM
harder to extract information or training ?

both #P-complete (computing local observable)



Training DBM1

Extract Information
prototype Monte-  
Carlo algorithm

Pr(h ! h0) = min

✓
1,

ph0

ph

◆
easy to compute

Metroplis algorithm

f and g are easy to compute

Deep Neural 
Networks

h |O| i =
P

h phfhP
h phgh

ph0

ph

fluctuation is too large? 
local minimum?

the same problems also 
occur in RBM ?



2

seems	hard	to	train	(sign	problem)

quasi	DBM/RBM	
fewer	neurons	in	the	second	hidden	layer	

or	other	deep	architecture

inevitable! (intrinsic) trade off between 
representational power & computational difficulty

Training DBM
Deep Neural 

Networks

even though 
our work shows we can benefit a lot from depth

like in deep learning



Summary
Restricted Boltzmann Machine: 

limitation for dynamics (quantum phase), PEPS, GS 
tool of proof: complexity theory 
conjecture, string-bond state

Deep Boltzmann Machine: 
most of physical states (physical relevant corner?) 
dynamics, tensor network 
ground state (even gapless & non-local)

Training Deep Boltzmann Machine: 
Prototype Monte Carlo 
connection with other fields


