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Background

In machine learning, neural network is the most widely used
method. It is a variational approach in that the learning process is
to perform optimization over the parameters in the neural network.

Types of neural network: feedforward neural network, convolutional
neural network, (restricted) Boltzmann machine, etc.

Recently, Carleo and Troyer simulated quantum many-body
systems with a variational approach based on restricted Boltzmann
machines.

The most popular variational approach in the study of many-body
physics is based on tensor network states.

It is important to compare and understand the connection between
the representational power of neural versus tensor network states.



Boltzmann machine (BM)

∑
{s1,s2,...,s|V |+|H|}
∈{±1}⊗(|V |+|H|)

e−
∑|V |+|H|

j=1 hj sj−
∑|V |+|H|

j,k=1 wjk sj sk |{s1, s2, . . . , s|V |}〉

V = {v1, v2, . . . v|V |} is the set of
visible units carrying classical
Ising variables s1, s2, . . . s|V |.
H = {h1, h2, . . . h|H|} is the set
of hidden units carrying
s|V |+1, s|V |+2, . . . , s|V |+|H|.
Figure taken from
https://en.wikipedia.org/

wiki/Boltzmann_machine

https://en.wikipedia.org/wiki/Boltzmann_machine
https://en.wikipedia.org/wiki/Boltzmann_machine


Locality

∑
{s1,s2,...,s|V |+|H|}
∈{±1}⊗(|V |+|H|)

e−
∑|V |+|H|

j=1 hj sj−
∑|V |+|H|

j,k=1 wjk sj sk |{s1, s2, . . . , s|V |}〉

A restricted Boltzmann machine (RBM)
is a BM such that wjk = 0 for any edge
that connects a visible unit j ≤ |V | with
a hidden unit k ≥ |V |+ 1.
A (restricted) Boltzmann machine is
local if there are only short-range
connections.
Figure taken from Deng et al. PRX 7,
021021, 2017.
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Motivations

We study the representational power of Boltzmann machines.

In terms of representational power, how are neural network states
compared with tensor network states? Do all tensor network states
have neural network representations?

How much computational time does it take to convert a tensor
network state into a neural network state? How much space does
such a neural network representation occupy?

Can we find a physically interesting class of states, which have
neural network representations, but are hard (or even impossible)
to describe using tensor networks?



Neural and tensor network representations

We provide a polynomial-time algorithm that constructs a (local)
neural network representation for any (local) tensor network state.1

The construction is almost optimal: the number of parameters in
the neural network representation is almost linear in the number of
nonzero parameters in the tensor network representation.

Example: Any n-qubit matrix product state of bond dimension D
has a local neural network representation with 2nD2 hidden units
and 4nD2 log2 D parameters.

Using the universal approximation theorem, we convert every
tensor in the network to a RBM. Then, we contract these RBMs in
the same way as the tensors are contracted.

Universal approximation theorem2: Any tensor M can be arbitrarily
well approximated by a RBM, provided that the number of hidden
units is the number of nonzero elements in M.

1See X. Gao and L.-M. Duan, arXiv:1701.05039 for a similar result.
2N. Le Roux and Y. Bengio. Neural Comput. 20, 1631, 2008.
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Tensor network representation of chiral states

Early attempts did not impose locality3 or just target at
expectation values of local observables rather than the wave
function.4

Recent progress5 shows that local tensor networks can describe
chiral topological states, but the examples there are all gapless.

Dubail and Read’s no-go theorem: For any chiral local free-fermion
tensor network state, any local parent Hamiltonian is gapless.

It seems difficult to obtain a local tensor network representation for
gapped chiral topological states. This is an open problem in the
community.

3Z.-C. Gu, F. Verstraete, and X.-G. Wen. arXiv:1004.2563
4B. Beri and N. R. Cooper. Phys. Rev. Lett. 106, 156401, 2011.
5T. B. Wahl, H.-H. Tu, N. Schuch, and J. I. Cirac. Phys. Rev. Lett. 111,

236805, 2013; J. Dubail and N. Read. Phys. Rev. B 92, 205307, 2015.
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Fermionic neural network states

(∫
dξ|V |+1dξ|V |+2 · · · dξ|V |+|H|e−

∑|V |+|H|
j,k=1 wjkξjξk

)
|0〉

V = {v1, v2, . . . v|V |} is the set of
visible units carrying Grassmann
numbers ξ1, ξ2, . . . ξ|V |.
H = {h1, h2, . . . h|H|} is the set
of hidden units carrying
ξ|V |+1, ξ|V |+2, . . . , ξ|V |+|H|.
We identify ξ1, ξ2, . . . ξ|V | with

c†1 , c
†
2 , . . . , c

†
|V |.

Locality in fermionic BMs can be
defined in the same way as in
spin systems.



p + ip superconductor

H =
∑
~x∈Z2

(c†
~x+~i

c~x + c†
~x+~j

c~x + c†
~x+~i

c†~x + ic†
~x+~j

c†~x + h.c.)− 2µ
∑
~x∈Z2

c†~xc~x

=

∫
BZ

d~kH~k , H~k = ∆~k
c†~k
c†
−~k

+ ∆∗~kc−~kc~k + 2M~k
c†~k
c~k

∆~k
= sin kx + i sin ky , M~k

= cos kx + cos ky − µ

E~k = 2
√
|∆~k
|2 + M2

~k
, |g .s.〉 = e

1
2

∫
BZ d~k

2∆~k
E~k
−2M~k

c†
~k
c†
−~k |0〉

This model represents topological superconductors with opposite
chirality for −2 < µ < 0 and 0 < µ < 2, respectively.



Neural network representation of chiral states

Approximate representations are acceptable, and we have to work
with a finite system size in order to rigorously quantify the error of
the approximation and the succinctness of the representation.

Example: A gapped ground state in a chain of n spins can be
approximated (in the sense of 99% fidelity) by a matrix product

state with bond dimension 2Õ(log3/4 n).6

On a square lattice of size n × n, we construct a O(log n)-local
neural network state |n.n.s.〉 with one visible and one hidden unit
per site such that

|〈n.n.s|g .s.〉| > 1− 1/ poly n.

The same result can be established for the ground state of any
translationally invariant gapped free-fermion systems.

6I. Arad, A. Kitaev, Z. Landau, and U. Vazirani. arXiv:1301.1162.
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Summary

We provide a polynomial-time algorithm that constructs a (local)
neural network representation for any (local) tensor network state.

The construction is almost optimal in the sense that the number of
parameters in the neural network representation is almost linear in
the number of nonzero parameters in the tensor network
representation.

Despite the difficulty of representing (gapped) chiral topological
states with local tensor networks, we construct a quasi-local neural
network representation for a chiral p-wave superconductor.

This is an explicit and physically interesting example that neural
network states may “go beyond” tensor network states.
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Outlook

Numerical study of chiral topological order with neural network
states.7

The parton approach may allow us to construct quasi-local neural
network representation for strongly interacting chiral topological
states (e.g., the fractional quantum Hall state).

What is the representational power of neural network states based
on RBM?

7I. Glasser et al. The geometry of neural network states, string-bond states
and chiral topological order. preceding talk in this workshop.


