

KITS Workshop on "Machine Learning and Many-Body Physics"

Sparse modeling: how to solve the ill-posed problem

Graduate School of Information Sciences Tohoku University

Masayuki OHZEKI

Self Introduction

- Masayuki Ohzeki (大関真之)
 - Tohoku University [2016.10-]
 - Kyoto University
 [2010.05-2016.09]
 - Machine learning: Sparse modeling and Deep learning
 - Tokyo Institute of Technology [2008.10-2010.04]
 - > Physics: Statistical Mechanics and Quantum annealing

2017.07.03 Sparse modeling: how to solve the ill-posed problem

тоноки

Me in Japan… Cheating OHZEKI ?

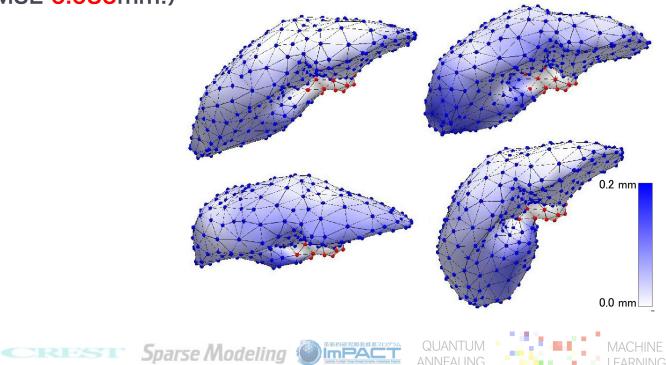
Mar. 27. 2015:NHK Good morning Japan.

Recent advance in news and media Recent advance in news and media A. I. ? Recent advance in news and media **Inverse problem** $y = f(\mathbf{x})$

Recent advance in news and media **Inverse problem** $y = f(\mathbf{x})$

Estimation for deformation in body Collaboration with U. Yamamoto, M. Kaneko, T. Matsuda (Kyoto Univ.) submitted

- Inference from a limited range of data
 - Learning the rule of the dynamics
 - Observation 9 points unobserved 295 points
 - Inference of the deformation by pulling 4cm
 - (average of RMSE 0.035mm!)



τοнокυ

Detecting the phase transition Collaboration with S. Arai (Tohoku Univ.) to appear soon

- Original work done by Tanaka and Tomiya (2017)
 - Learning from snapshots of the Ising model
 - Detection of the second-order phase transition from weights
- Extension of their work
 - Learning from snapshots of the XY/quantum Ising model
 - Detection of the Kosterlitz-Thouless transition
 - Detection of the second-order phase transition in quantum system



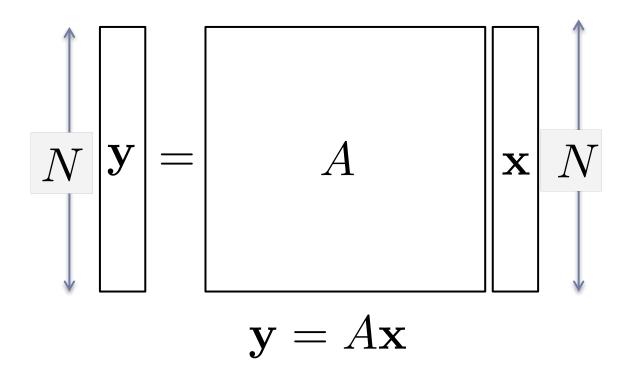
тоноки

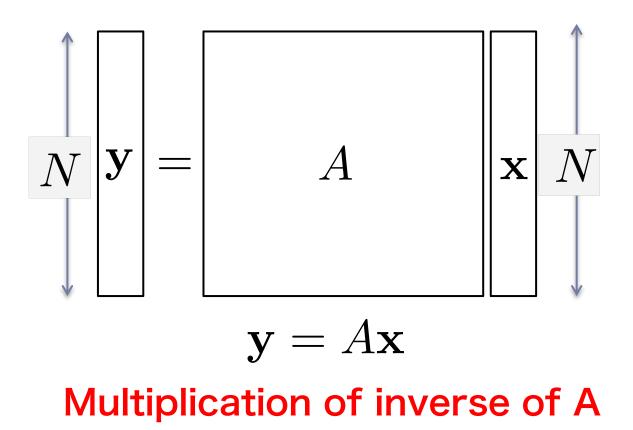
From Purchase data, Customer service

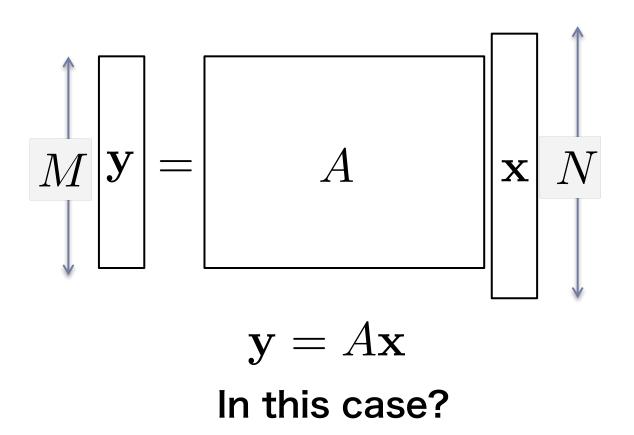
From web experience, user service Go gle

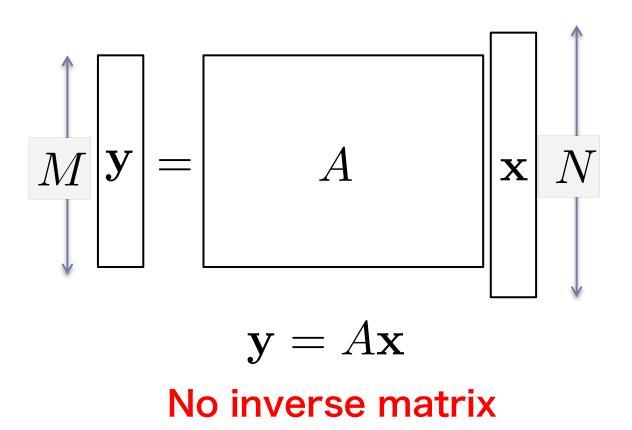
Recent advance in news and media in the second media in the second seco

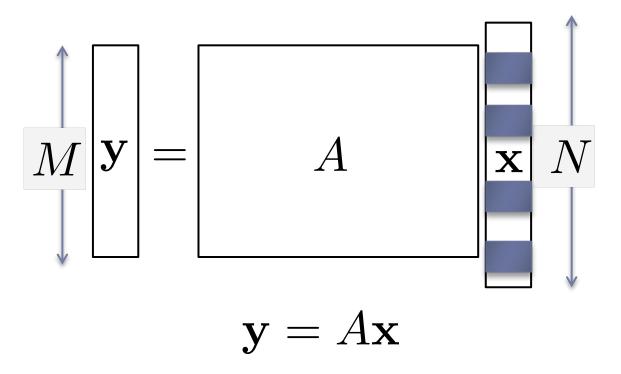
Recent advance in news and media **Inverse problem** $y = f(\mathbf{x})$



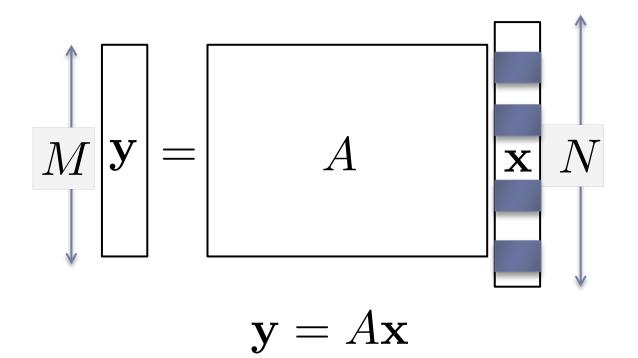




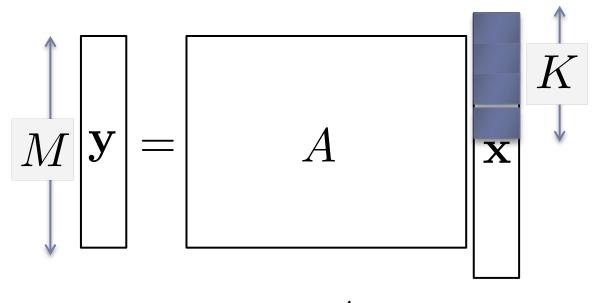




In the case with sparse solution



In the case with sparse solution We can

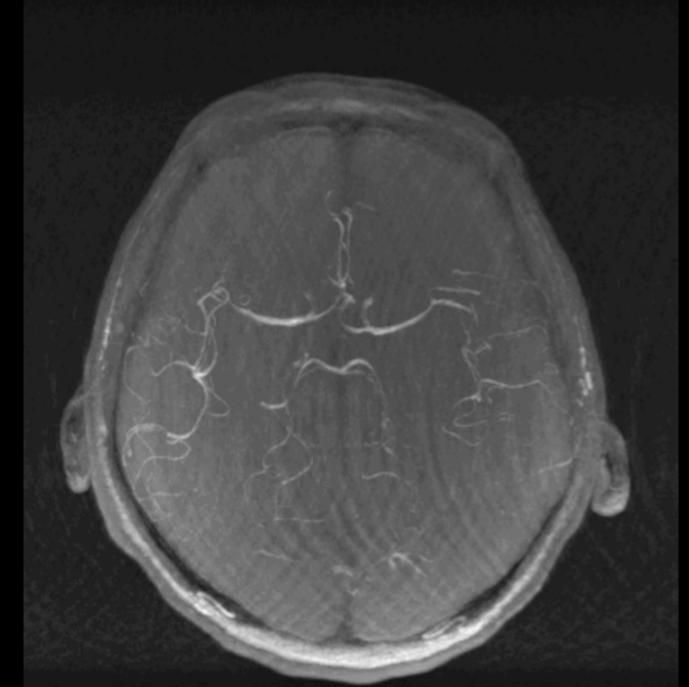


$$\mathbf{y} = A\mathbf{x}$$

In the case with sparse solution We can

Collaboration with Kyoto University

Example of MRI



Collaboration with Kyoto University

Low amount of data

Collaboration with Kyoto University

Compressed sensing

Astrophysics and Sparse modeling K. Akiyama, et al. Astrophys. J. (2017)

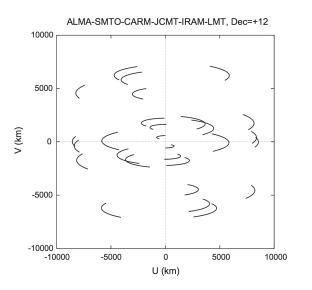
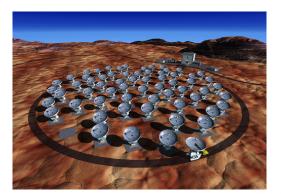


Fig. 5. Simulated UV coverage of M87 with six-station sub-mm VLBI array of EHT. Here it is assumed that observations are conducted at an elevation larger than 20° at each station.



2017.07.03 Sparse modeling: how to solve the ill-posed problem

Sparse Modeling

ImPA

Astrophysics and Sparse modeling K. Akiyama, et al. Astrophys. J. (2017)

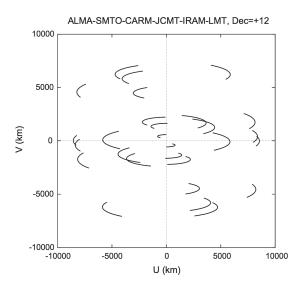
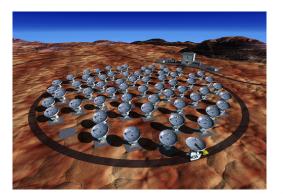
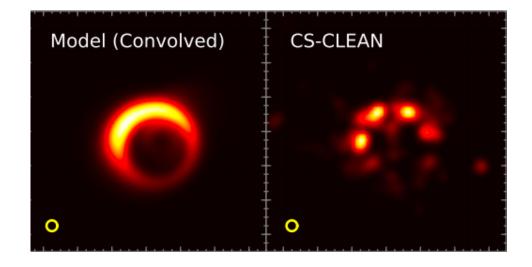


Fig. 5. Simulated UV coverage of M87 with six-station sub-mm VLBI array of EHT. Here it is assumed that observations are conducted at an elevation larger than 20° at each station.





ImPA

2017.07.03 Sparse modeling: how to solve the ill-posed problem

Sparse Modeling

Astrophysics and Sparse modeling K. Akiyama, et al. Astrophys. J. (2017)

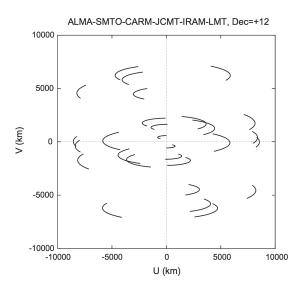
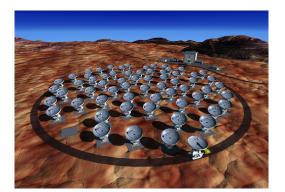
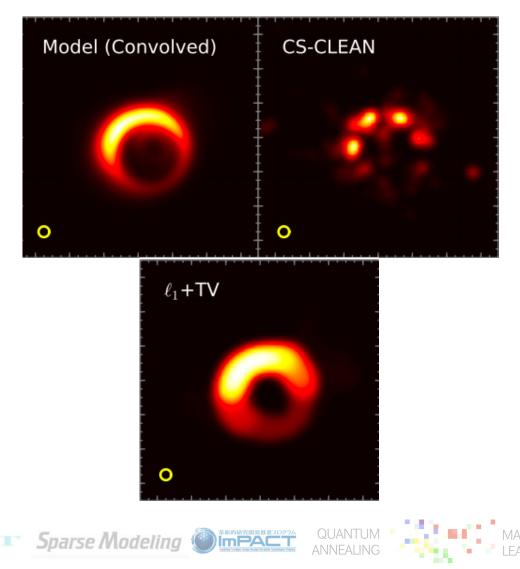
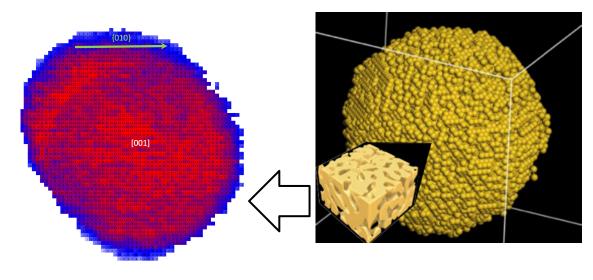


Fig. 5. Simulated UV coverage of M87 with six-station sub-mm VLBI array of EHT. Here it is assumed that observations are conducted at an elevation larger than 20° at each station.

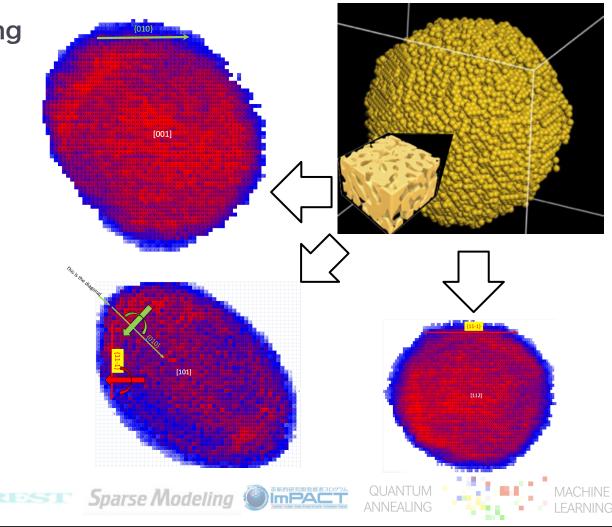




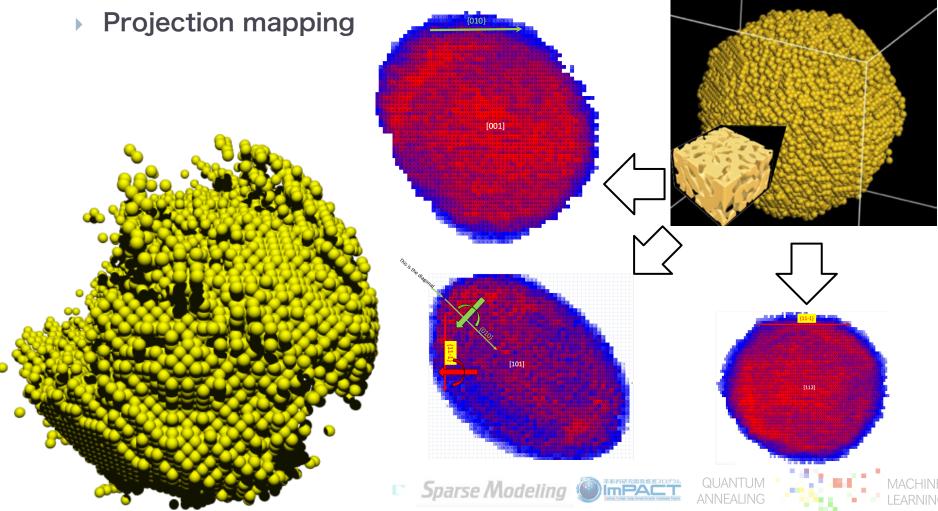
- HAADF-STEM
 - Projection mapping



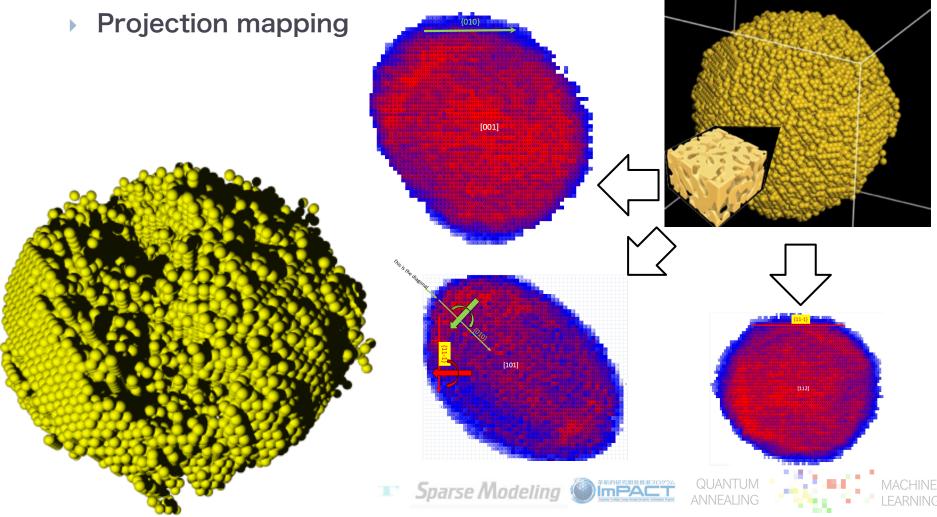
- HAADF-STEM
 - Projection mapping



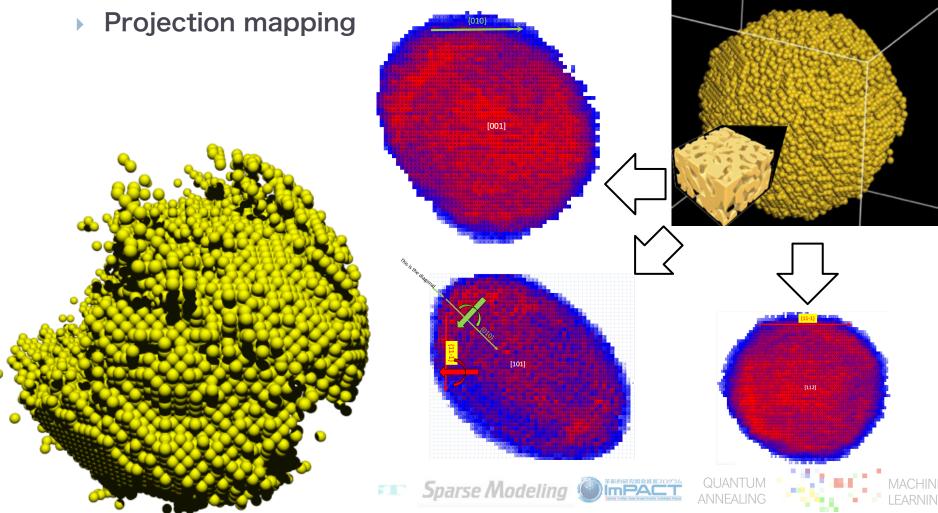
HAADF-STEM



HAADF-STEM



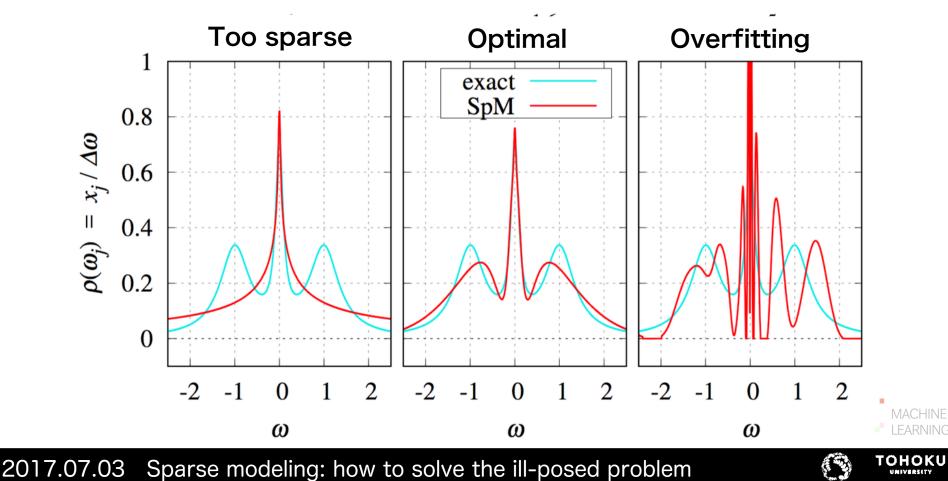
HAADF-STEM



HAADF-STEM **Projection mapping** {010} [001] 革新的研究開発推進スロ MACHINE Sparse Modeling

Analytical continuation in QMC J. Otsuki, M. Ohzeki, H. Shinaoka, and K, Yoshimi: Phys. Rev. E 95, 061302(R) (2017)

- Results for single-impurity Anderson model
 - Solving $\mathbf{G}=Koldsymbol{
 ho}$ by use of maxEnt? No!!



Lack of information but inference Compressed sensing

- L0 norm minimization
 - The following optimization problem

$$\begin{bmatrix} \min_{\mathbf{x}} \|\mathbf{x}\|_0 \quad \text{s.t.} \quad \mathbf{y} = A\mathbf{x} \end{bmatrix}$$

τοнокυ

- L0 norm minimization
 - The following optimization problem

$$\lim_{\mathbf{x}} \|\mathbf{x}\|_0 \quad \text{s.t.} \quad \mathbf{y} = A\mathbf{x}$$

L0 norm = number of nonzero elements

тоноки

- L0 norm minimization
 - The following optimization problem

$$\min_{\mathbf{x}} \|\mathbf{x}\|_0 \quad \text{s.t.} \quad \mathbf{y} = A\mathbf{x}$$

- L0 norm = number of nonzero elements
 - Sparse solution
 - Non-Convex optimization
 - Exponential computational cost (exp(N))

2017.07.03 Sparse modeling: how to solve the ill-posed problem

Sparse Modeling

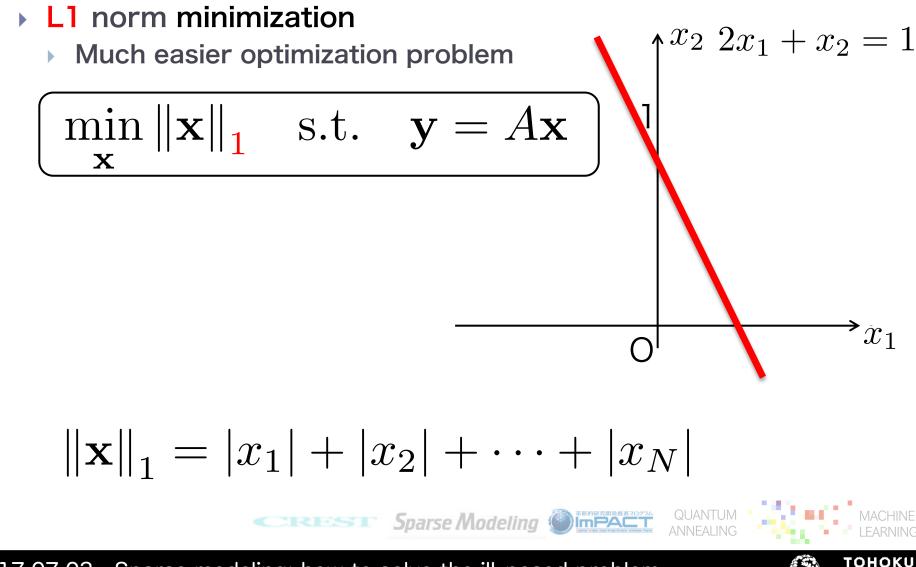
тоноки

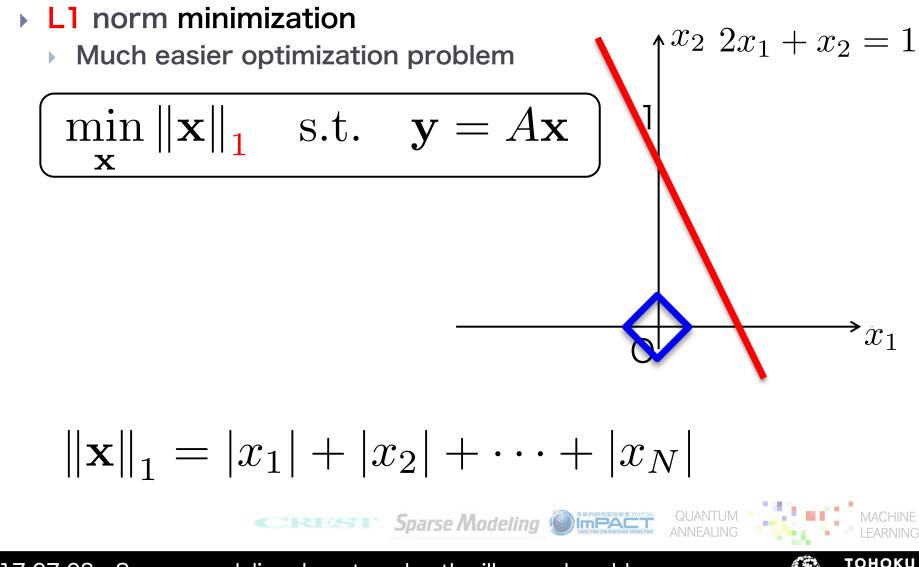
- L1 norm minimization
 - Much easier optimization problem

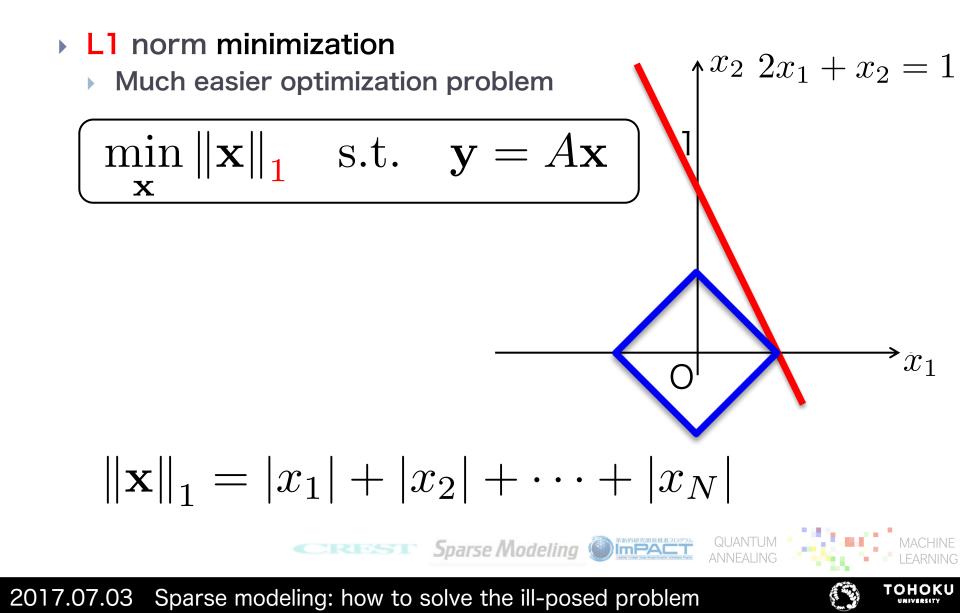
$$\begin{bmatrix}\min_{\mathbf{x}} \|\mathbf{x}\|_{1} & \text{s.t. } \mathbf{y} = A\mathbf{x}\end{bmatrix}$$

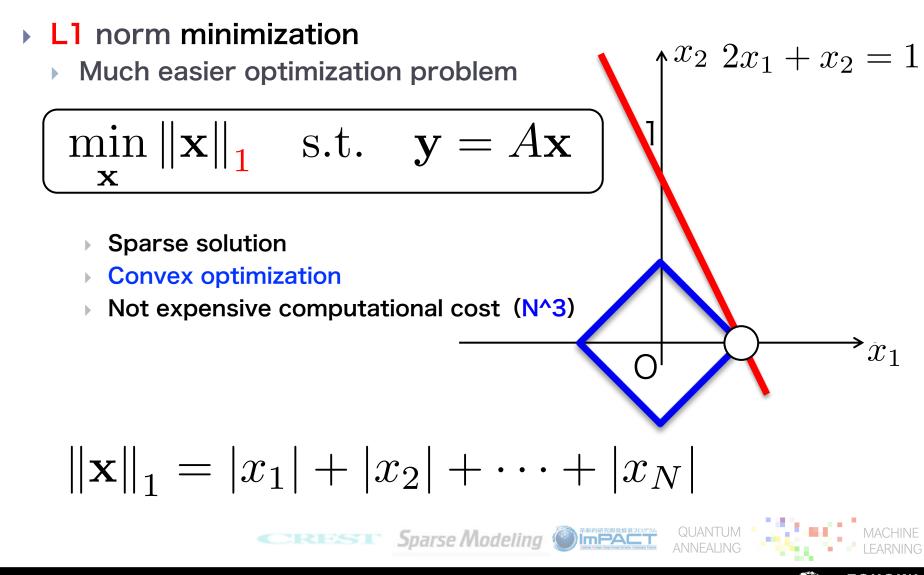
$$\|\mathbf{x}\|_1 = |x_1| + |x_2| + \dots + |x_N|$$

Sparse Modeling

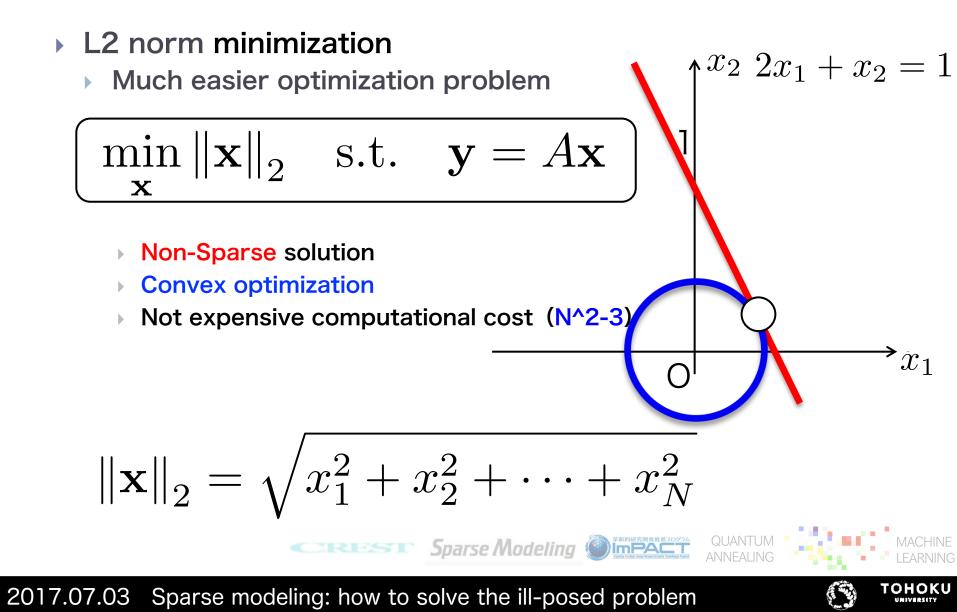








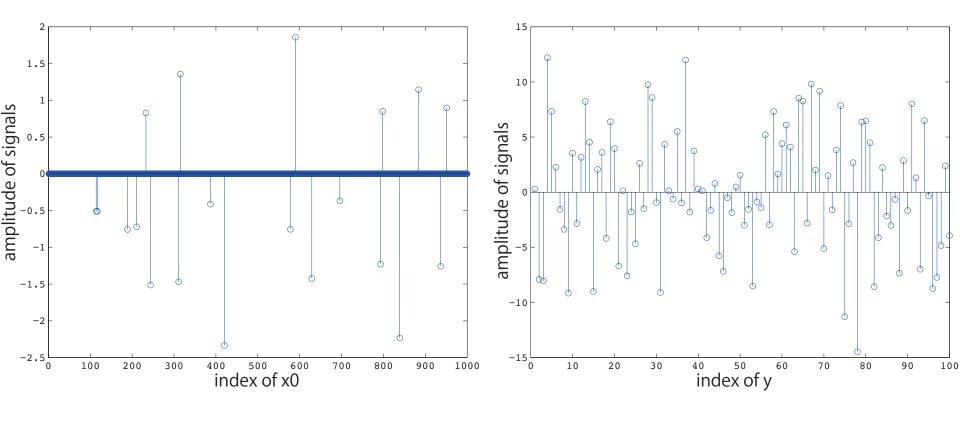
гоноки



L1 norm selects sparse solution

L1 norm selects sparse solution Correct or not?

M=100,N=1000,K=20,A=Gauss random matrix

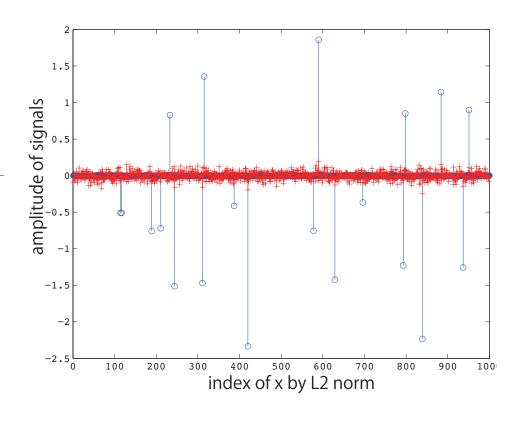


Sparse Modeling

ImPAr

Example

L2 norm



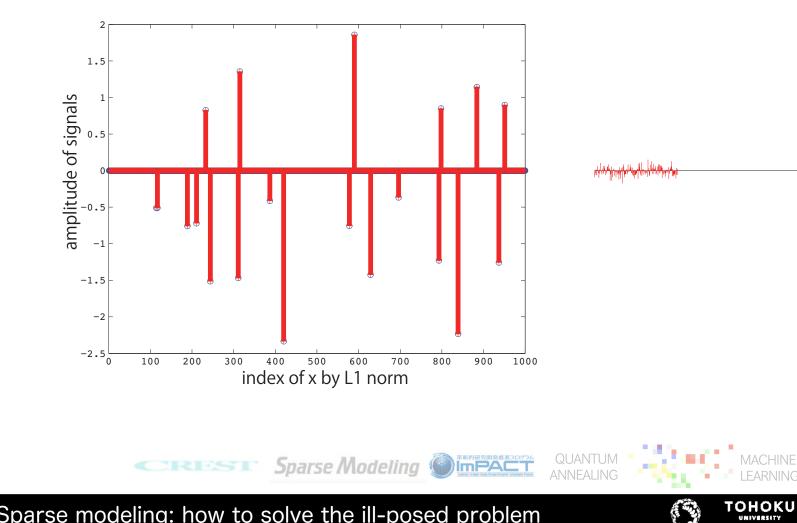
CREST Sparse Modeling

革新的研究開発推進スログラム

MACHINE

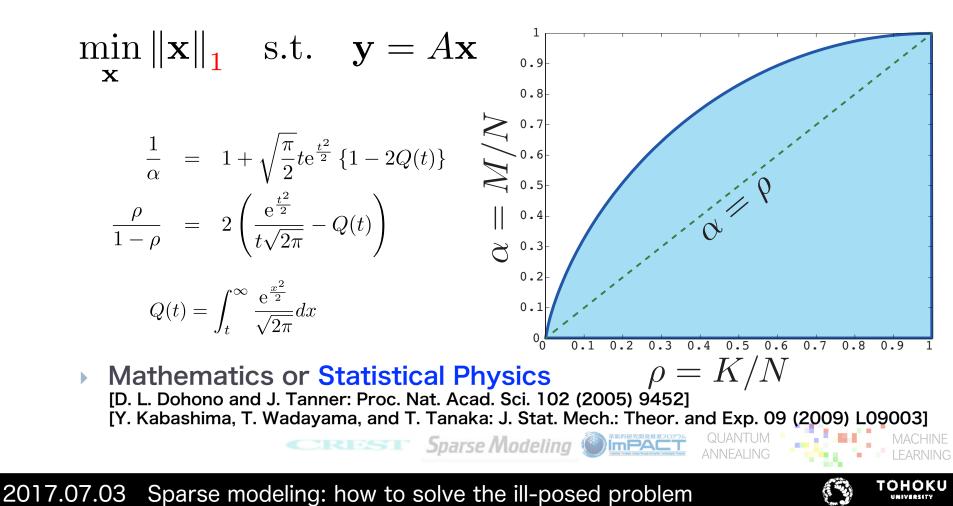
Example

L1 norm

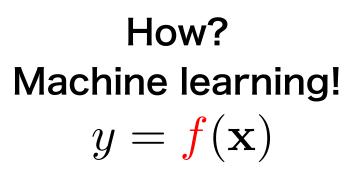


L1 norm minimization

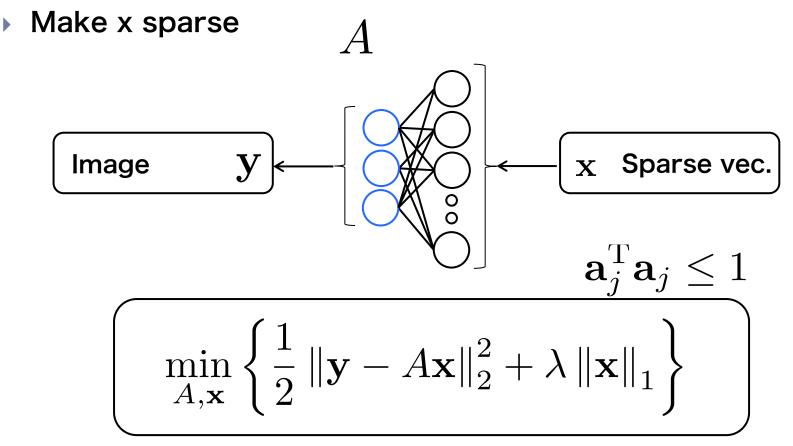
- Performance of L1 norm minimization
 - Prescription : A=Gauss random matrix、x0=Gauss random vector



Sparse modeling Find x by sparsity Sparse modeling Find x by sparsity Make x sparse



Dictionary learning J. Mairal, F. Bach, F. Ponce, and G. Sapiro: ICML (2009)

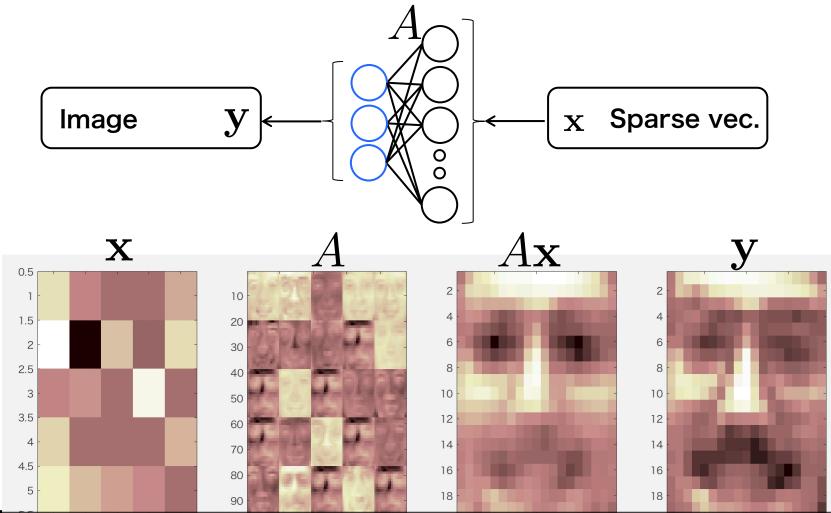


τοнокυ

- Find A making x sparse
- For Given y

Dictionary learning J. Mairal, F. Bach, F. Ponce, and G. Sapiro: ICML (2009)

Make x sparse



2017.07.03 Sparse modeling: how to solve the ill-posed problem

Practical use of Compressed sensing

- Solve the optimization problem
 - Original problem

$$\min_{\mathbf{x}} \|\mathbf{x}\|_{1} \quad \text{s.t.} \quad \mathbf{y} = A\mathbf{x}$$

Penalty method

$$\min_{\mathbf{x}} \left\{ \frac{1}{2} \|\mathbf{y} - A\mathbf{x}\|_{2}^{2} + \lambda \|\mathbf{x}\|_{1} \right\}$$

- LASSO (Least Absolute Shrinkage and Selection Operators)
- Absolute value ? = Not so difficult!

$$\min_{\mathbf{x}} \left\{ \frac{1}{2} \left\| \mathbf{x} - \mathbf{v} \right\|_{2}^{2} + \lambda \left\| \mathbf{x} \right\|_{1} \right\}$$

тоноки

CREST Sparse Modeling

Soft-threshold function

$$\min_{x} \left\{ \frac{1}{2} \left(x - \boldsymbol{v} \right)^{2} + \lambda \left| x \right| \right\}$$

Optimal value can be given by

Sam al

ADMM [Alternating Direction of Multiplier method) **S. Boyd, et al. Foundation and Trends in Machine Learning, 3 (2010) 1**

- Change the problem by augmented Lagrange method
 - Combination of two cost function

$$\min_{\mathbf{x}} \left\{ f(\mathbf{x}) + g(\mathbf{x}) \right\}$$

Fix) LASSO
$$f(\mathbf{x}) = \frac{1}{2} \|\mathbf{y} - A\mathbf{x}\|_2^2 \qquad g(\mathbf{x}) = \lambda \|\mathbf{x}\|_1$$

2017.07.03 Sparse modeling: how to solve the ill-posed problem

CREST Sparse Modeling

τομόκυ

ADMM [Alternating Direction of Multiplier method) **S. Boyd, et al. Foundation and Trends in Machine Learning, 3 (2010) 1**

- Change the problem by augmented Lagrange method
 - Combination of two cost function

$$\min_{\mathbf{x}} \left\{ f(\mathbf{x}) + g(\mathbf{x}) \right\}$$

Ex) LASSO
$$f(\mathbf{x}) = \frac{1}{2} \|\mathbf{y} - A\mathbf{x}\|_2^2 \qquad g(\mathbf{x}) = \lambda \|\mathbf{x}\|_1$$

Splitting

$$\min_{\mathbf{x},\mathbf{z}} \{ f(\mathbf{x}) + g(\mathbf{z}) \} \quad \text{s.t.} \quad \mathbf{x} = \mathbf{z}$$

CREST Sparse Modeling

τοнокυ

ADMM [Alternating Direction of Multiplier method) **S. Boyd, et al. Foundation and Trends in Machine Learning, 3 (2010) 1**

- Change the problem by augmented Lagrange method
 - Combination of two cost function

$$\min_{\mathbf{x}} \left\{ f(\mathbf{x}) + g(\mathbf{x}) \right\}$$

Ex) LASSO
$$f(\mathbf{x}) = \frac{1}{2} \|\mathbf{y} - A\mathbf{x}\|_2^2 \qquad g(\mathbf{x}) = \lambda \|\mathbf{x}\|_1$$

Splitting

$$\min_{\mathbf{x},\mathbf{z}} \left\{ f(\mathbf{x}) + g(\mathbf{z}) \right\} \quad \text{s.t.} \quad \mathbf{x} = \mathbf{z}$$

Augmented Lagranngian method (multiplier: h, penalty: p)

$$\min_{\mathbf{x},\mathbf{z},\mathbf{h}} \left\{ f(\mathbf{x}) + g(\mathbf{z}) + \mathbf{h}^{\mathrm{T}}(\mathbf{x} - \mathbf{z}) + \frac{\rho}{2} \|\mathbf{x} - \mathbf{z}\|_{2}^{2} \right\}$$

$$(\mathbf{x},\mathbf{z},\mathbf{h}) = \mathbf{x} - \mathbf{z} + \frac{\rho}{2} \|\mathbf{x} - \mathbf{z}\|_{2}^{2}$$

$$(\mathbf{x},\mathbf{z},\mathbf{h}) = \mathbf{x} - \mathbf{z} + \frac{\rho}{2} \|\mathbf{x} - \mathbf{z}\|_{2}^{2}$$

$$(\mathbf{x},\mathbf{z},\mathbf{h}) = \mathbf{x} - \mathbf{z} + \frac{\rho}{2} \|\mathbf{x} - \mathbf{z}\|_{2}^{2}$$

$$(\mathbf{x},\mathbf{z},\mathbf{h}) = \mathbf{x} - \mathbf{z} + \frac{\rho}{2} \|\mathbf{x} - \mathbf{z}\|_{2}^{2}$$

тоноки

- Change the problem by augmented Lagrange method
 - Combination of two cost function

$$\min_{\mathbf{x}} \left\{ f(\mathbf{x}) + g(\mathbf{x}) \right\}$$

Ex) LASSO
$$f(\mathbf{x}) = \frac{1}{2} \|\mathbf{y} - A\mathbf{x}\|_2^2 \qquad g(\mathbf{x}) = \lambda \|\mathbf{x}\|_1$$

 $\mathbf{h} = \mathbf{h} + \rho(\mathbf{x} - \mathbf{z})$

Alternation of optimization problem

$$\min_{\mathbf{x}} \left\{ f(\mathbf{x}) + \mathbf{h}^{\mathrm{T}}(\mathbf{x} - \mathbf{z}) + \frac{\rho}{2} \|\mathbf{x} - \mathbf{z}\|_{2}^{2} \right\}$$
$$\min_{\mathbf{z}} \left\{ g(\mathbf{z}) + \mathbf{h}^{\mathrm{T}}(\mathbf{x} - \mathbf{z}) + \frac{\rho}{2} \|\mathbf{x} - \mathbf{z}\|_{2}^{2} \right\}$$

Update the multiplier

- Change the problem by augmented Lagrange method
 - Combination of two cost function

$$\min_{\mathbf{x}} \left\{ f(\mathbf{x}) + g(\mathbf{x}) \right\}$$

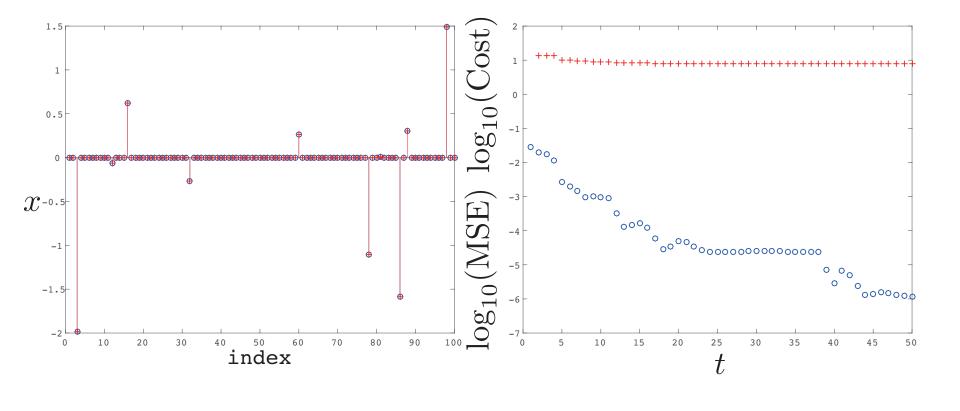
Fix) LASSO
$$f(\mathbf{x}) = \frac{1}{2} \|\mathbf{y} - A\mathbf{x}\|_2^2$$
 $g(\mathbf{x}) = \lambda \|\mathbf{x}\|_1$

Alternation of optimization problem $\min_{\mathbf{x}} \left\{ \frac{1}{2} \|\mathbf{y} - A\mathbf{x}\|_{2}^{2} + \mathbf{h}^{\mathrm{T}}(\mathbf{x} - \mathbf{z}) + \frac{\rho}{2} \|\mathbf{x} - \mathbf{z}\|_{2}^{2} \right\}$ $\min_{\mathbf{z}} \left\{ \lambda \|\mathbf{z}\|_{1} + \mathbf{h}^{\mathrm{T}}(\mathbf{x} - \mathbf{z}) + \frac{\rho}{2} \|\mathbf{x} - \mathbf{z}\|_{2}^{2} \right\}$ Update the multiplier $\mathbf{h} = \mathbf{h} + \rho(\mathbf{x} - \mathbf{z})$ Sparse Modeling

тоноки

ADMM [Alternating Direction of Multiplier method] **S. Boyd, et al. Foundation and Trends in Machine Learning, 3 (2010) 1**

ADMM (given by matlab code in pdf text)



Sparse Modeling

Imf

тоноки

Summary

- Era for Data-driven science
 - Deep learning
 - To identify approximate form of function
 - Renormalization group analysis
 - Sparse modeling
 - To identify most relevant elements from input
 - Extract important structure in nature
 - Application of two modern tools
 - To promote data-driven science
 - Compressed Sensing for recovery from small data
 - To search for new physics
 - Relevant elements from noisy quantum Monte-Carlo data
 - J. Otsuki, M. Ohzeki, H. Shinaoka, and K, Yoshimi: Phys. Rev. E 95, 061302(R) (2017)

Impact

Optimal orthogonal polynomial for analytical continuation

CREST Sparse Modeling

H. Shinaoka, J. Otsuki, M. Ohzeki, and K, Yoshimi: arxiv:1702.03054

