Break down of free-fermion classification of topological insulators and superconductors

Akira Furusaki

Takahiro Morimoto (UC Berkeley) Christopher Mudry (Paul Scherrer Inst.)

Morimoto, AF, Mudry, Phys. Rev. B 92, 125104 (2015)

Plan of this talk

- Introduction
 - Classification of topological insulators and superconductors

(gapped phases of free fermions)

= classification of Dirac mass terms

- Interactions
 - Boundary fermions with dynamical Dirac mass terms
 - Topology of the space of dynamical Dirac masses
- Examples
 - 1D BDI, 3D DIII
 - Higher dimensions
 - 2D DIII + reflection, 3D All + reflection

Generic discrete symmetries

• Time-reversal symmetry (TRS) (RS) $TRS = \begin{cases} 0 & \text{no TR invariance} \\ +1 & T^2 = +1 & \text{spin 0} \\ -1 & T^2 = -1 & \text{spin 1/2} \end{cases}$ $THT^{-1} = H$

T : anti-unitary operator

Particle-hole symmetry (PHS) PHS = $\begin{cases} 0 & \text{no PH invariance} \\ +1 & C^2 = +1 \\ -1 & C^2 = -1 \end{cases}$ Singlet SC

BdG Hamiltonian for superconductors

 $CHC^{-1} = -H$

C: anti-unitary operator

Chiral symmetry (CS)

 $(\Gamma = TC)$ $\Gamma H \Gamma^{-1} = -H$ Γ : unitary operator 1: TRS = PHS = 0, CS = 0 or 1 $3 \times 3 + 1 = 10$

	10 Symmetry Classes	TRS	PHS	CS	d=1	d=2	d=3
	A (unitary)	0	0	0		Z	
Standard (Wigner-Dyson)	AI (orthogonal)	+1	0	0			
	All (symplectic)	-1	0	0		Z ₂	Z ₂
	Alll (chiral unitary)	0	0	1	Z		Z
Chiral	BDI (chiral orthogonal)	+1	+1	1	Z		
	CII (chiral symplectic)	-1	-1	1	Z		Z ₂
	D (p-wave SC)	0	+1	0	Z ₂	Z	
BdG	C (d-wave SC)	0	- 1	0		Z	
	DIII (p-wave TRS SC)	- 1	+1	1	Z ₂	Z ₂	Z
	CI (d-wave TRS SC)	+1	- 1	1			Z

Table of topological insulators/superconductors for d=1,2,3

Altland & Zirnbauer, PRB (1997)

Schnyder, Ryu, AF, and Ludwig, PRB (2008)

Class $\setminus d$	0	1	2	3	4	5	6	7	8	
complex case:										
A	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	 period
AIII	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	 d = 2
real case:										u – Z
AI	\mathbb{Z}	0	0	0	\mathbb{Z}	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	
BDI	\mathbb{Z}_2	\mathbb{Z}	0	0	0	\mathbb{Z}	0	\mathbb{Z}_2	\mathbb{Z}_2	
D	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	\mathbb{Z}	0	\mathbb{Z}_2	
DIII	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	\mathbb{Z}	0	 period
AII	\mathbb{Z}	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	\mathbb{Z}	 d = 8
CII	0	\mathbb{Z}	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	
\mathbf{C}	0	0	\mathbb{Z}	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	
CI	0	0	0	\mathbb{Z}	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	

A. Kitaev, AIP Conf. Proc. 1134, 22 (2009); arXiv:0901.2686

Ryu, Schnyder, AF, Ludwig, NJP 12, 065010 (2010)

With interactions

Class	Т	C	Γ_5	V_d	d = 1	d = 2	d = 3	d = 4	d = 5	d = 6	d = 7	d = 8
А	0	0	0	C_{0+d}	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}
AIII	0	0	1	C_{1+d}	\mathbb{Z}_4	0	\mathbb{Z}_8	0	\mathbb{Z}_{16}	0	\mathbb{Z}_{32}	0
AI	+1	0	0	R_{0-d}	0	0	0	\mathbb{Z}	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}
BDI	+1	+1	1	R_{1-d}	\mathbb{Z}_8	0	0	0	\mathbb{Z}_{16}	0	\mathbb{Z}_2	\mathbb{Z}_2
D	0	+1	0	R_{2-d}	\mathbb{Z}_2	\mathbb{Z}	0	0	0	\mathbb{Z}	0	\mathbb{Z}_2
DIII	-1	+1	1	R_{3-d}	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}_{16}	0	0	0	\mathbb{Z}_{32}	0
AII	-1	0	0	R_{4-d}	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	\mathbb{Z}
CII	-1	-1	1	R_{5-d}	\mathbb{Z}_2	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}_{16}	0	0	0
\mathbf{C}	0	-1	0	R_{6-d}	0	\mathbb{Z}	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0
CI	+1	-1	1	R_{7-d}	0	0	\mathbb{Z}_4	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}_{32}	0

Reproduces:

1D BDI ($\mathbb{Z} \to \mathbb{Z}_8$), Fidkowski & Kitaev (2010)

3D DIII ($\mathbb{Z} \to \mathbb{Z}_{16}$), Kitaev (201?), Fidkowski-Chen-Vishwanath (2013),

Metlitski-Kane-Fisher (2014), ...

•••

With interactions

Freed & Hopkins (2016) stable homotopy theory; bordism

Class	Т	C	Γ_5	V_d	d = 1	d = 2	d = 3	Class	d = 1	d = 2	d = 3
А	0	0	0	C_{0+d}	0	\mathbb{Z}	0	А	0	$\mathbb{Z} imes \mathbb{Z}$	0
AIII	0	0	1	C_{1+d}	\mathbb{Z}_4	0	\mathbb{Z}_8	AIII	\mathbb{Z}_4	0	$\mathbb{Z}_8 imes \mathbb{Z}_2$
AI	+1	0	0	R_{0-d}	0	0	0	AI	\mathbb{Z}_2	0	\mathbb{Z}_2
BDI	+1	+1	1	R_{1-d}	\mathbb{Z}_8	0	0	BDI	\mathbb{Z}_8	0	0
D	0	+1	0	R_{2-d}	\mathbb{Z}_2	\mathbb{Z}	0	D	\mathbb{Z}_2	\mathbb{Z}	0
DIII	-1	+1	1	R_{3-d}	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}_{16}	DIII	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}_{16}
AII	-1	0	0	R_{4-d}	0	\mathbb{Z}_2	\mathbb{Z}_2	AII	0	\mathbb{Z}_2	$\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$
CII	-1	-1	1	R_{5-d}	\mathbb{Z}_2	0	\mathbb{Z}_2	CII	\mathbb{Z}_2	0	$\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$
\mathbf{C}	0	-1	0	R_{6-d}	0	\mathbb{Z}	0	\mathbf{C}	0	$\mathbb{Z} imes \mathbb{Z}$	0
CI	+1	-1	1	R_{7-d}	0	0	\mathbb{Z}_4	CI	\mathbb{Z}_2	0	$\mathbb{Z}_4 imes \mathbb{Z}_2$

Reproduces:

1D BDI ($\mathbb{Z} \to \mathbb{Z}_8$), Fidkowski & Kitaev (2010)

3D DIII ($\mathbb{Z} \to \mathbb{Z}_{16}$), Kitaev (201?), Fidkowski-Chen-Vishwanath (2013),

Metlitski-Kane-Fisher (2014), ...

However, we do not have sectors of bosonic SPTs . e.g., 3D AII: \mathbb{Z}_2^3 , 3D AIII: $\mathbb{Z}_8 \times \mathbb{Z}_2$, 3D CII: \mathbb{Z}_2^5 , Wang & Senthil, PRB (2014)

How to obtain the periodic table of TIs and TSCs

- Explicit construction of topological invariants
- Anderson delocalization of boundary fermions
- Quantum anomaly in the boundary theory
- Classification of Dirac masses in the bulk Hamiltonian
- K-theory
- ...

Classification of Dirac mass terms

A. Kitaev (2009); T. Morimoto and AF, Phys. Rev. B 88, 125129 (2013)

Kitaev's method made simple!

Dirac Hamiltonian

Л

gamma matrices

$$H = \sum_{\mu=1}^{a} k_{\mu} \gamma_{\mu} + m \gamma_{0} \qquad \{$$

 $\{\gamma_a, \gamma_b\} = 2\delta_{ab}$

minimal representative models for TIs and TSCs

effective theory for topological phase transitions (closing of a band gap)

classification of TIs and TSCs \iff classification of Dirac mass $m\gamma_0$

Massive Dirac Hamiltonian for TIs
$$H = \sum_{\mu=1}^{d} k_{\mu} \gamma_{\mu} + m \gamma_{0} \qquad \{\gamma_{\mu}, \gamma_{\nu}\} = 2\delta_{\mu,\nu}$$

Example

$$d = 2 \text{ class A (IQHE)}$$

 $H = k_x \sigma_x + k_y \sigma_y + m \sigma_z$
 $\sigma_{yx} = \frac{1}{2} \text{sgn}(m)$
 $m < 0$
 $m > 0$

Domain wall fermion = edge state

$$H = -iv(\partial_x \sigma_x - i\partial_y \sigma_y) + m(x)\sigma_z$$

$$E = -vk \quad \psi(x, y) = \exp\left[iky - \frac{1}{v}\sigma_y \int_0^x m(x')dx'\right] \begin{pmatrix} 1 \\ -i \end{pmatrix} \xrightarrow{m(x)} x$$

Set of possible mass terms: classifying space Example: d = 2 class A (IQHE)

There are topologically distinct gapped phases labelled by an integer index. The parameter n corresponds to the Chern number. 6

Example: d = 1 class A (no symmetry constraint)

$$H = k_x \sigma_z \otimes 1_N + \gamma_0$$

$$\gamma_0 = \begin{pmatrix} 0 & U \\ U^{\dagger} & 0 \end{pmatrix} \qquad U \in U(N) \quad \text{Classifying space } C_1$$

$$\pi_0(U(N)) = 0$$

There is only a single gapped phase.

Example:
$$d = 3$$
 class All (time-reversal symmetry $T = i\sigma_y K$)
 $H = \begin{pmatrix} k_x \sigma_x + k_y \sigma_y + k_z \sigma_z \end{pmatrix} \otimes \tau_z \otimes 1_N + \gamma_0$
 $\gamma_0 = \sigma_0 \otimes \begin{pmatrix} 0 & X \\ X^T & 0 \end{pmatrix}_{\tau}$
 $\gamma_0^2 = 1_{4N} \longrightarrow X \in O(N)$ Classifying space R_1
 $\pi_0 (O(N)) = \mathbb{Z}_2$
There are two gapped phases.

There are two gapped phases.

Class	Т	С	Г	Extension	V _d	$\pi_0(V_{d=0})$	$\pi_0(V_{d=1})$	$\pi_0(V_{d=2})$	$\pi_0(V_{d=3})$
А	0	0	0	$Cl_d \rightarrow Cl_{d+1}$	C_{0+d}	\mathbb{Z}	0	\mathbb{Z}	0
AIII	0	0	1	$Cl_{d+1} \rightarrow Cl_{d+2}$	C_{1+d}	0	\mathbb{Z}	0	\mathbb{Z}
AI	+1	0	0	$Cl_{0,d+2} \rightarrow Cl_{1,d+2}$	R_{0-d}	\mathbb{Z}	0	0	0
BDI	+1	+1	1	$Cl_{d+1,2} \rightarrow Cl_{d+1,3}$	R_{1-d}	\mathbb{Z}_2	\mathbb{Z}	0	0
D	0	+1	0	$Cl_{d,2} \rightarrow Cl_{d,3}$	R_{2-d}	\mathbb{Z}_2^-	\mathbb{Z}_2	\mathbb{Z}	0
DIII	-1	+1	1	$Cl_{d,3} \rightarrow Cl_{d,4}$	R_{3-d}	0	\mathbb{Z}_2^-	\mathbb{Z}_2	\mathbb{Z}
AII	-1	0	0	$Cl_{2,d} \rightarrow Cl_{3,d}$	R_{4-d}	\mathbb{Z}	0	\mathbb{Z}_2^-	\mathbb{Z}_2
CII	-1	-1	1	$Cl_{d+3,0} \rightarrow Cl_{d+3,1}$	R_{5-d}	0	\mathbb{Z}	0	\mathbb{Z}_2
С	0	-1	0	$Cl_{d+2,0} \rightarrow Cl_{d+2,1}$	R_{6-d}	0	0	\mathbb{Z}	0
CI	+1	-1	1	$Cl_{d+2,1} \rightarrow Cl_{d+2,2}$	R_{7-d}	0	0	0	\mathbb{Z}

Sets of symmetry-allowed Dirac masses (classifying spaces V)

 $\begin{array}{ll} \mathcal{C}_{q+2} = \mathcal{C}_q & \mathcal{R}_{q+8} = \mathcal{R}_q \\ \pi_0(V) \text{ counts the \# of path-connected parts in the set } V \\ \pi_0(V) = 0 & \text{trivial insulators} \\ \pi_0(V) = \mathbb{Z}, \mathbb{Z}_2 & \text{topologically nontrivial insulators} \end{array}$

Label	Classifying space V
$\begin{array}{c} C_0 \\ C_1 \end{array}$	$\bigcup_{n=0}^{N} \{ U(N) / [U(n) \times U(N - n)] \}$ $U(N)$
$ \begin{array}{r} R_{0} \\ R_{1} \\ R_{2} \\ R_{3} \\ R_{4} \\ R_{5} \\ R_{6} \\ R_{7} \\ \end{array} $	$ \begin{array}{c} \cup_{n=0}^{N} \{ O(N) / [O(n) \times O(N-n)] \} \\ O(N) \\ O(2N) / U(N) \\ U(2N) / Sp(N) \\ \cup_{n=0}^{N} \{ Sp(N) / [Sp(n) \times Sp(N-n)] \} \\ Sp(N) \\ Sp(N) \\ U(N) / U(N) \\ U(N) / O(N) \end{array} $

π_n	(V)

Label	Classifying space V	$\pi_0(V)$	$\pi_1(V)$	$\pi_2(V)$	$\pi_3(V)$	$\pi_4(V)$
C_0	$\bigcup_{n=0}^{N} \{ \mathrm{U}(N) / [\mathrm{U}(n) \times \mathrm{U}(N-n)] \}$	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}
C_1	U(N)	0	\mathbb{Z}	0	\mathbb{Z}	0
R_0	$\bigcup_{n=0}^{N} \{ \mathcal{O}(N) / [\mathcal{O}(n) \times \mathcal{O}(N-n)] \}$	\mathbb{Z}	\mathbb{Z}_2	\mathbb{Z}_{2}	0	\mathbb{Z}
R_1	O(N)	\mathbb{Z}_2	\mathbb{Z}_2^-	0	\mathbb{Z}	0
R_2	O(2N)/U(N)	\mathbb{Z}_2	0	\mathbb{Z}	0	0
$\bar{R_3}$	U(2N)/Sp(N)	0	\mathbb{Z}	0	0	0
R_4	$\bigcup_{n=0}^{N} \{ \operatorname{Sp}(N) / [\operatorname{Sp}(n) \times \operatorname{Sp}(N-n)] \}$	\mathbb{Z}	0	0	0	\mathbb{Z}
R_5	Sp(N)	0	0	0	\mathbb{Z}	\mathbb{Z}_{2}
R_6	Sp(N)/U(N)	0	0	\mathbb{Z}	\mathbb{Z}_2	\mathbb{Z}_2^2
R_7	U(N)/O(N)	0	\mathbb{Z}	\mathbb{Z}_2	\mathbb{Z}_2^-	0

 $\pi_n(V) \neq 0 \implies$ topological defects in the Dirac mass that can bind fermionic zero modes

Domain walls have gapless edge states. Quantum percolation of edge states leads to a critical point. Cf. Chalker-Coddington model $\pi_1(V) \neq 0$

$$d = 2$$

point defects

d = 3

line defects

Interacting fermions

Reduction of non-interacting topological phases labeled by Z

Time-reversal symmetric Majorana chain (1D class BDI) $\mathbb{Z} \rightarrow \mathbb{Z}_8$

8 Majorana zero modes at the boundary can be gapped without breaking TRS.

Fidkowski and Kitaev, PRB (2010), PRB (2011)

Time-reversal symmetric 3D topological SC (3D class DIII)

 $\nu \neq 16n$ flavors of Dirac surface fermions lead to nontrivial topological order with TRS.

Kitaev ; Fidkowski etal. PRX (2013), Metlitski, Kane & Fisher. (2014),

Time-reversal and reflection symmetric 2D superconductors (2D class DIII+R) $\mathbb{Z} \to \mathbb{Z}_8$ R: $x \rightarrow -x$, $i\sigma_x$

8 pairs of Majorana helical modes can be gapped out by interactions Yao and Ryu, PRB (2013); Qi, NJP (2013).

<u>Aim</u>:

Systematic study of the breakdown of the Z classification for any spatial dimension and all symmetry classes

Q: Can boundary states be gapped out without breaking symmetries?

Stability analysis of boundary gapless states against interactions using the topology of the space of dynamical boundary Dirac masses

Kitaev, unpublished & talk @ UCLA (2015)

We only consider the contact interactions obtained from taking squares of the bilinears built from Dirac mass matrices $(\psi^{\dagger}\beta\psi)^2$

Our approach

 ν copies of gapless boundary states

$$\mathcal{H}_0 = \sum_{j=1}^{d-1} (-i) \alpha_j \otimes 1_{\nu} \partial_j$$

Boundary massless Dirac fermions + quartic interactions

$$\mathcal{L}_{bd} = \Psi^{\dagger}(\partial_{\tau} + \mathcal{H}_{0})\Psi + \lambda \sum_{\substack{\{\beta\}\\\{\beta_{1},\beta_{2},\dots,\beta_{N}\}}} \left(\Psi^{\dagger}\beta_{n}\Psi\right)^{2}$$

marginal at d - 1 = 1

irrelevant for d - 1 > 1

We assume strong enough interactions when d > 2 (but smaller than the bulk gap).

 $\alpha \otimes 1, \beta$: mutually anti-commuting gamma matrices (but smaller than $\alpha_j \otimes 1$ respect symmetries (such as TRS). β_n are odd ($\beta_n \rightarrow -\beta_n$) under some symmetry transformation (T, R). PHS is a sacred symmetry that we have to keep.

$$\mathcal{L}_{\rm bd} = \Psi^{\dagger}(\partial_{\tau} + \mathcal{H}_0)\Psi + \lambda \sum_{\{\beta\}} (\Psi^{\dagger}\beta_n \Psi)^2$$

Hubbard-Stratonovich transformtation

$$\mathcal{L}_{bd}' = \Psi^{\dagger} \left(\partial_{\tau} + \mathcal{H}_{bd}^{(dyn)} \right) \Psi + \frac{1}{\lambda} \sum_{n=1}^{N} \phi_n^2$$
$$\mathcal{H}_{bd}^{(dyn)}(\tau, \mathbf{x}) = \mathcal{H}_0(\mathbf{x}) + \sum_{\{\beta\}} 2i \beta_n \phi_n(\tau, \mathbf{x})$$
$$\frac{dynamical Dirac masses}{dynamical Dirac masses}$$
$$\mathcal{H}_0 = \sum_{j=1}^{d-1} (-i) \alpha_j \otimes 1_{\mathcal{V}} \partial_j$$

You and Xu, PRB (2014), Kitaev's talk @UCLA (2015)

Integrating out fermions

$$S_{\text{eff}}[\boldsymbol{\phi}] = -\text{Tr } \log \left[\partial_{\tau} + \sum_{j=1}^{d-1} (-i\partial_j) \alpha_j \otimes 1_{\nu} + \sum_{\{\beta\}} 2i\boldsymbol{\beta} \cdot \boldsymbol{\phi} \right] + \frac{1}{\lambda} \boldsymbol{\phi}^2$$

Saddle point approximation

+ including fluctuations about the direction in which $\boldsymbol{\varphi}$ freezes

Nonlinear sigma model

 $\boldsymbol{\phi} \in S^{N(\nu)-1}$

$$Z_{\rm bd} \approx \int D[\phi] \delta(\phi^2 - 1) e^{-S_{\rm QNLSM} - S_{\rm top}} \qquad \begin{array}{l} \text{Abanov, Wiegmann} \\ \text{Nucl. Phys. B (2000)} \end{array}$$
$$S_{\rm QNLSM} = \frac{1}{g} \int d\tau \int d^{d-1} x (\partial_j \phi)^2 \qquad \begin{array}{l} \text{S}_{\rm top} \text{ is a WZ term} \\ \text{if } \pi_{d+1}(S^{N-1}) = \mathbb{Z}. \end{array}$$

Target space of NLSM is a sphere generated by
$$N(\nu)$$
 anticommuting dynamical masses.

Topological obstructions to gapping

 $\phi \in S^{N(\nu)-1}$ The target space of NLSM is a sphere generated by $N(\nu)$ anticommuting dynamical masses.

Dirac fermions with dynamical masses in d-dimensional space time.

Condition for the breakdown

$$\pi_D(S^{N(\nu)-1}) = 0$$
 for $D = 0, ..., d + 1$

 u_{min} : the minimum u satisfying the condition

$$\mathbb{Z} \to \mathbb{Z}_{\nu_{\min}}$$

Homotopy group of n-dimentional sphere

	S^1	S^2	S^3	S^4	S^5	S^6	S^7
π_1	Z	0	0	0	0	0	0
π_2	0	Z	0	0	0	0	0
π_3	0	Z	Z	0	0	0	0
π_4	0	Z_2	Z_2	Z	0	0	0
π_5	0	Z_2	Z_2	Z_2	Z	0	0
π_6	0	Z_{12}	Z_{12}	Z_2	Z_2	Z	0

$\begin{array}{lll} & \operatorname{\mathsf{Example 1: 1D \ class \ BDl}} \\ {}^{\nu\,=\,1} & \operatorname{\mathsf{Bulk:}} & \mathcal{H}^{(0)}(x) := -\mathrm{i}\partial_x\,\tau_3 + m(x)\,\tau_2. & \operatorname{\mathsf{TRS}} & \mathcal{T} := \tau_1\,\mathsf{K}, \\ & \operatorname{\mathsf{PHS}} & \mathcal{C} := \tau_0\,\mathsf{K}. \end{array} \\ & \operatorname{\mathsf{Boundary:}} & \mathcal{H}^{(0)}_{\mathrm{bd}} = 0. & \mathcal{T}_{\mathrm{bd}} := \mathsf{K}, \ \mathcal{C}_{\mathrm{bd}} := \mathsf{K}. \end{array}$

 ν copies

$$\mathcal{H}_{\mathrm{bd}\,\nu}^{(\mathrm{dyn})}(\tau) = \mathrm{i}M(\tau),$$

 $M: v \times v$ Real anti-symmetric matrix *iM* breaks TRS, but preserves PHS.

	Dynamical masses	Target space	Topological obstruction	
v=1	No mass term	-	-	
v=2	$iM = \pm \sigma_y$	pt.+pt. $\pi_0 \neq 0$	Domain wall	
v=4	$iM = X_{21}, X_{02}, X_{23}$	S^2 $\pi_2 \neq 0$	WZ term	
v=8	$iM = X_{213}, X_{023}, X_{233}, X_{002}$	S ³ (S ⁶)	None $\mathbb{Z} ightarrow$	$\cdot \mathbb{Z}_8$
	$X_{ijk\cdots} = \sigma_i \otimes \sigma_j \otimes \sigma_k \otimes \cdots$			

Example 1: 1D class BDI

Space of dynamical Dirac masses	D	$\pi_D(R_2)$	ν	Topological obstruction
at the boundary = space Dirac masses for d=0 class D.	0	\mathbb{Z}_2	2	Domain wall
$R_2 = O(2N)/U(N)$	1 2	\mathbb{Z}	4	WZ term
	3 4	0		
	5	0		
	6 7	\mathbb{Z}_2	8	None

	Dynamical masses	Target space	Topological obstruction
v=1	No mass term	-	_
v=2	$iM = \pm \sigma_y$	pt.+pt. $\pi_0 \neq 0$) Domain wall
v=4	$iM = X_{21}, X_{02}, X_{23}$	S^2 $\pi_2 \neq 0$	WZ term
v=8	$iM = X_{213}, X_{023}, X_{233}, X_{002}$	S ³ (S ⁶)	None $\mathbb{Z} o \mathbb{Z}_8$
	$X_{ijk\cdots} = \sigma_i \otimes \sigma_j \otimes \sigma_k \otimes \cdots$		

Example 2: 3D class DIII
$$X_{jk} = \sigma_j \otimes \sigma_k$$
 $\nu = 1$ $W = 1$ $T = i X_{20} K$ Bulk: $\mathcal{H}^{(0)}(x) = -i\partial_1 X_{31} - i\partial_2 X_{02} - i\partial_3 X_{11} + m(x) X_{03}$ $T = i X_{20} K$ Boundary: $\mathcal{H}^{(0)}_{bd}(x, z) = -i\partial_x \sigma_3 - i\partial_z \sigma_1$ $T_{bd} = i\sigma_2 \otimes 1_\nu K$ ν copies $T_{bd} = i\sigma_2 \otimes 1_\nu K$ Dynamical mass: $\sigma_2 \bigotimes M(\tau, x, z)$ $\nu \times v$ real symmetric matrixbreaks T, but preserves C. $\nu = 1$: $M = \pm 1$ p_{t+pt} . $\pi_0 \neq 0$ domain wall $\nu = 2$: $M = X_{1,} X_{3}$ $\pi_1(S^1) = \mathbb{Z}$ vortex $\nu = 4$: $M = X_{13}, X_{33}, X_{01}$ $\pi_2(S^2) = \mathbb{Z}$ monopole $\nu = 8$: $M = X_{133}, X_{333}, X_{013}, X_{001}, X_{212}$ $\pi_4(S^4) = \mathbb{Z}$ WZ term

Example 2: 3D class DIII

		$D \qquad \pi_D(R_0)$		ν	Topological obstruction
		0	\mathbb{Z}	1	Domain wall
R_{o} : classifying space for 2D classifying space for 2D classifying space for 2D classify space for 2D cla	ass D	1	\mathbb{Z}_2	2	Vortex line
0 7 0 1		2	\mathbb{Z}_2	4	Monopole
		3	0		
		4	\mathbb{Z}	8	WZ term
		5	0		
		6	0		
		7	0		
		8	\mathbb{Z}	16	None
$\underline{v=1}: M = \pm 1$	pt.+pt.	$\pi_0 \neq 0$	dor	nain wall	
$\underline{v=2:} M = X_1, X_3$	$\pi_1(S^1)$	$= \mathbb{Z}$	vor	tex	$X_{iik\cdots} = \sigma_i \otimes \sigma_i \otimes \sigma_k \otimes \cdots$
<u>v=4:</u> $M = X_{13}, X_{33}, X_{01}$	$\pi_2(S^2)$	$=\mathbb{Z}$	mor	nopole	
<u>v=8:</u> $M = X_{133}, X_{333}, X_{013}$	X_{001}, X_{21}	$\pi_{4}(S)$	$S^4) = \mathbb{Z}$	WZ te	erm Z ₁₆

Higher dimensions

Z₂ in any dimension and any symmetry class is stable.

$$^{\exists} D \le d + 1, \ \pi_D (S^{N(\nu)}) \ne 0 \ \text{for } \nu = 1$$

- Z's in even dimensions are stable. Either (a) no dynamical mass exists, or (b) $\pi_1 \neq 0$.
- Z's in odd dimensions are unstable.

The reduction pattern is determined by the topology of the space of dynamical masses

Class	T	C	Γ_5	V_d	d = 1	d = 2	d = 3	d = 4	d = 5	d = 6	d = 7	d = 8
А	0	0	0	C_{0+d}	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}
AIII	0	0	1	C_{1+d}	\mathbb{Z}_4	0	\mathbb{Z}_8	0	\mathbb{Z}_{16}	0	\mathbb{Z}_{32}	0
AI	+1	0	0	R_{0-d}	0	0	0	\mathbb{Z}	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}
BDI	+1	+1	1	R_{1-d}	\mathbb{Z}_8	0	0	0	\mathbb{Z}_{16}	0	\mathbb{Z}_2	\mathbb{Z}_2
D	0	+1	0	R_{2-d}	\mathbb{Z}_2	\mathbb{Z}	0	0	0	\mathbb{Z}	0	\mathbb{Z}_2
DIII	-1	+1	1	R_{3-d}	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}_{16}	0	0	0	\mathbb{Z}_{32}	0
AII	-1	0	0	R_{4-d}	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	\mathbb{Z}
CII	-1	-1	1	R_{5-d}	\mathbb{Z}_2	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}_{16}	0	0	0
\mathbf{C}	0	-1	0	R_{6-d}	0	\mathbb{Z}	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0
CI	+1	-1	1	R_{7-d}	0	0	\mathbb{Z}_4	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}_{32}	0

2D DIII + R (SC w/time-reversal & reflection)

$$\begin{array}{ll} {}^{\nu\,=\,1} & {}^{\text{Bulk}} \\ {}^{\mathcal{H}\,(0)} = -i\partial_x X_{31} - i\partial_y X_{02} + m(x,y) X_{03} \\ \\ {}^{T} = iX_{20} \mathrm{K} \,, \ \ C = X_{01} \mathrm{K} \,, \ \ R = iX_{20} \end{array}$$

$$\begin{array}{ll} \nu \text{ copies Boundary} \\ \mathcal{H}_{bd}^{(\text{dyn})} = -i\partial_x \sigma_3 \otimes 1_{\nu} + M(\tau, x) & M^* = -M & C_{bd} = K \\ M = \begin{pmatrix} 0 & -iA \\ iA^T & 0 \end{pmatrix} & A \in O(\nu) = R_1 \\ \text{Classifying space for 1D class D} \\ \nu = 1 & \pm \sigma_y & \pi_0 \neq 0 \\ \nu = 2 & X_{21}, X_{23} & \pi_1(S^1) = \mathbb{Z} \\ \nu = 4 & X_{210}, X_{230}, X_{102}, X_{222} & \pi_3(S^3) = \mathbb{Z} \\ \nu = 8 & X_{2100}, X_{2310}, X_{2331}, X_{2333}, X_{1120}, \dots & \pi_{1,2,3,4} = 0 & \mathbb{Z}_8 \end{array}$$

2D DIII + R (SC w/time-reversal & reflection)

D	$\pi_D(R_1)$	ν	Topological obstruction
0	\mathbb{Z}_{2}	1	Domain wall
1	\mathbb{Z}_{2}^{2}	2	Vortex
2	0		
3	\mathbb{Z}	4	WZ term
4	0		
5	0		
6	0		
7	\mathbb{Z}	8	None

R₁: classifying space for 1D class D

 $\nu = 1 \qquad \pm \sigma_y \qquad \pi_0 \neq 0$

 $\nu = 2$ X_{21}, X_{23} $\pi_1(S^1) = \mathbb{Z}$

$$\nu = 4$$
 $X_{210}, X_{230}, X_{102}, X_{222}$ $\pi_3(S^3) = \mathbb{Z}$

 $\nu = 8$ $X_{2100}, X_{2310}, X_{2331}, X_{2333}, X_{1120}, \dots \pi_{1,2,3,4} = 0$ \mathbb{Z}_8

3D topological crystalline insulators (e.g., SnTe) (All + reflection $\rightarrow \mathbb{Z}$ classification)

Bulk: $\mathcal{H}^{(0)} = -i\partial_x X_{21} - i\partial_y X_{11} - i\partial_z X_{02} + m(\mathbf{x})X_{03}$ $T = iX_{20}\mathsf{K}, \quad R_x = iX_{10}$ Boundary: $\mathcal{H}^{(0)}_{hd} = -i\partial_x \sigma_2 - i\partial_y \sigma_1$

We extend the surface Hamiltonian to the BdG form to allow for Cooper channels.

$$\mathcal{H}_{\mathrm{BdG}}^{(0)} = \mathcal{H}_{\mathrm{bd}}^{(0)} \bigotimes \left(-\mathcal{H}_{\mathrm{bd}}^{(0)}\right)^*$$

BdG: ν copies

$$\mathcal{H}_{\mathrm{bd}}^{(\mathrm{dyn})} = \left(-i\partial_x \sigma_2 \otimes \rho_3 - i\partial_y \sigma_1 \otimes \rho_0\right) \otimes 1_{\nu} + \gamma(x, y, z)$$

$$\begin{aligned} \mathcal{H}_{bd}^{(dyn)} &= \left(-i\partial_x \sigma_2 \otimes \rho_3 - i\partial_y \sigma_1 \otimes \rho_0 \right) \otimes 1_{\nu} + \gamma(x, y, z) \qquad \mathcal{C}_{bd} = \rho_1 \mathrm{K} \\ \nu &= 1 \quad S^1 = \{ c_1 X_{21} + c_2 X_{22} | c_1^2 + c_2^2 = 1 \} \\ \nu &= 2 \quad S^2 = \{ c_1 X_{210} + c_2 X_{220} + c_3 X_{302} | c_1^2 + c_2^2 + c_3^2 = 1 \} \end{aligned} \qquad \begin{array}{l} \text{Space of masses (2D class D):} \\ \mathsf{R}_0 &= \bigcup_{k=1}^{\nu} O(\nu) / [O(k) \times O(\nu - k)] \end{aligned}$$

$$\nu = 8 \quad \{X_{21000}, X_{22000}, X_{30200}, X_{30120}, X_{30312}, X_{30332}\}$$

D	$\pi_D(R_0)$	ν	Topological obstruction
0	\mathbb{Z}		
1	\mathbb{Z}_2	1	Vortex
2	\mathbb{Z}_2	2	Monopole
3	0		
4	\mathbb{Z}	4	WZ term
5	0		
6	0		
7	0	$\overline{}$	
8	\mathbb{Z}	8	None

$$\mathbb{Z} \to \mathbb{Z}_8$$

In agreement with Isobe & Fu, PRB (2015)

Summary

- Classification of TIs (classification of Dirac masses
- Reduction of the topological classification Z
 - Interactions can be represented in terms of dynamical Dirac masses (on the boundary)
 - Topology of the space of dynamical Dirac masses determines the pattern of reduction.

T. Morimoto, A.Furusaki, C.Mudry, Phys. Rev. B 92, 125104 (2015)

cf: R. Queiroz, E. Khalaf, A. Stern, Phys. Rev. Lett. 117, 206405 (2016)