



KITS Workshop on "Machine Learning and Many-Body Physics"

# Sparse modeling: how to solve the ill-posed problem

**Graduate School of Information Sciences** Tohoku University

Masayuki OHZEKI







### **Self Introduction**

- Masayuki Ohzeki (大関真之)
  - Tohoku University [2016.10-]
  - Kyoto University
     [2010.05-2016.09]
    - Machine learning: Sparse modeling and Deep learning
  - Tokyo Institute of Technology [2008.10-2010.04]
    - > Physics: Statistical Mechanics and Quantum annealing



2017.07.03 Sparse modeling: how to solve the ill-posed problem



тоноки



### Me in Japan… Cheating OHZEKI ?

Mar. 27. 2015:NHK Good morning Japan.





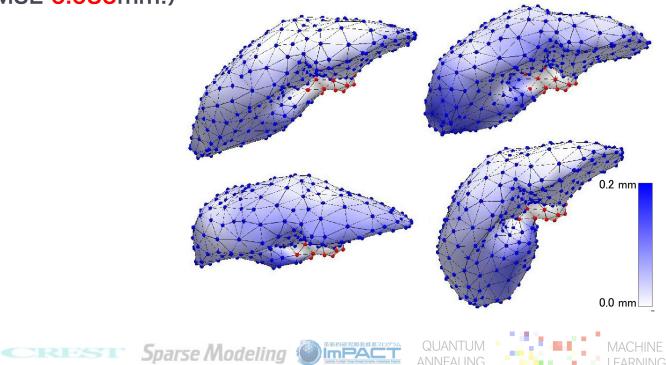
Recent advance in news and media Recent advance in news and media A. I. ? Recent advance in news and media **Inverse problem**  $y = f(\mathbf{x})$ 

Recent advance in news and media **Inverse problem**  $y = f(\mathbf{x})$ 



#### Estimation for deformation in body Collaboration with U. Yamamoto, M. Kaneko, T. Matsuda (Kyoto Univ.) submitted

- Inference from a limited range of data
  - Learning the rule of the dynamics
  - Observation 9 points unobserved 295 points
  - Inference of the deformation by pulling 4cm
  - (average of RMSE 0.035mm!)



τοнокυ



#### Detecting the phase transition Collaboration with S. Arai (Tohoku Univ.) to appear soon

- Original work done by Tanaka and Tomiya (2017)
  - Learning from snapshots of the Ising model
  - Detection of the second-order phase transition from weights
- Extension of their work
  - Learning from snapshots of the XY/quantum Ising model
  - Detection of the Kosterlitz-Thouless transition
  - Detection of the second-order phase transition in quantum system

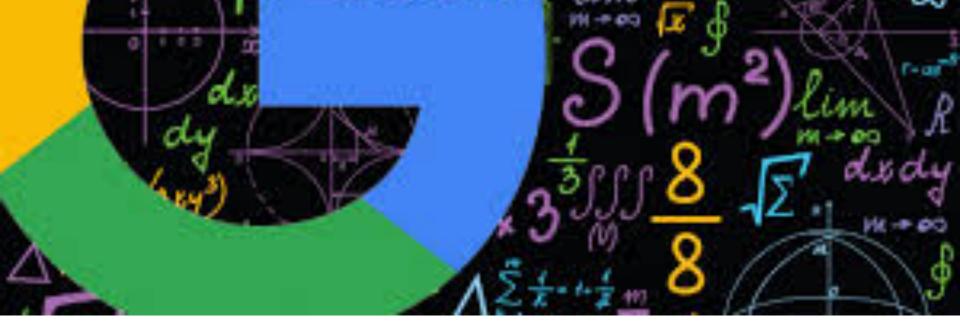


тоноки



# From Purchase data, Customer service



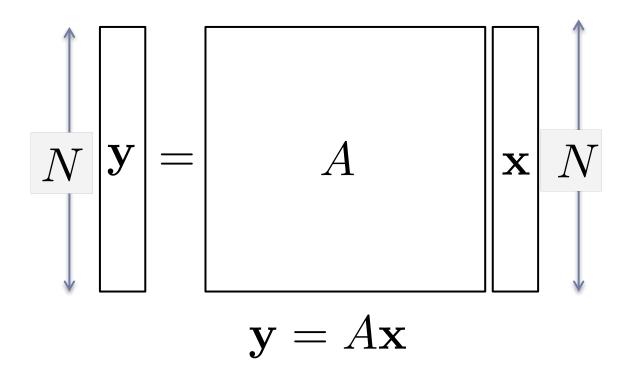


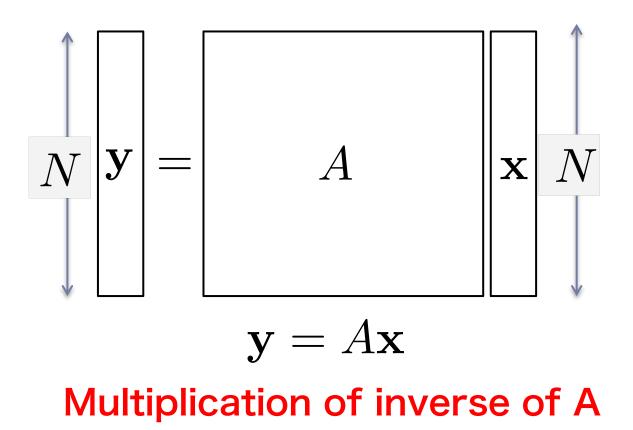
# From web experience, user service Go gle

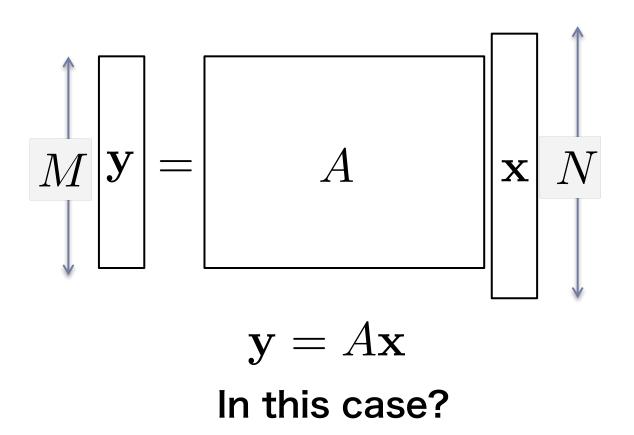


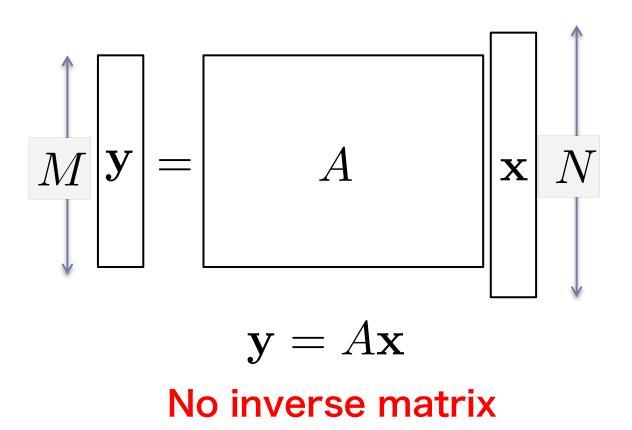
Recent advance in news and media in the second media in the second seco

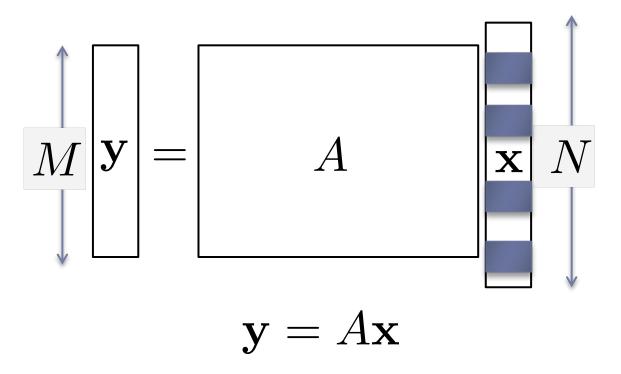
Recent advance in news and media **Inverse problem**  $y = f(\mathbf{x})$ 



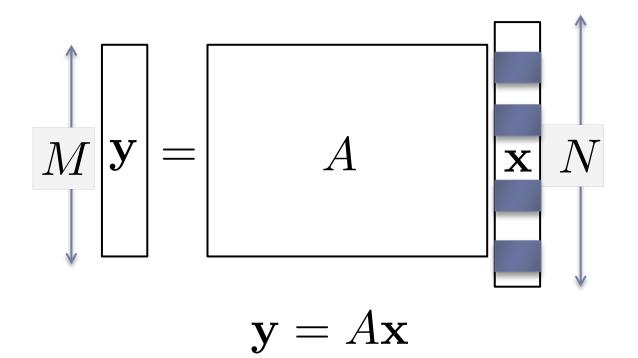




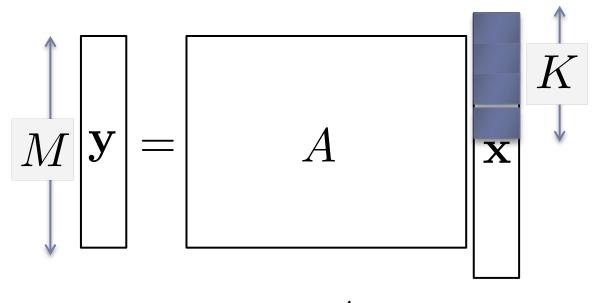




In the case with sparse solution



In the case with sparse solution We can

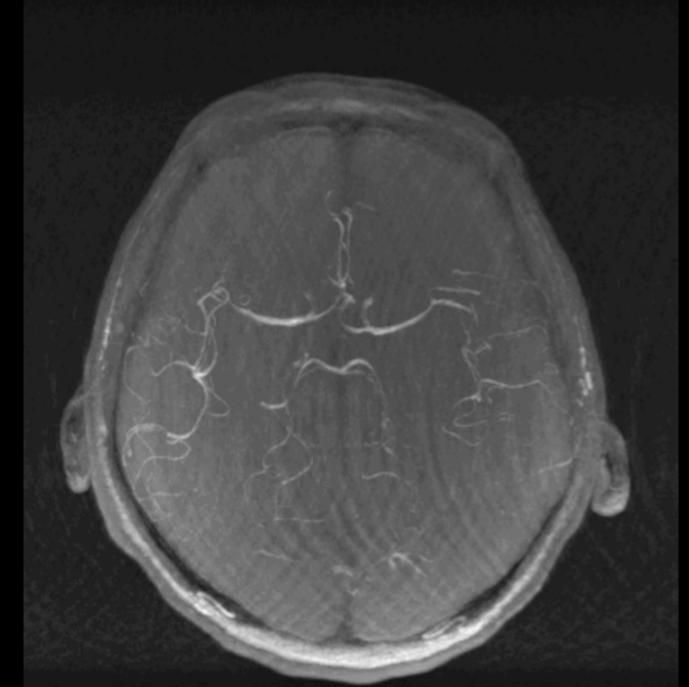


$$\mathbf{y} = A\mathbf{x}$$

In the case with sparse solution We can

**Collaboration with Kyoto University** 

Example of MRI



**Collaboration with Kyoto University** 

Low amount of data

**Collaboration with Kyoto University** 

**Compressed sensing** 



#### Astrophysics and Sparse modeling K. Akiyama, et al. Astrophys. J. (2017)

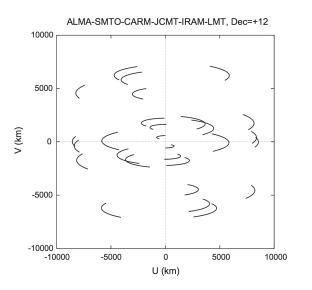
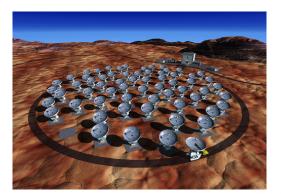


Fig. 5. Simulated UV coverage of M87 with six-station sub-mm VLBI array of EHT. Here it is assumed that observations are conducted at an elevation larger than  $20^\circ$  at each station.



2017.07.03 Sparse modeling: how to solve the ill-posed problem

Sparse Modeling

**ImPA** 





#### Astrophysics and Sparse modeling K. Akiyama, et al. Astrophys. J. (2017)

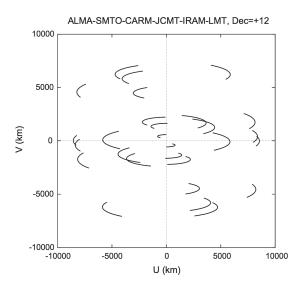
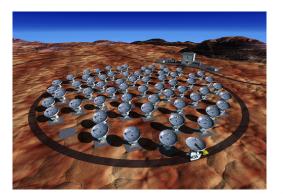
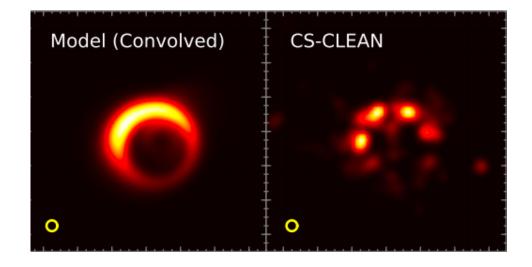


Fig. 5. Simulated UV coverage of M87 with six-station sub-mm VLBI array of EHT. Here it is assumed that observations are conducted at an elevation larger than  $20^\circ$  at each station.





ImPA

2017.07.03 Sparse modeling: how to solve the ill-posed problem

Sparse Modeling





#### Astrophysics and Sparse modeling K. Akiyama, et al. Astrophys. J. (2017)

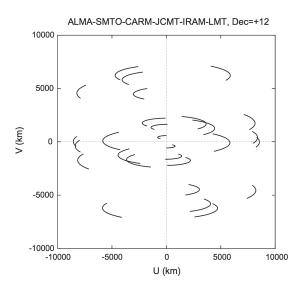
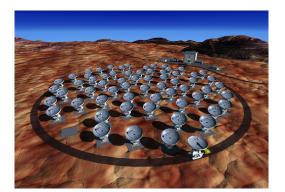
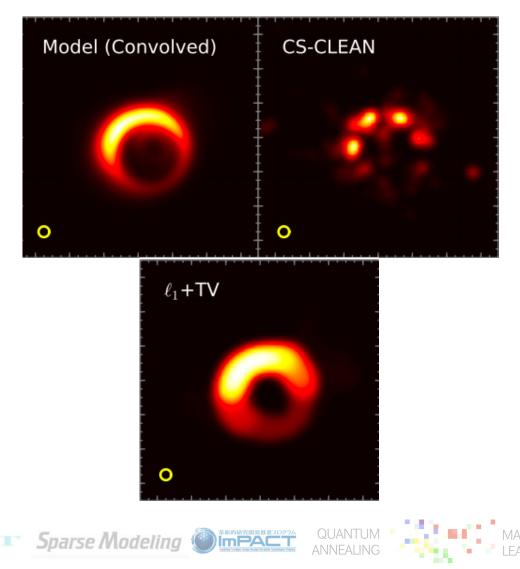


Fig. 5. Simulated UV coverage of M87 with six-station sub-mm VLBI array of EHT. Here it is assumed that observations are conducted at an elevation larger than  $20^\circ$  at each station.

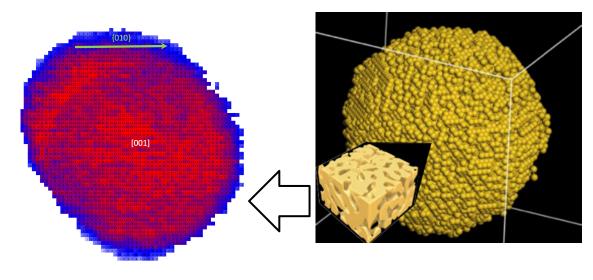








- HAADF-STEM
  - Projection mapping

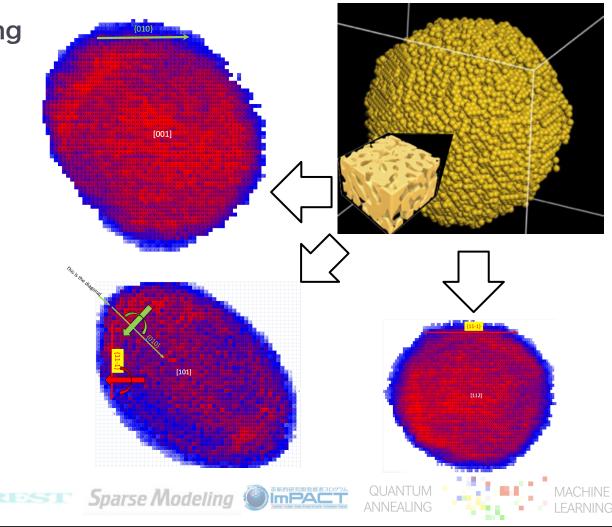






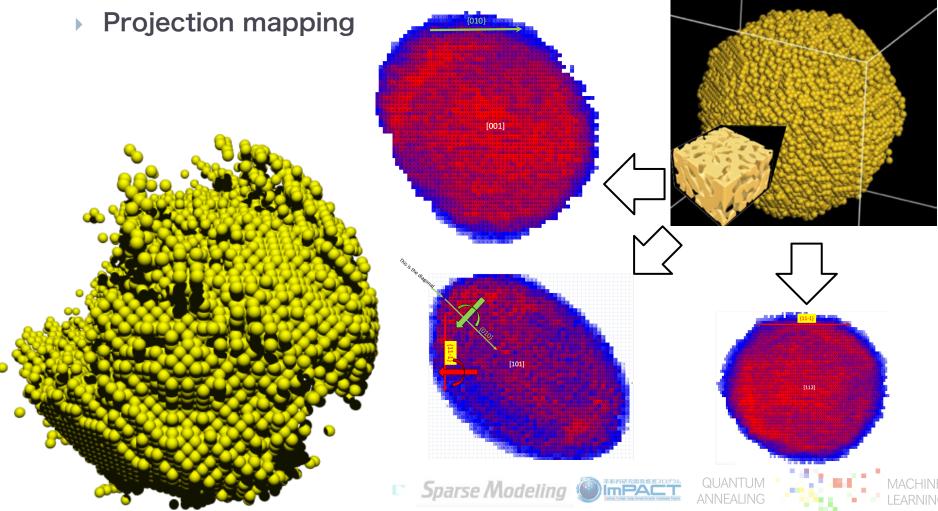


- HAADF-STEM
  - Projection mapping





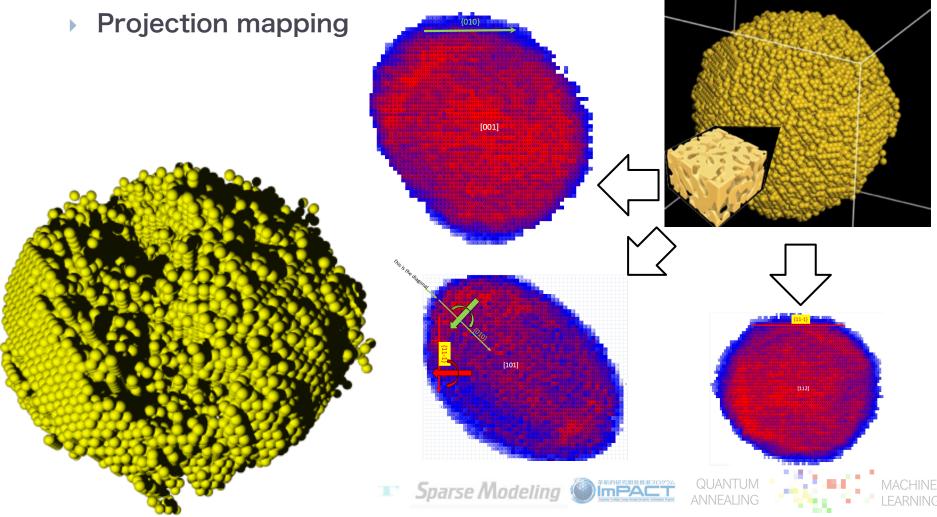
HAADF-STEM





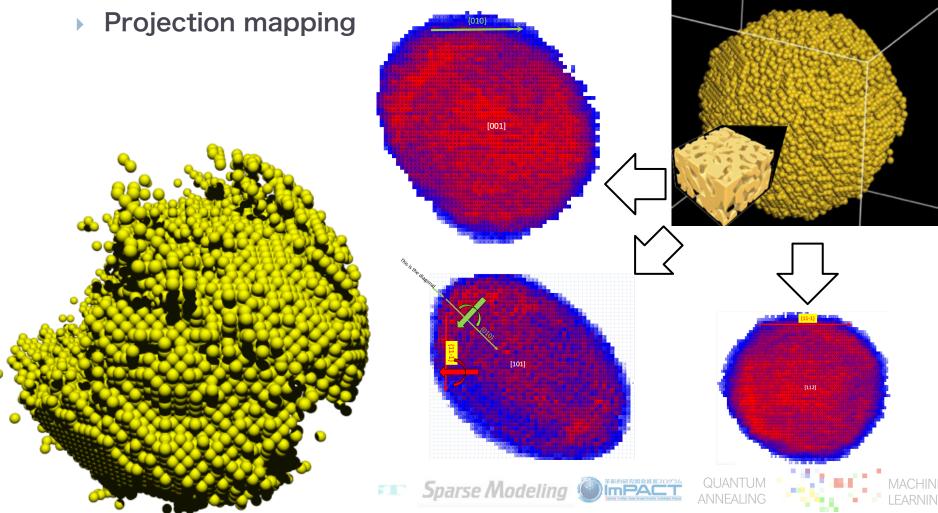


HAADF-STEM





HAADF-STEM







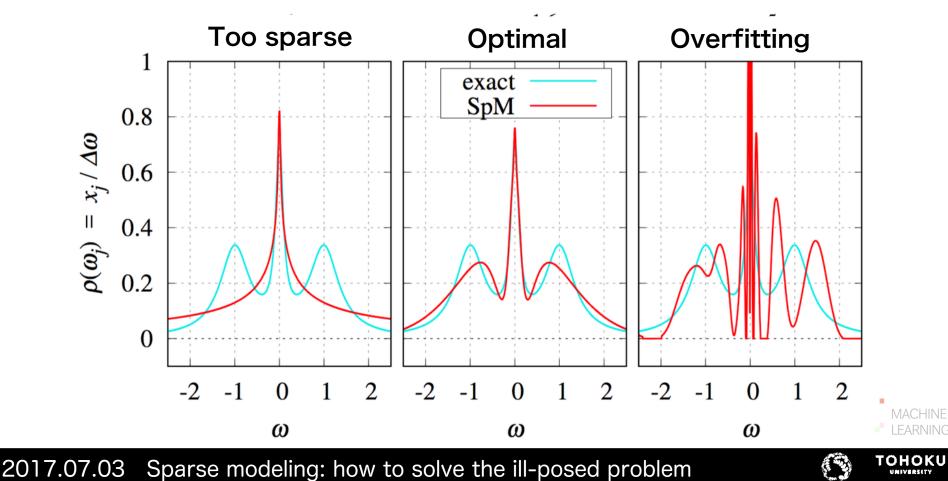
HAADF-STEM **Projection mapping** {010} [001] 革新的研究開発推進スロ MACHINE Sparse Modeling





Analytical continuation in QMC J. Otsuki, M. Ohzeki, H. Shinaoka, and K, Yoshimi: Phys. Rev. E 95, 061302(R) (2017)

- Results for single-impurity Anderson model
  - Solving  $\mathbf{G}=Koldsymbol{
    ho}$  by use of maxEnt? No!!



## Lack of information but inference Compressed sensing



- L0 norm minimization
  - The following optimization problem

$$\begin{bmatrix} \min_{\mathbf{x}} \|\mathbf{x}\|_0 \quad \text{s.t.} \quad \mathbf{y} = A\mathbf{x} \end{bmatrix}$$



τοнокυ



- L0 norm minimization
  - The following optimization problem

$$\lim_{\mathbf{x}} \|\mathbf{x}\|_0 \quad \text{s.t.} \quad \mathbf{y} = A\mathbf{x}$$

L0 norm = number of nonzero elements



тоноки



- L0 norm minimization
  - The following optimization problem

$$\min_{\mathbf{x}} \|\mathbf{x}\|_0 \quad \text{s.t.} \quad \mathbf{y} = A\mathbf{x}$$

- L0 norm = number of nonzero elements
  - Sparse solution
  - Non-Convex optimization
  - Exponential computational cost (exp(N))

2017.07.03 Sparse modeling: how to solve the ill-posed problem

Sparse Modeling

тоноки



- L1 norm minimization
  - Much easier optimization problem

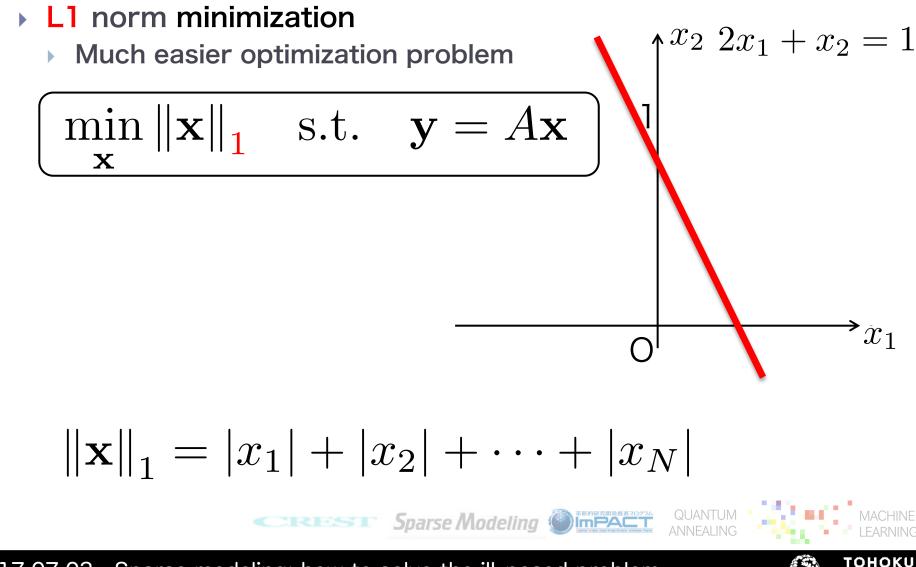
$$\begin{bmatrix}\min_{\mathbf{x}} \|\mathbf{x}\|_{1} & \text{s.t. } \mathbf{y} = A\mathbf{x}\end{bmatrix}$$

$$\|\mathbf{x}\|_1 = |x_1| + |x_2| + \dots + |x_N|$$

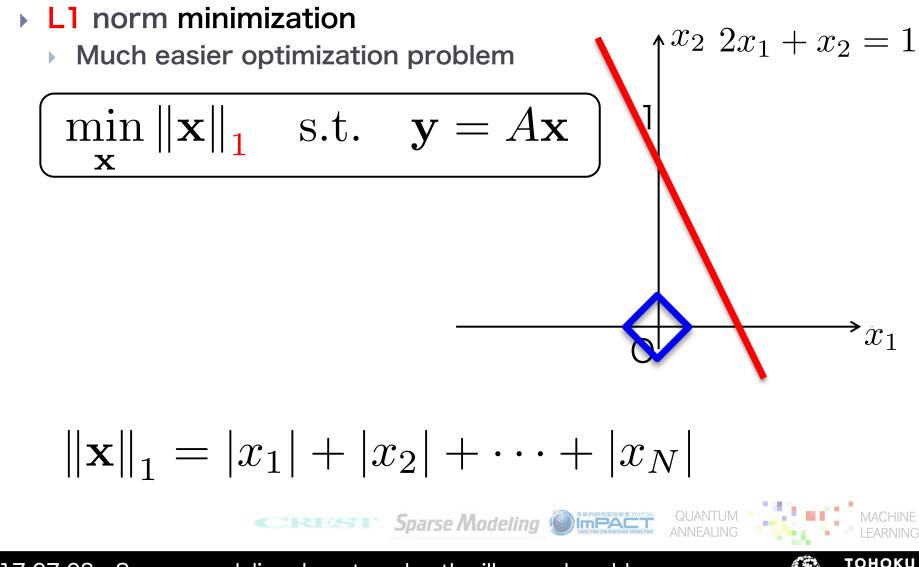
Sparse Modeling



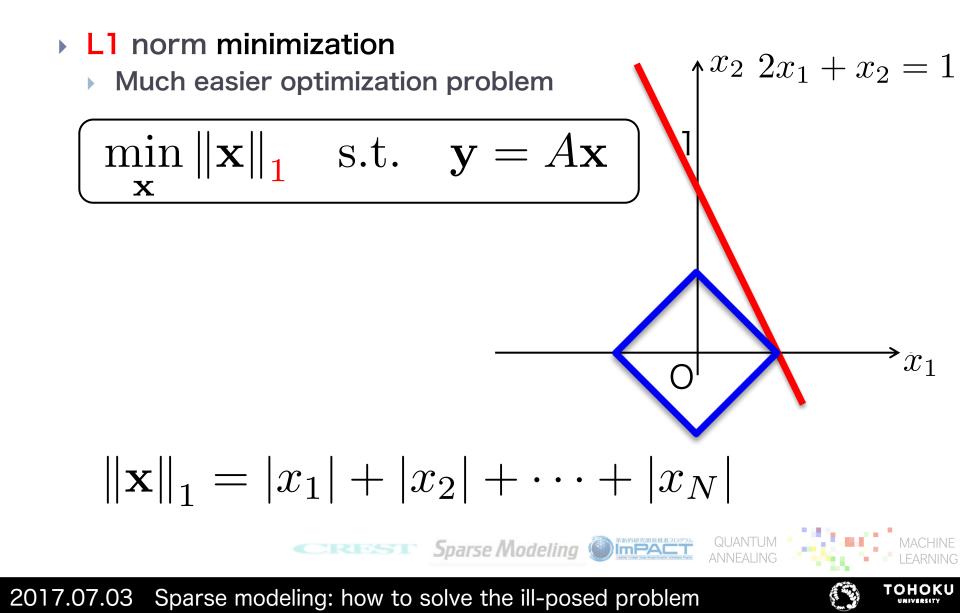




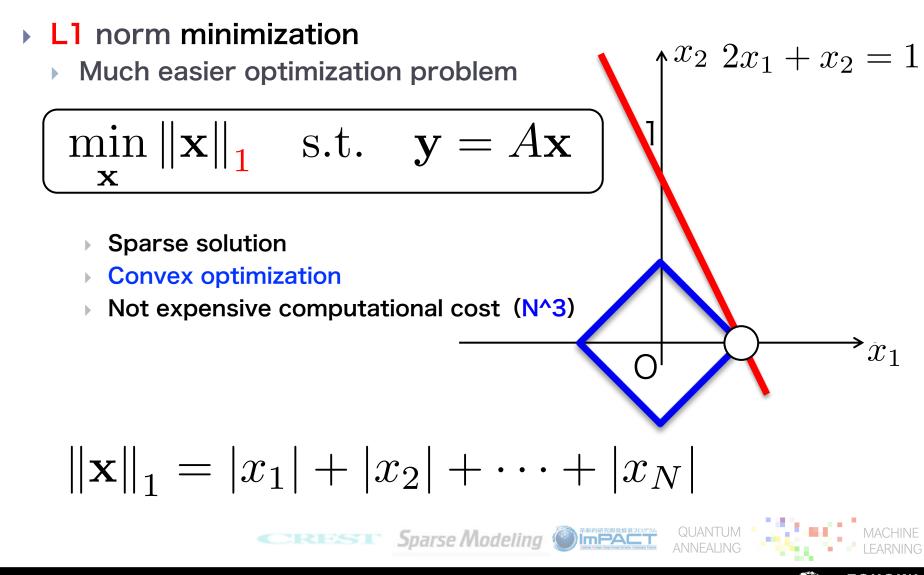






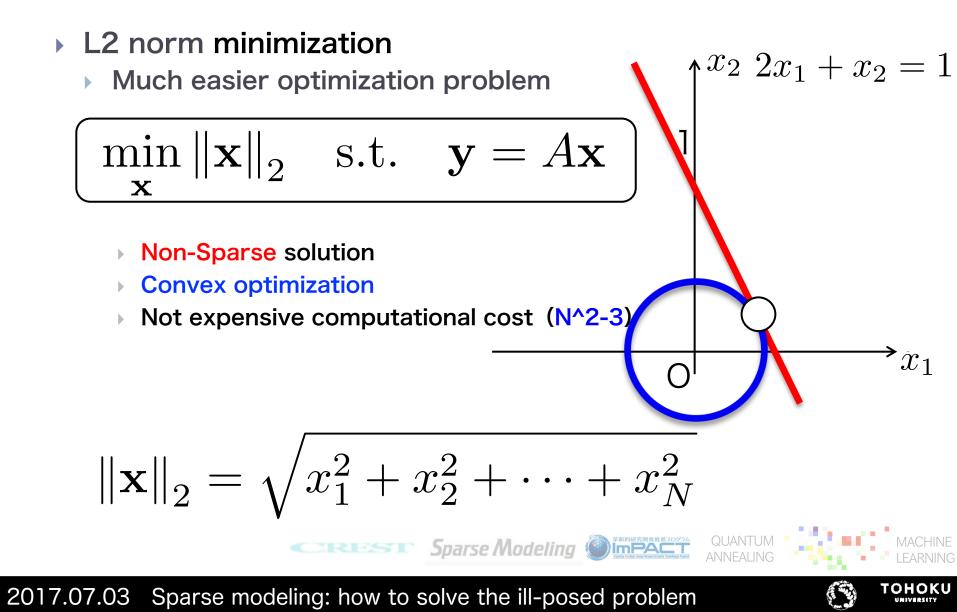






гоноки





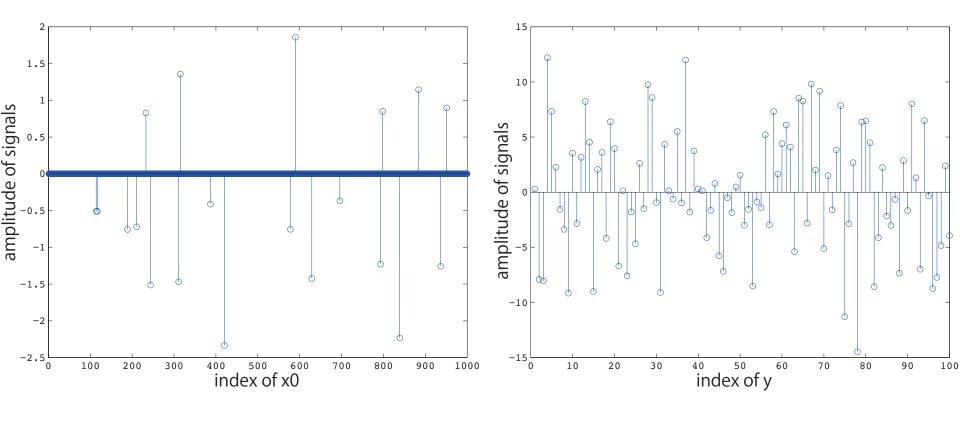
### L1 norm selects sparse solution

### L1 norm selects sparse solution Correct or not?





### M=100,N=1000,K=20,A=Gauss random matrix



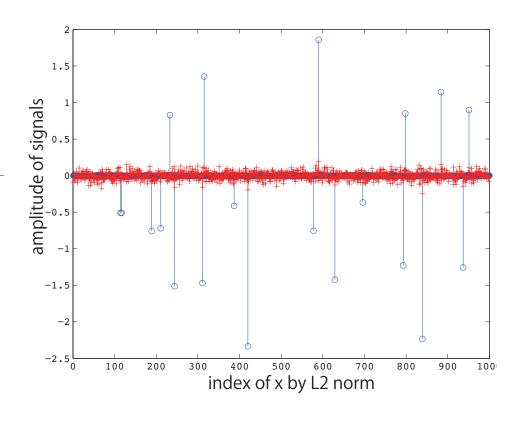
Sparse Modeling

ImPAr



### Example

L2 norm



**CREST** Sparse Modeling

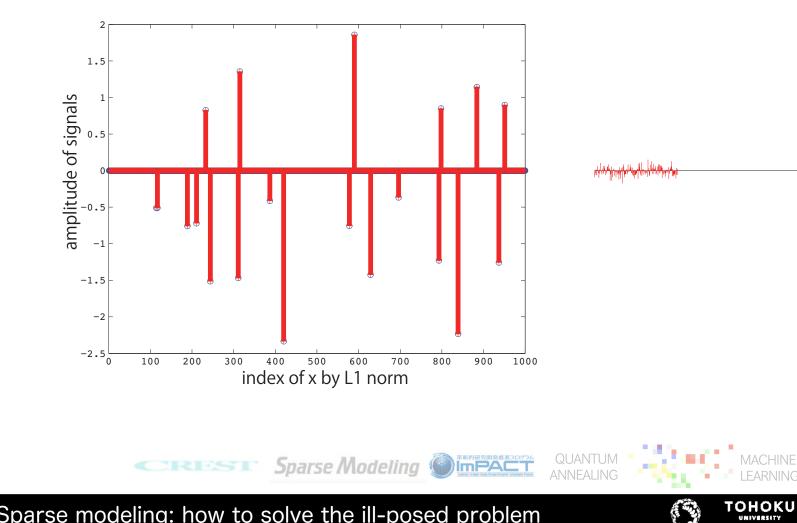
革新的研究開発推進スログラム

MACHINE



### Example

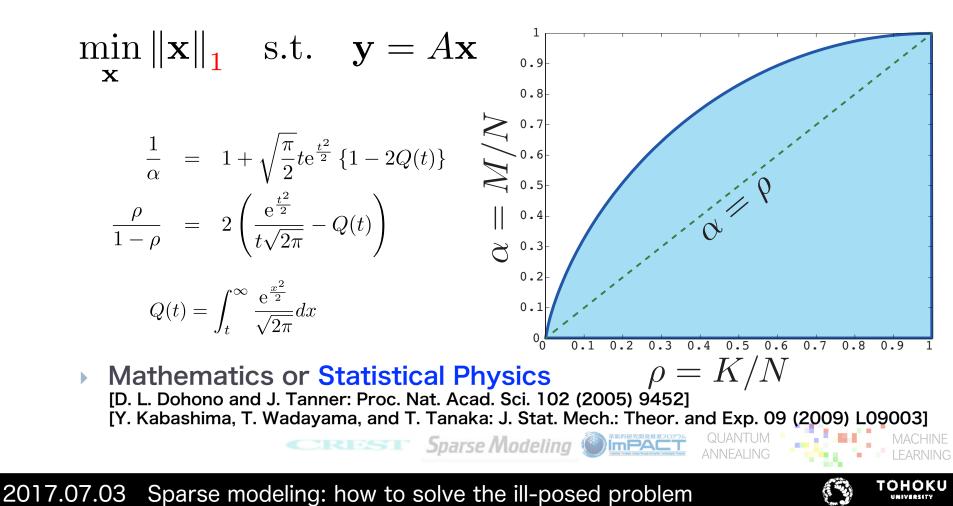
L1 norm 



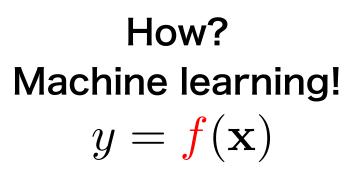


# L1 norm minimization

- Performance of L1 norm minimization
  - Prescription : A=Gauss random matrix、x0=Gauss random vector

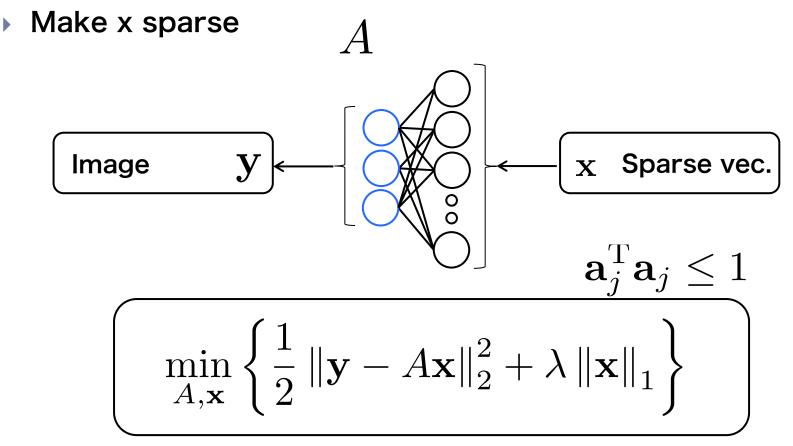


Sparse modeling Find x by sparsity Sparse modeling Find x by sparsity Make x sparse





### Dictionary learning J. Mairal, F. Bach, F. Ponce, and G. Sapiro: ICML (2009)



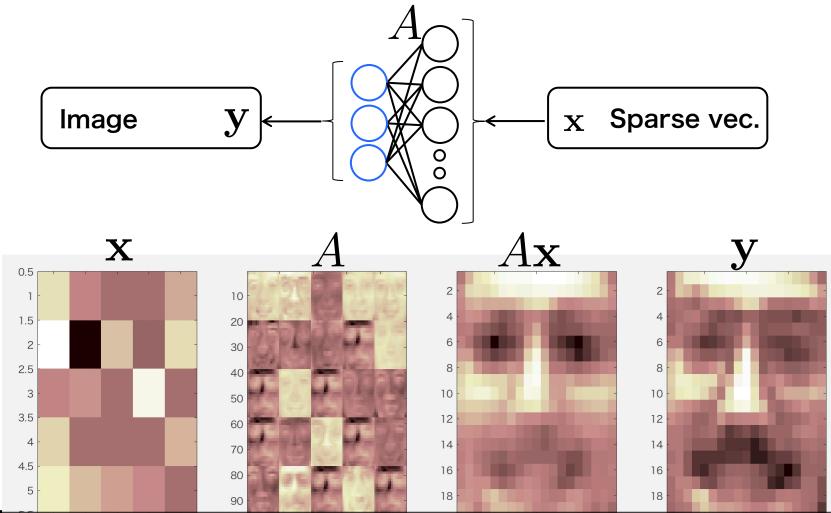
τοнокυ

- Find A making x sparse
- For Given y



### Dictionary learning J. Mairal, F. Bach, F. Ponce, and G. Sapiro: ICML (2009)

Make x sparse



2017.07.03 Sparse modeling: how to solve the ill-posed problem



Practical use of Compressed sensing



- Solve the optimization problem
  - Original problem

$$\min_{\mathbf{x}} \|\mathbf{x}\|_{1} \quad \text{s.t.} \quad \mathbf{y} = A\mathbf{x}$$

Penalty method

$$\min_{\mathbf{x}} \left\{ \frac{1}{2} \|\mathbf{y} - A\mathbf{x}\|_{2}^{2} + \lambda \|\mathbf{x}\|_{1} \right\}$$

- LASSO (Least Absolute Shrinkage and Selection Operators)
- Absolute value ? = Not so difficult!

$$\min_{\mathbf{x}} \left\{ \frac{1}{2} \left\| \mathbf{x} - \mathbf{v} \right\|_{2}^{2} + \lambda \left\| \mathbf{x} \right\|_{1} \right\}$$

тоноки

**CREST** Sparse Modeling



Soft-threshold function

$$\min_{x} \left\{ \frac{1}{2} \left( x - \boldsymbol{v} \right)^{2} + \lambda \left| x \right| \right\}$$

Optimal value can be given by 

Sam al



**ADMM** [Alternating Direction of Multiplier method) **S. Boyd, et al. Foundation and Trends in Machine Learning, 3 (2010) 1** 

- Change the problem by augmented Lagrange method
  - Combination of two cost function

$$\min_{\mathbf{x}} \left\{ f(\mathbf{x}) + g(\mathbf{x}) \right\}$$

Fix) LASSO 
$$f(\mathbf{x}) = \frac{1}{2} \|\mathbf{y} - A\mathbf{x}\|_2^2 \qquad g(\mathbf{x}) = \lambda \|\mathbf{x}\|_1$$

2017.07.03 Sparse modeling: how to solve the ill-posed problem

**CREST** Sparse Modeling

τομόκυ



**ADMM** [Alternating Direction of Multiplier method) **S. Boyd, et al. Foundation and Trends in Machine Learning, 3 (2010) 1** 

- Change the problem by augmented Lagrange method
  - Combination of two cost function

$$\min_{\mathbf{x}} \left\{ f(\mathbf{x}) + g(\mathbf{x}) \right\}$$

Ex) LASSO 
$$f(\mathbf{x}) = \frac{1}{2} \|\mathbf{y} - A\mathbf{x}\|_2^2 \qquad g(\mathbf{x}) = \lambda \|\mathbf{x}\|_1$$

Splitting

$$\min_{\mathbf{x},\mathbf{z}} \{ f(\mathbf{x}) + g(\mathbf{z}) \} \quad \text{s.t.} \quad \mathbf{x} = \mathbf{z}$$

**CREST** Sparse Modeling

τοнокυ





**ADMM** [Alternating Direction of Multiplier method) **S. Boyd, et al. Foundation and Trends in Machine Learning, 3 (2010) 1** 

- Change the problem by augmented Lagrange method
  - Combination of two cost function

$$\min_{\mathbf{x}} \left\{ f(\mathbf{x}) + g(\mathbf{x}) \right\}$$

Ex) LASSO 
$$f(\mathbf{x}) = \frac{1}{2} \|\mathbf{y} - A\mathbf{x}\|_2^2 \qquad g(\mathbf{x}) = \lambda \|\mathbf{x}\|_1$$

Splitting

$$\min_{\mathbf{x},\mathbf{z}} \left\{ f(\mathbf{x}) + g(\mathbf{z}) \right\} \quad \text{s.t.} \quad \mathbf{x} = \mathbf{z}$$

Augmented Lagranngian method (multiplier: h, penalty: p)

$$\min_{\mathbf{x},\mathbf{z},\mathbf{h}} \left\{ f(\mathbf{x}) + g(\mathbf{z}) + \mathbf{h}^{\mathrm{T}}(\mathbf{x} - \mathbf{z}) + \frac{\rho}{2} \|\mathbf{x} - \mathbf{z}\|_{2}^{2} \right\}$$

$$(\mathbf{x},\mathbf{z},\mathbf{h}) = \mathbf{x} - \mathbf{z} + \frac{\rho}{2} \|\mathbf{x} - \mathbf{z}\|_{2}^{2}$$

$$(\mathbf{x},\mathbf{z},\mathbf{h}) = \mathbf{x} - \mathbf{z} + \frac{\rho}{2} \|\mathbf{x} - \mathbf{z}\|_{2}^{2}$$

$$(\mathbf{x},\mathbf{z},\mathbf{h}) = \mathbf{x} - \mathbf{z} + \frac{\rho}{2} \|\mathbf{x} - \mathbf{z}\|_{2}^{2}$$

$$(\mathbf{x},\mathbf{z},\mathbf{h}) = \mathbf{x} - \mathbf{z} + \frac{\rho}{2} \|\mathbf{x} - \mathbf{z}\|_{2}^{2}$$

тоноки



- Change the problem by augmented Lagrange method
  - Combination of two cost function

$$\min_{\mathbf{x}} \left\{ f(\mathbf{x}) + g(\mathbf{x}) \right\}$$

Ex) LASSO 
$$f(\mathbf{x}) = \frac{1}{2} \|\mathbf{y} - A\mathbf{x}\|_2^2 \qquad g(\mathbf{x}) = \lambda \|\mathbf{x}\|_1$$

 $\mathbf{h} = \mathbf{h} + \rho(\mathbf{x} - \mathbf{z})$ 

Alternation of optimization problem

$$\min_{\mathbf{x}} \left\{ f(\mathbf{x}) + \mathbf{h}^{\mathrm{T}}(\mathbf{x} - \mathbf{z}) + \frac{\rho}{2} \|\mathbf{x} - \mathbf{z}\|_{2}^{2} \right\}$$
$$\min_{\mathbf{z}} \left\{ g(\mathbf{z}) + \mathbf{h}^{\mathrm{T}}(\mathbf{x} - \mathbf{z}) + \frac{\rho}{2} \|\mathbf{x} - \mathbf{z}\|_{2}^{2} \right\}$$

Update the multiplier





- Change the problem by augmented Lagrange method
  - Combination of two cost function

$$\min_{\mathbf{x}} \left\{ f(\mathbf{x}) + g(\mathbf{x}) \right\}$$

Fix) LASSO 
$$f(\mathbf{x}) = \frac{1}{2} \|\mathbf{y} - A\mathbf{x}\|_2^2$$
  $g(\mathbf{x}) = \lambda \|\mathbf{x}\|_1$ 

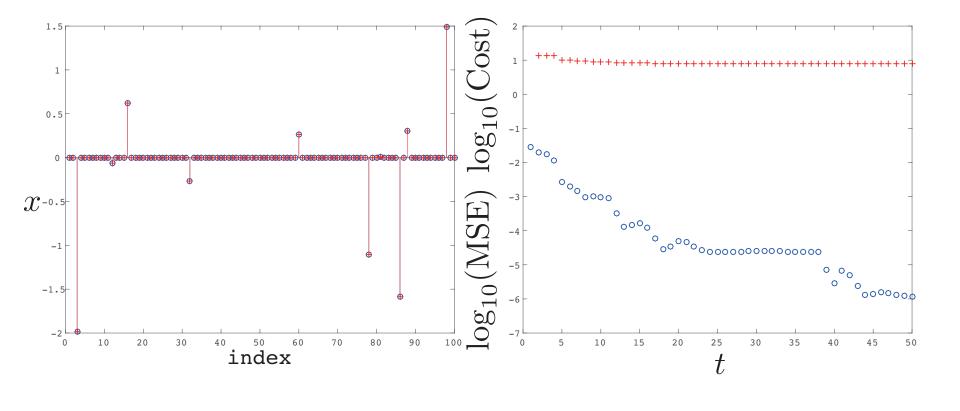
Alternation of optimization problem  $\min_{\mathbf{x}} \left\{ \frac{1}{2} \|\mathbf{y} - A\mathbf{x}\|_{2}^{2} + \mathbf{h}^{\mathrm{T}}(\mathbf{x} - \mathbf{z}) + \frac{\rho}{2} \|\mathbf{x} - \mathbf{z}\|_{2}^{2} \right\}$   $\min_{\mathbf{z}} \left\{ \lambda \|\mathbf{z}\|_{1} + \mathbf{h}^{\mathrm{T}}(\mathbf{x} - \mathbf{z}) + \frac{\rho}{2} \|\mathbf{x} - \mathbf{z}\|_{2}^{2} \right\}$ Update the multiplier  $\mathbf{h} = \mathbf{h} + \rho(\mathbf{x} - \mathbf{z})$ Sparse Modeling

тоноки



#### **ADMM** [Alternating Direction of Multiplier method] **S. Boyd, et al. Foundation and Trends in Machine Learning, 3 (2010) 1**

ADMM (given by matlab code in pdf text)



Sparse Modeling

Imf

тоноки



### Summary

- Era for Data-driven science
  - Deep learning
    - To identify approximate form of function
    - Renormalization group analysis
  - Sparse modeling
    - To identify most relevant elements from input
    - Extract important structure in nature
  - Application of two modern tools
    - To promote data-driven science
      - Compressed Sensing for recovery from small data
    - To search for new physics
      - Relevant elements from noisy quantum Monte-Carlo data
        - J. Otsuki, M. Ohzeki, H. Shinaoka, and K, Yoshimi: Phys. Rev. E 95, 061302(R) (2017)

Impact

Optimal orthogonal polynomial for analytical continuation

CREST Sparse Modeling

#### H. Shinaoka, J. Otsuki, M. Ohzeki, and K, Yoshimi: arxiv:1702.03054

