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Me in Japan… Cheating OHZEKI ?

} Mar. 27. 2015:NHK「Good morning Japan」
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} Inference from a limited range of data
} Learning the rule of the dynamics
} Observation 9 points・unobserved 295 points
} Inference of the deformation by pulling 4cm
} （average of RMSE 0.035mm!）

Estimation for deformation in body
Collaboration with U. Yamamoto, M. Kaneko, T. Matsuda (Kyoto Univ.) submitted 
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} Original work done by Tanaka and Tomiya (2017)
} Learning from snapshots of the Ising model
} Detection of the second-order phase transition from weights

} Extension of their work
} Learning from snapshots of the XY/quantum Ising model
} Detection of the Kosterlitz-Thouless transition
} Detection of the second-order phase transition in quantum system

Detecting the phase transition
Collaboration with S. Arai (Tohoku Univ.) to appear soon



From Purchase data, Customer service
Am○zon



From web experience, user service
Go○gle
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Multiplication of inverse of A



In this case?



No inverse matrix
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Example of MRICollaboration with Kyoto University



Low amount of dataCollaboration with Kyoto University



Compressed sensingCollaboration with Kyoto University



2017.07.03 Sparse modeling: how to solve the ill-posed problem

Astrophysics and Sparse modeling
K. Akiyama, et al. Astrophys. J. (2017)



2017.07.03 Sparse modeling: how to solve the ill-posed problem

Astrophysics and Sparse modeling
K. Akiyama, et al. Astrophys. J. (2017)



2017.07.03 Sparse modeling: how to solve the ill-posed problem

Astrophysics and Sparse modeling
K. Akiyama, et al. Astrophys. J. (2017)



2017.07.03 Sparse modeling: how to solve the ill-posed problem

Material and Sparse modeling

} HAADF-STEM
} Projection mapping

Collaboration with C. Nakajima (Tohoku univ.)
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S Results for single-impurity Anderson model
S Solving                          by use of maxEnt? No!!

Analytical continuation in QMC

Too sparse Optimal Overfitting

J. Otsuki, M. Ohzeki, H. Shinaoka, and K, Yoshimi: Phys. Rev. E 95, 061302(R) (2017)



Lack of information but inference
Compressed sensing
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Sparse signal inference

} L0 norm minimization
} The following optimization problem

} L0 norm = number of nonzero elements
} Sparse solution
} Non-Convex optimization
} Exponential computational cost（exp(N)）
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Sparse signal inference

} L1 norm minimization
} Much easier optimization problem

} Sparse solution
} Convex optimization
} Not expensive computational cost（N^3）
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} L2 norm minimization
} Much easier optimization problem

} Non-Sparse solution
} Convex optimization
} Not expensive computational cost（N^2-3）

1

O

Sparse signal inference



L1 norm selects sparse solution



L1 norm selects sparse solution
Correct or not?
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Example

} M=100,N=1000,K=20,A=Gauss random matrix
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Example

} L2 norm
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Example

} L1 norm
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L1 norm minimization

} Performance of L1 norm minimization 
} Prescription：A=Gauss random matrix、x0=Gauss random vector

} Mathematics or Statistical Physics
[D. L. Dohono and J. Tanner: Proc. Nat. Acad. Sci. 102 (2005) 9452]
[Y. Kabashima, T. Wadayama, and T. Tanaka: J. Stat. Mech.: Theor. and Exp. 09 (2009) L09003]
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Sparse modeling
Find x by sparsity



Sparse modeling
Find x by sparsity
Make x sparse



How?
Machine learning!
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Dictionary learning

} Make x sparse

} Find A making x sparse
} For Given y

J. Mairal, F. Bach, F. Ponce, and G. Sapiro: ICML (2009)

Image Sparse vec.
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Dictionary learning

} Make x sparse
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Practical use of
Compressed sensing 
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What is the problem?

} Solve the optimization problem
} Original problem

} Penalty method

} LASSO（Least Absolute Shrinkage and Selection Operators）
} Absolute value ? ＝ Not so difficult!

=3

min
x

�
1
2
�y �Ax�2

2 + � �x�1

�



2017.07.03 Sparse modeling: how to solve the ill-posed problem

Single-variable problem

} Soft-threshold function

} Optimal value can be given by
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} Change the problem by augmented Lagrange method
} Combination of two cost function

} Ex) LASSO

ADMM [Alternating Direction of Multiplier method)
S. Boyd, et al. Foundation and Trends in Machine Learning, 3 (2010) 1
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} Combination of two cost function

} Ex) LASSO

} Splitting

ADMM [Alternating Direction of Multiplier method)
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} Change the problem by augmented Lagrange method
} Combination of two cost function

} Ex) LASSO

} Splitting

} Augmented Lagranngian method (multiplier: h、penalty: ρ)

ADMM [Alternating Direction of Multiplier method)
S. Boyd, et al. Foundation and Trends in Machine Learning, 3 (2010) 1
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} Change the problem by augmented Lagrange method
} Combination of two cost function

} Ex) LASSO

} Alternation of optimization problem

} Update the multiplier

ADMM [Alternating Direction of Multiplier method)
S. Boyd, et al. Foundation and Trends in Machine Learning, 3 (2010) 1



2017.07.03 Sparse modeling: how to solve the ill-posed problem

} Change the problem by augmented Lagrange method
} Combination of two cost function

} Ex) LASSO

} Alternation of optimization problem

} Update the multiplier

ADMM [Alternating Direction of Multiplier method)
S. Boyd, et al. Foundation and Trends in Machine Learning, 3 (2010) 1



2017.07.03 Sparse modeling: how to solve the ill-posed problem

S ADMM（given by matlab code in pdf text）
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} Era for Data-driven science
} Deep learning

} To identify approximate form of function
} Renormalization group analysis

} Sparse modeling
} To identify most relevant elements from input
} Extract important structure in nature

} Application of two modern tools
} To promote data-driven science

¨ Compressed Sensing for recovery from small data
} To search for new physics 

¨ Relevant elements from noisy quantum Monte-Carlo data

¨ Optimal orthogonal polynomial for analytical continuation

Summary

H. Shinaoka, J. Otsuki, M. Ohzeki, and K, Yoshimi: arxiv:1702.03054

J. Otsuki, M. Ohzeki, H. Shinaoka, and K, Yoshimi: Phys. Rev. E 95, 061302(R) (2017)


