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Plan of this talk 
• Introduction 

– Classification of topological insulators and superconductors 

                                  (gapped phases of free fermions) 

    = classification of Dirac mass terms 

• Interactions 

– Boundary fermions with dynamical Dirac mass terms 

– Topology of the space of dynamical Dirac masses 

• Examples 
– 1D BDI,  3D DIII 

– Higher dimensions 

– 2D DIII + reflection,  3D AII + reflection 
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Generic discrete symmetries 
• Time-reversal symmetry  (TRS) 

 
 
 

• Particle-hole symmetry  (PHS) 
         BdG Hamiltonian for superconductors 

 
 

• Chiral symmetry (CS) 

1THT H 

1CHC H  

2

2

 0    no TR invariance

TRS 1   1               

1   1               

T

T




   
  

2

2

0    no PH invariance

PHS 1   1                

1   1                

C

C




   
  

spin 0 

spin 1/2 
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1: TRS PHS 0, CS 0 or 1  10133 
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T : anti-unitary operator 

C : anti-unitary operator 

1H H    Γ : unitary operator  TC 



     Standard 
(Wigner-Dyson) 

A (unitary) 

AI (orthogonal) 

AII (symplectic) 

TRS      PHS     CS          d=1       d=2       d=3 

0          0         0 

+1        0         0 

  1        0         0 

--           Z           -- 

--           --          -- 

--           Z2         Z2 

AIII (chiral unitary) 

BDI (chiral orthogonal) 

CII (chiral symplectic) 

Chiral  

0          0         1 

+1       +1        1 

  1         1        1 

Z           --           Z 

Z           --          -- 

Z           --           Z2  

D (p-wave SC) 

C (d-wave SC) 

DIII (p-wave TRS SC) 

CI (d-wave TRS SC) 

0         +1        0 

0           1        0 

 1        +1        1 

+1         1        1 

Z2          Z           -- 

--           Z           -- 

Z2          Z2          Z 

--           --           Z 

BdG  

Altland & Zirnbauer, PRB (1997)                   Schnyder, Ryu, AF, and Ludwig, PRB (2008)  

Table of topological insulators/superconductors for d=1,2,3 
10 Symmetry Classes 
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A. Kitaev, AIP Conf. Proc. 1134, 22 (2009); arXiv:0901.2686  

Ryu, Schnyder, AF, Ludwig, NJP 12, 065010 (2010)  
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period 
 d = 2 

period 
 d = 8 



With interactions 

Reproduces: 
1D BDI (ℤ → ℤ8), Fidkowski & Kitaev (2010) 
3D DIII (ℤ → ℤ16), Kitaev (201?), Fidkowski-Chen-Vishwanath (2013), 
                                 Metlitski-Kane-Fisher (2014), … 
… 
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With interactions 

Reproduces: 
1D BDI (ℤ → ℤ8), Fidkowski & Kitaev (2010) 
3D DIII (ℤ → ℤ16), Kitaev (201?), Fidkowski-Chen-Vishwanath (2013), 
                                 Metlitski-Kane-Fisher (2014), … 
… 
However,  we do not have sectors of bosonic SPTs . 

e.g., 3D AII: ℤ2
3 ,  3D AIII: ℤ8 × ℤ2 , 3D CII: ℤ2

5 ,  Wang & Senthil,  PRB (2014) 

Freed & Hopkins (2016) stable homotopy theory; bordism 
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How to obtain the periodic table of TIs and TSCs 

• Explicit construction of topological invariants 

• Anderson delocalization of boundary fermions 

• Quantum anomaly in the boundary theory 

• Classification of Dirac masses in the bulk Hamiltonian 

• K-theory 

• … 
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Classification of Dirac mass terms 

E

k

E

k

E

k

A. Kitaev (2009); T. Morimoto and AF, Phys. Rev. B 88, 125129 (2013) 

Dirac Hamiltonian 

0

1

d

H k m 


 


 

gamma matrices 

  ,, 2a b a b  

minimal representative models for TIs and TSCs 

effective theory for topological phase transitions (closing of a band gap) 

classification of TIs and TSCs           classification of Dirac mass 𝑚𝛾0 
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Kitaev’s method made simple! 



Massive Dirac Hamiltonian for TIs 
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Example 
 𝑑 = 2 class A  (IQHE) 

x x y y zH k k m      
1

sgn
2

yx m 

    
















  i

dxxm
v

ikyyx
x

y

1
''

1
exp,

0
vkE 

 xm

x

𝑚 < 0        𝑚 > 0 

Domain wall fermion = edge state 

𝐻 = −𝑖𝑣 𝜕𝑥𝜎𝑥 − 𝑖𝜕𝑦𝜎𝑦 +𝑚 𝑥 𝜎𝑧 
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Set of possible mass terms: classifying space 
Example: 𝑑 = 2 class A  (IQHE) 

01 1x x N y y NH k k      

1 2

  ,, 2a b a b  

0 z A   †
1 0

     ( )
0 1

n

m

A U U N n m
 

   
 

     U U n m U n U m    0

     0 n U N U N n U n      

The parameter 𝑛 corresponds to the Chern number. 

Classifying space 𝐶0   

… … 

There are topologically distinct gapped phases labelled by an integer index. 

𝑛 = 3   𝑛 = 4   𝑛 = 5   𝑛 = 6 
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01x z NH k    

0 †

0

0

U

U


 
  

 
 U U N Classifying space 𝐶1 

  0 0U N 

There is only a single gapped phase. 

Example: 𝑑 = 1 class A  (no symmetry constraint) 
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  01x x y y z z z NH k k k         

  0 2O N 

There are two gapped phases. 

Example: 𝑑 = 3 class AII   (time-reversal symmetry 𝑇 = 𝑖𝜎𝑦𝐾) 

Classifying space 𝑅1 𝛾0
2 = 14𝑁 
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𝛾0 = 𝜎0⨂
0 𝑋
𝑋𝑇 0 𝜏

 

𝑋 ∈ 𝑂 𝑁  



Sets of symmetry-allowed Dirac masses (classifying spaces 𝑉)  

𝜋0 𝑉  counts the # of path-connected parts in the set 𝑉 

𝜋0 𝑉 = 0          trivial insulators 

𝜋0 𝑉 = ℤ, ℤ2    topologically nontrivial insulators 

𝐶𝑞+2 = 𝐶𝑞    𝑅𝑞+8 = 𝑅𝑞 
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𝜋𝑛 𝑉  

𝜋𝑛 𝑉 ≠ 0             topological  defects in the Dirac mass 
                                 that can bind fermionic zero modes 
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Slowly varying random mass                  domains of constant mass 

Domain walls have gapless edge states. 
Quantum percolation of edge states leads to a critical point. 

Cf. Chalker-Coddington model 

𝑑 = 2 

𝑚 > 0 

𝑚 < 0 

Zeromodes at domain boundaries 

𝜋0 𝑉 ≠ 0 

𝑑 = 1 

Dyson singularity in DOS 
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𝜋1 𝑉 ≠ 0 

𝑑 = 2 

point defects 

𝑑 = 3 

line defects 
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Interacting fermions 

19 



Reduction of non-interacting topological phases labeled by Z 

Time-reversal symmetric 
Majorana chain (1D class BDI) 
ℤ → ℤ8 

8 Majorana zero modes at the boundary 
can be gapped without breaking TRS. 

Time-reversal symmetric 3D 
topological SC (3D class DIII) 
ℤ → ℤ16 

Fidkowski and Kitaev, PRB (2010), PRB (2011) 
Kitaev ； Fidkowski etal. PRX (2013),  
Metlitski, Kane & Fisher. (2014), …. 

                flavors of Dirac surface 
fermions lead to nontrivial 
topological order with TRS. 

… 
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Time-reversal and reflection 
symmetric 2D superconductors  
(2D class DIII+R)    ℤ → ℤ8 

8 pairs of Majorana helical modes 
can be gapped out by interactions 
Yao and Ryu, PRB (2013); Qi, NJP (2013). 

R: 𝑥 → −𝑥, 𝑖𝜎𝑥 
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Aim:  
Systematic study of the breakdown of the Z classification 
for any spatial dimension and all symmetry classes 

Stability analysis of boundary gapless states against interactions 
using the topology of the space of dynamical boundary Dirac masses 

Q: Can boundary states be gapped out without breaking symmetries? 

Kitaev, unpublished & talk @ UCLA (2015) 

We only consider the contact interactions obtained from taking squares of 

the bilinears built from Dirac mass matrices 𝜓†𝛽𝜓
2
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𝜈 copies of gapless boundary states 

Our approach 

Boundary massless Dirac fermions + quartic interactions 

𝛼⨂1, b: mutually anti-commuting gamma matrices 

𝛼𝑗⨂1 respect symmetries (such as TRS). 

𝛽𝑛 are odd 𝛽𝑛 → −𝛽𝑛  under some symmetry transformation (T, R).  
PHS is a sacred symmetry that we have to keep. 

𝛽1, 𝛽2, … , 𝛽𝑁  

ℒbd = Ψ
† 𝜕𝜏 +ℋ0 Ψ+ 𝜆 Ψ

†𝛽𝑛Ψ
2

𝛽

 

ℋ0 =  −𝑖 𝛼𝑗⨂1𝜈𝜕𝑗

𝑑−1

𝑗=1

 

marginal at 𝑑 − 1 = 1 

irrelevant for 𝑑 − 1 > 1 

We assume strong enough 
interactions when 𝑑 > 2 
(but smaller than the bulk gap). 

𝜈 copies 

…. 
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Hubbard-Stratonovich transformtation 

dynamical Dirac masses 

ℒbd
′ = Ψ† 𝜕𝜏 +ℋbd

dyn
Ψ+
1

𝜆
 𝜙𝑛

2

𝑁

𝑛=1

 

ℋbd
dyn
𝜏, 𝒙 = ℋ0 𝒙 + 2𝑖𝛽𝑛𝜙𝑛 𝜏, 𝒙

𝛽

 

ℒbd = Ψ
† 𝜕𝜏 +ℋ0 Ψ+ 𝜆 Ψ

†𝛽𝑛Ψ
2

𝛽

 

ℋ0 =  −𝑖 𝛼𝑗⨂1𝜈𝜕𝑗

𝑑−1

𝑗=1

 

 You and Xu, PRB (2014), Kitaev’s talk @UCLA (2015) 
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Integrating out fermions 

Saddle point approximation  

Nonlinear sigma model  ( + a topological term ) 

+ including fluctuations about the direction in which f freezes 

Target space of NLSM is a sphere generated by  
𝑁 𝜈  anticommuting dynamical masses. 

𝑆eff 𝝓 = −Tr log 𝜕𝜏 + −𝑖𝜕𝑗 𝛼𝑗⨂1𝜈

𝑑−1

𝑗=1

+ 2𝑖𝜷 ⋅ 𝝓

𝛽

+
1

𝜆
𝝓2 

𝑍bd ≈  𝐷 𝜙 𝛿 𝝓
2 − 1 𝑒−𝑆QNLSM  

𝝓 ∈ 𝑆𝑁 𝜈 −1 

Abanov, Wiegmann  
Nucl. Phys. B (2000) 𝑍bd ≈  𝐷 𝜙 𝛿 𝝓

2 − 1 𝑒−𝑆QNLSM−𝑆top 

25 

𝑆QNLSM =
1

𝑔
 𝑑𝜏 𝑑𝑑−1𝑥 𝜕𝑗𝝓

2
 Stop is a WZ term 

if 𝜋𝑑+1 𝑆
𝑁−1 = ℤ. 



Topological obstructions to gapping 

Boundary states cannot 
be gapped out without 
symmetry breaking or 
topological order. 

𝜋0 𝑆
𝑁 𝜈 −1 ≠ 0 

𝜋1 𝑆
𝑁 𝜈 −1 ≠ 0 

𝜋𝑑 𝑆
𝑁 𝜈 −1 ≠ 0 

𝜋𝑑+1 𝑆
𝑁 𝜈 −1 ≠ 0 

Topological defects in the dynamical masses 
bind fermion zero-energy states. 

The target space of NLSM is a sphere generated by  
𝑁 𝜈  anticommuting dynamical masses. 

𝝓 ∈ 𝑆𝑁 𝜈 −1 

⋮ 
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Dirac fermions with dynamical masses in d-dimensional space time. 

domain wall 

vortex 

Wess-Zumino term 
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Condition for the breakdown 

𝜋𝐷 𝑆
𝑁 𝜈 −1 = 0   for  𝐷 = 0,… , 𝑑 + 1 

𝜈min: the minimum 𝜈 satisfying the condition  ℤ → ℤ𝜈min  



Homotopy group of 
 n-dimentional sphere 



Example 1: 1D class BDI 
TRS 

PHS 
Bulk: 

Boundary: 

𝑖𝑀 breaks TRS, but preserves PHS. 

𝑀 : × Real anti-symmetric matrix 

=1 No mass term 

=2  

=4  

=8  

Topological obstruction Target space Dynamical masses 

- 

pt.+pt.    𝜋0 ≠ 0 

S2        𝜋2 ≠ 0
  

S3  (S6) 

- 

Domain wall 

WZ term 

None 

ijk i j kX      

𝜈 copies 

𝜈 = 1 
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Example 1: 1D class BDI 

=1 No mass term 

=2  

=4  

=8  

Topological obstruction Target space Dynamical masses 

- 

pt.+pt.    𝜋0 ≠ 0 

S2        𝜋2 ≠ 0
  

S3  (S6) 

- 

Domain wall 

WZ term 

None 

ijk i j kX      
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Space of dynamical Dirac masses  
at the boundary 
= space Dirac masses for d=0 class D, 
    𝑅2 = 𝑂 2𝑁 𝑈 𝑁  



Example 2: 3D class DIII 
Bulk: 

Boundary: 

Dynamical mass: 

breaks 𝑇, but preserves 𝐶. 

=1:    𝑀 = ±1 

=2:    𝑀 = 𝑋1, 𝑋3 

=4:    𝑀 = 𝑋13, 𝑋33, 𝑋01 

=8:    𝑀 = 𝑋133, 𝑋333, 𝑋013, 𝑋001, 𝑋212  

× real symmetric matrix 

𝜈 copies 

𝜈 = 1 

pt.+pt.    𝜋0 ≠ 0         domain wall 

𝜋1 𝑆
1 = ℤ                vortex 

𝜋2 𝑆
2 = ℤ                monopole 

𝜋4 𝑆
4 = ℤ          WZ term 

ℋ 0 𝒙 = −𝑖𝜕1𝑋31 − 𝑖𝜕2𝑋02 − 𝑖𝜕3𝑋11 +𝑚 𝒙 𝑋03 

𝑋𝑗𝑘 = 𝜎𝑗⨂𝜎𝑘 

𝑇 = 𝑖 𝑋20K 
𝐶 =   𝑋01K 

ℋbd
0
𝑥, 𝑧 = −𝑖𝜕𝑥𝜎3 − 𝑖𝜕𝑧𝜎1 

𝜎2⨂𝑀 𝜏, 𝑥, 𝑧  

𝑋𝑖𝑗𝑘⋯ = 𝜎𝑖⨂𝜎𝑗⨂𝜎𝑘⨂⋯ 

𝑇bd = 𝑖𝜎2⨂1𝜈K 
𝐶bd = 𝜎0⨂1𝜈K 

ℤ16 
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Example 2: 3D class DIII 

=1:    𝑀 = ±1 

=2:    𝑀 = 𝑋1, 𝑋3 

=4:    𝑀 = 𝑋13, 𝑋33, 𝑋01 

=8:    𝑀 = 𝑋133, 𝑋333, 𝑋013, 𝑋001, 𝑋212  

pt.+pt.    𝜋0 ≠ 0         domain wall 

𝜋1 𝑆
1 = ℤ                vortex 

𝜋2 𝑆
2 = ℤ                monopole 

𝜋4 𝑆
4 = ℤ          WZ term 

𝑋𝑖𝑗𝑘⋯ = 𝜎𝑖⨂𝜎𝑗⨂𝜎𝑘⨂⋯ 

ℤ16 
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R0: classifying space for 2D class D 



Higher dimensions 

 

 

 

 

 

 

 

 

• Z2 in any dimension and any symmety class is 
stable. 
∃
𝐷 ≤ 𝑑 + 1, 𝜋𝐷 𝑆

𝑁 𝜈 ≠ 0  for 𝜈 = 1 

• Z’s in even dimensions are stable. 

Either (a) no dynamical mass exists, or (b) 𝜋1 ≠ 0. 

• Z’s in odd dimensions are unstable.  

The reduction pattern is  
determined by the topology of  
the space of dynamical masses 
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2D DIII + R (SC w/time-reversal & reflection) 
𝜈 = 1   Bulk 

ℋ 0 = −𝑖𝜕𝑥𝑋31 − 𝑖𝜕𝑦𝑋02 +𝑚 𝑥, 𝑦 𝑋03        𝑋𝑖𝑗 = 𝜎𝑖⨂𝜎𝑗 

𝑇 = 𝑖𝑋20K ,    𝐶 = 𝑋01K ,   𝑅 = 𝑖𝑋20 

𝜈 copies      Boundary 

ℋbd
dyn
= −𝑖𝜕𝑥𝜎3⨂1𝜈 +𝑀 𝜏, 𝑥          𝑀∗ = −𝑀 

𝑀 =
0 −𝑖𝐴
𝑖𝐴𝑇 0

     𝐴 ∈ 𝑂 𝜈 = 𝑅1 

𝜈 = 1       ±𝜎𝑦       𝜋0 ≠ 0 

𝜈 = 2       𝑋21, 𝑋23      𝜋1 𝑆
1 = ℤ 

𝜈 = 4      𝑋210, 𝑋230, 𝑋102, 𝑋222     𝜋3 𝑆
3 = ℤ 

𝜈 = 8      𝑋2100, 𝑋2310,  𝑋2331, 𝑋2333, 𝑋1120, …    𝜋1,2,3,4= 0 ℤ8 
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Classifying space for 1D class D 

𝐶bd = K  



2D DIII + R (SC w/time-reversal & reflection) 

𝜈 = 1       ±𝜎𝑦       𝜋0 ≠ 0 

𝜈 = 2       𝑋21, 𝑋23      𝜋1 𝑆
1 = ℤ 

𝜈 = 4      𝑋210, 𝑋230, 𝑋102, 𝑋222     𝜋3 𝑆
3 = ℤ 

𝜈 = 8      𝑋2100, 𝑋2310,  𝑋2331, 𝑋2333, 𝑋1120, …    𝜋1,2,3,4= 0 ℤ8 
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R1: classifying space for 1D class D 



3D topological crystalline insulators (e.g., SnTe) 

Bulk: 

Boundary: 

BdG: 

(AII + reflection →  ℤ classification) 

We extend the surface Hamiltonian to the BdG form  to allow for  Cooper channels. 

𝜈 copies 

ℋbd
0
= −𝑖𝜕𝑥𝜎2 − 𝑖𝜕𝑦𝜎1 

ℋBdG
0
= ℋbd

0
⨂ −ℋbd

0
∗
 

ℋbd
dyn
= −𝑖𝜕𝑥𝜎2⨂𝜌3 − 𝑖𝜕𝑦𝜎1⊗𝜌0 ⨂1𝜈 + 𝛾 𝑥, 𝑦, 𝑧  
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ℋ 0 = −𝑖𝜕𝑥𝑋21 − 𝑖𝜕𝑦𝑋11 − 𝑖𝜕𝑧𝑋02 +𝑚 𝒙 𝑋03 

𝑇 = 𝑖𝑋20K,    𝑅𝑥 = 𝑖𝑋10 



Space of masses (2D class D): 

R0= 

𝜈 = 1 

𝜈 = 2 

𝜈 = 4 

In agreement with 
Isobe & Fu, PRB (2015) 

ℋbd
dyn
= −𝑖𝜕𝑥𝜎2⨂𝜌3 − 𝑖𝜕𝑦𝜎1⊗𝜌0 ⨂1𝜈 + 𝛾 𝑥, 𝑦, 𝑧  
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𝐶bd = 𝜌1K  

𝜈 = 8 

𝑆4 



Summary 
• Classification of TIs          classification of Dirac masses 

• Reduction of the topological classification Z 

– Interactions can be represented in terms of dynamical Dirac 

masses (on the boundary) 

– Topology of the space of dynamical Dirac masses determines 

the pattern of reduction. 

T. Morimoto, A.Furusaki, C.Mudry, Phys. Rev. B 92, 125104 (2015) 

cf: R. Queiroz, E. Khalaf, A. Stern, Phys. Rev. Lett. 117, 206405 (2016) 
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