NMR Evidence for a gapped spin-liquid ground state in a kagome Heisenberg antiferromagnet (herbertsmithite ZnCu₃(OH)₆Cl₂) Takashi Imai McMaster University Canadian Institute for Advanced Research

Spin liquid on "Kagome lattice" Figure courtesy of Sean Takahashi

A Short List of Recent Collaborators

Dr. Mingxuan Fu McMaster →PDF at Johns Hopkins →NSERC PDF at Univ. of Toronto

Prof. Y.S. Lee M.I.T.→ Stanford (Neutron / X'tal growth)

Dr. T. H. Han M.I.T.→ Chicago/Argonne Nat. Lab. (Neutron / X'tal growth)

Prof. R.R.P. Singh U.C. Davis (Series expansion)

N.E. Sherman U.C. Davis (Series expansion)

Outline

- Introduction: kagome lattice in herbertsmithite, and why NMR is useful T. Imai and Y.S. Lee., Physics Today, p-30, August (2016).
- First generation ³⁵Cl, ¹H, and ⁶³Cu powder NMR measurements
 T. Imai *et al.*, PRL <u>100</u> (2008) 077203
- Second generation <u>single crystal</u>²D NMR measurements on ZnCu₃(OD)₆Cl₂
 T. Imai *et al.*, PRB <u>83</u>(2011) 020411 (Rapid).
- 4. Third generation <u>single crystal</u>¹⁷O NMR measurements on ZnCu₃(OH)₆Cl₂
 M. Fu, T. I. *et al.*, Science <u>350</u> (2015) 655.
 N. Sherman, T.I., R.R.P. Singh, PRB 94 (2016) 140405. [Series expansion.]
- 5. Summary

Paramagnetic ground state vs. antiferromagnetic phases

Antiferromagnetic "Heisenberg model" (model Hamiltonian)

$$\hat{H} = J \sum_{\langle i,j \rangle} \hat{S}_i \cdot \hat{S}_j \qquad (J > 0)$$

Higher temperatures

(Neel temperature)

Paramagnetic state with randomly oriented spins Neel state : usually, spins are antiferromagnetically ordered with a regular pattern (T_N =0 for square-lattice)

In analogy with.....

Solid ice T < 273 K

Old controversy: Antiferromagnetically ordered state vs. Landau's superposed singlets

Antiferromagnetic "Heisenberg model" (model Hamiltonian)

$$\hat{H} = J \sum_{\langle i,j \rangle} \hat{S}_i \cdot \hat{S}_j \qquad (J > 0)$$

"Neel state" is not an eigenstate of the Hamiltonian.

Landau (1962 Nobel Physics) thought *there is no such a thing as antiferromagnetically ordered state; Instead, superposed* singlet states must be realized.

$$|\downarrow\uparrow\rangle\rightarrow|\uparrow\downarrow\rangle$$

Mostly forgotten idea for decades, because antiferromagnets do exist after all.

Geometrical frustration effects of spins on the triangular-lattice Heisenberg model and the RVB "spin liquid" (P.W. Anderson 1973)

Frustration effects arise from love-and-hate relationship between S=1/2 spins on a triangle

P.W. Anderson (Nobel physics 1977)

"Resonating Valence Bond (RVB)"

...... (superposition of many other states)

In reality, spins usually compromise by forming a 120-degree ordered state (favored classically) Resurrection of the old RVB idea in the context of undoped square-lattice Heisenberg antiferromagnet La₂CuO₄ (Parent phase of Copper-oxide high T_c superconductors)

The Resonating Valence Bond State in La₂CuO₄ and Superconductivity

P. W. Anderson

The oxide superconductors, particularly those recently discovered that are based on La_2CuO_4 , have a set of peculiarities that suggest a common, unique mechanism: they tend in every case to occur near a metal-insulator transition into an odd-electron insulator with peculiar magnetic properties. This insulating phase is proposed to be the long-sought "resonating-valence-bond" state or "quantum spin liquid" hypothesized in 1973. This insulating magnetic phase is favored by low spin, low dimensionality, and magnetic frustration. The preexisting magnetic singlet pairs of the insulating state become charged superconducting pairs when the insulator is doped sufficiently strongly. The mechanism for superconductivity is hence predominantly electronic and magnetic, although weak phonon interactions may favor the state. Many unusual properties are predicted, especially of the insulating state.

P.W. Anderson, Science 235 (1987) 1196

Cu²⁺ ion (S=1/2) at each corner

Anderson' s proposition: High temperature superconductivity emerges when we remove ~15% of spins

•••

Advantage of the kagome Heisenberg antiferromagnet = (strong degeneracy).

Favors a quantum spin liquid ground state

Edge-sharing triangular lattice

120 degree arrangement on a triangle minimizes the energy (classically)

.... and constrains another spin

Corner-sharing triangular lattice (kagome)

One triangle does not constrain the arrangement of the adjacent triangle

Spins have a hard time to choose ordering pattern!

"The ground state of the kagome Heisenberg antiferromagnet is a gapped Z₂ spin liquid"

Spin-Liquid Ground Sta e of the S = 1/2Kagome Heisenberg A tiferromagnet

^{*}Simeng Yan,¹ David A. Huse,^{2,3} Steven R. White¹*

We use the density matrix renormalization group to perform accurate calculations of the ground state S = 1/2 Heisenberg antiferromagnet on the kagome lattice. We study this model on numerous long cylinders with circumferences up to 12 lattice spacings. Through a combination of very-low-energy and small finite-size effects, our results provide strong evidence that, for the infinite two-dimensional system, the ground state of this model is a fully gapped spin liquig.

the consider the quantum spin S = 1/2kagome Heisenberg antiferromagnet (KHA) with only nearest-neighbor isotropic exchange interactions (Hamiltonian $H = \Sigma \vec{S}_i \cdot \vec{S}_j$, where \vec{S}_i and \vec{S}_j are the spin operators for sites i and j, respectively) on a kagome lattice (Fig. 1A). This frustrated spin system has long been thought to be an ideal candidate for a simple, physically realistic model that shows a spin-liquid ground state (1-3). A spin liquid is a magnetic system that has "melted" in its ground state because of quantum fluctuations, so it has no spontaneously broken symmetries (4). A key problem in searching for spin liquids in twodimensional (2D) models is that there are no exact or nearly exact analytical or computational methods to solve infinite 2D quantum lattice systems. For 1D systems, the density matrix renormalization group (DMRG) (5, 6), the method we use here, serves in this capacity. In addition to its interest as an important topic in quantum magnetism, the search for spin liquids thus serves as a test-bed for the development of accurate and widely applicable computational methods for 2D many-body quantum systems.

¹Department of Physics and Astronomy, University of California, Irvine, CA 92617, USA. ²Department of Physics, Princeton University, Princeton, NJ 08544, USA. ³Institute for Advanced Study, Princeton, NJ 08540, USA. *To whom correspondence should be addressed. E-mail: srwhite@uci.edu

www.sciencemag.org SCIENCE VOL 332 3 JUNE 2011

1173

Large scale DMRG (Density Matrix Renormalization Group) calculations

Yan, Huse, and White, Science <u>332</u> (2011) 1173. Also see Jiang *et al.*, PRL 101 (2008) 117203; Deepenblock *et al.*, 109 (2011) 067201; Liao *et al.*, PRL 118 (2017) 137202.

Fig. 4. Spin triplet (solid symbols) and singlet (hollow symbols) gaps for various cylinders with circumferences *c*. The type of cylinder (*15*) is indicated in the key (inset).

Successful laboratory-synthesis of the structurally ideal kagome lattice Herbertsmithite ZnCu₃(OH)₆Cl₂

M.P. Shores, D. Nocera *et al.* (M.I.T. Chemistry) J. Amer. Chem. Soc. **127**, (2005) 13462

- Cu²⁺ ions (S = ½) form a perfect kagome lattice
- Cu-Cu super-exchange interaction J ~ 200 K

Helton et al. PRL <u>98</u> (2007) 107204.

Also by μSR, see Mendels *et al.*, PRL 98 (2007) 077204.

T.-H. Han, et al. Nature (2012)

Good news: Spinon Continuum (rather than conventional magnon dispersion); Consistent with continuous S=1/2 spin excitations from a spin-liquid ground state

Bad news: Defect spins dominate the low energy part of spin excitations; unable to study the ground state, including the possibility of a small gap

Complications : Defect Cu²⁺ spins occupy the non-magnetic Zn²⁺ sites with 15% probability \rightarrow actual composition is (Zn_{0.85}Cu_{0.15})Cu₃(OH)₆Cl₂

How shall we probe the properties of the kagome layers separately from the defects?

Answer: NMR

How shall we probe the properties of the kagome layers separately from the defects?

Answer: NMR

NMR frequency shifts to $\omega = \gamma_{\rm n} ({\rm B}_{\rm ext} + {\rm B}_{\rm hf})$ $= \omega_{o}(1 + K)$ $K = \frac{A_{hf}}{N_A \mu_B} \chi_{spin} + K_{chem}$

where

A_{bf}: "Hyperfine coupling"

 $|K_{chem}| \simeq 0.02(\%) << K_{spin}$

¹⁷O NMR successfully probed a spin liquid state in the two-leg ladder layers of A₁₄Cu₂₄O₄₁

although the bulk spin susceptibility is dominated by chain layers !

T. Imai et al., PRL <u>81</u> (1998) 220.

¹⁷O NMR successfully probed a spin liquid state in the two-leg ladder layers of A₁₄Cu₂₄O₄₁

although the bulk spin susceptibility is dominated by chain layers !

T. Imai et al., PRL 81 (1998) 220.

T. I. *et al.*, PRL <u>100</u> (2008) 077203

^{63,65}Cu NMR : Direct but inconvenient probe (nuclear quadrupole interaction too large).
 ¹H NMR : hyperfine coupling is too small, compared with line broadening induced by defect spins

³⁵Cl nuclear spin has decent strength of *negative* hyperfine coupling with Cu electron spins.

18

reflects large Curie-Weiss defect susceptibility.

Advantages of single crystal NMR of ZnCu₃(OH)₆Cl₂

Second generation ²D (nuclear spin I = 1) NMR in ZnCu₃(OD)₆Cl₂

deuterated singe crystal

T. I. et al., PRB <u>83(2011)</u> 020411 (Rapid).

$$H = -\gamma_n \hbar \mathbf{B} \cdot \mathbf{I}$$

Second generation ²D (nuclear spin I = 1) NMR in ZnCu₃(OD)₆Cl₂

deuterated singe crystal

T. I. *et al.*, PRB <u>83</u>(2011) 020411 (Rapid).

$$H = -\gamma_{n}\hbar\mathbf{B}\cdot\mathbf{I} + \begin{bmatrix} \hbar\nu_{Q}^{Z} \\ 6 \end{bmatrix} \{3\mathbf{I}_{Z}^{2} - \mathbf{I}(\mathbf{I}+1) + \eta(\mathbf{I}_{x}^{2} - \mathbf{I}_{y}^{2})\}$$

$$\mathbf{M}_{z}$$
Zeeman interaction only
$$\mathbf{M}_{z}$$

$$\mathbf{M}_{z}$$

$$\mathbf{M}_{z} = \gamma_{N} \cdot \mathbf{B}$$

$$\mathbf{M}_{z} = \omega_{L} - \nu_{Q}$$

$$\mathbf{M}_{z} = \omega_{L} - \nu_{Q}$$

$$\mathbf{M}_{z} = \omega_{L} + \omega_{L} + \nu_{Q}$$

$$\mathbf{M}_{z} = \omega_{L} + \nu_{Q}$$

$$\mathbf{M}_{z} = \omega_{L} + \nu_{Q}$$

$$\mathbf{M}_{z} = \omega_{L} + \nu_{Q}$$

3 pairs of ²D NMR signals from **3** inequivalent ²D sites

A sites (~14% population) : NN of Cu²⁺ defects occupying Zn²⁺ non-magnetic sites. B sites (~28% population) : NNN of Cu²⁺ defects occupying Zn²⁺ non-magnetic sites C sites (~58% population) : No defects nearby

Consistent with Zn_{0.86}Cu_{3.14}(OD)₆Cl₂; ~14% of Zn²⁺ sites are occupied by Cu²⁺ defect spins

No evidence for anti-site Zn²⁺ defects occupying Cu²⁺ sites

Defect spin susceptibility probed by ²D A sites in ZnCu₃(OD)₆Cl₂

Change of strategy: angle-dependent ¹⁷O (nuclear spin I = 5/2) NMR for isotope-enriched single crystal

Single crystal courtesy of T.-H. Han & Y.S. Lee

Compact goniometer for NMR & X-ray designed by M. Fu

$$\hat{H} = \gamma_n \vec{B}_{ext} \bullet \vec{I}$$

Zeeman only

$$\hat{H} = \gamma_n \vec{B}_{ext} \bullet \vec{I} + \gamma_n \vec{B}_{hf} \bullet \vec{I}$$

Nuclear spin Hamiltonian for ¹⁷O (nuclear spin I = 5/2) and resonant peak(s)

$$\hat{H} = \gamma_n \vec{B}_{ext} \bullet \vec{I} + \gamma_n \vec{B}_{hf} \bullet \vec{I} + \frac{\nu_Q}{2} \hat{I}_z^2 + \dots$$

Zeeman + hyperfine + quadrupole interaction

Temperature dependence of ¹⁷O NMR lineshapes in B_{ext} || c

Temperature dependence of ¹⁷O NMR lineshapes in B_{ext} || c

32

Temperature dependence of ¹⁷O NMR lineshapes in B_{ext} || c

with $\theta \sim 1$ K and negative hyperfine coupling $A_{hf} < 0$

(Side) Earlier powder ¹⁷O results are consistent with our data (NOT a proof of anti-site defects)

Positive shift (in field swept mode)

Try a different field geometry : B_{ext} || a*

(which we initially thought would be hopelessly complicated)

- Hybridization between O 2s & 2p orbitals and Cu 3d orbital(s) transfers spin polarization to O sites.
- The latter interacts with the ¹⁷O nuclear spin.
- Main1, Main2, NN sites have different hyperfine fields from Cu sites, hence each of 5 NMR transitions split

Intrinsic susceptibility χ_{kagome} of the kagome plane as determined from the ¹⁷O Knight shift in B = 3.2 T || a*

Intrinsic susceptibility χ_{kagome} of the kagome plane as determined from the ¹⁷O Knight shift at the main sites measured with B = 3.2 T || a*

Intrinsic susceptibility χ_{kagome} of the kagome plane as determined from the ¹⁷O Knight shift at the main sites measured with B = 3.2 T || a^{*}

Main1 only (measured with long RF pulses)

The optimal RF pulse width for Main1 is factor 2 ~ 3 times broader (because we flip all 5 transitions at the same time).

We can measure Main1 peak **selectively**, and observed the same results for ¹⁷K.

Intrinsic susceptibility χ_{kagome} of the kagome plane as determined from the ¹⁷O Knight shift at the main sites measured with B = 3.2 T || a*

Main1 only (measured with long RF pulses)

The optimal RF pulse width for Main1 is factor 2 ~ 3 times broader (because we flip all 5 transitions at the same time).

We can measure Main1 peak **selectively**, and observed the same results for ¹⁷K.

 17 K^(a*) depends on |B| below ~10K

Solid (dashed) lines: best fit to ${}^{17}K^{(a^*)} \sim T^* \exp(-\Delta/T)$ below 4.2 K (10 K). Pre-factor T: to account for the expected decrease caused by SRO (also arises in Dirac Fermion Model, P.A. Lee, private communications).

Magnetic field dependence of the gap: $\Delta(B_{ext} \rightarrow 0) \approx 0.05J$

Solid (dashed) lines: best fit to ${}^{17}K^{(a^*)} \sim T^* \exp(-\Delta/T)$ below 4.2 K (10 K). Pre-factor T: to account for the expected decrease caused by SRO (also arises in Dirac Fermion Model, P.A. Lee, private communications).

Spin ¹/₂ excitations in Barlowite Cu₃Zn(OH)₆FBr from 19-F NMR (?)

Z. Feng, G.-q. Zheng et al. arXiv:1702.01658

42

¹⁷O nuclear spin-lattice relaxation rate $1/T_1$ at Main2 sites We measured $1/T_1$ in B = 3.2 or 9 T using the isolated, clean, upper-most Main2 satellite peak for the I_z = 3/2 to 5/2 transition to obtain reliable results.

 $\frac{M(t)}{M(\infty)} = 1 - [0.0714 \cdot e^{-15t/T_1} + 0.2857 \cdot e^{-10t/T_1} + 0.4 \cdot e^{-6t/T_1} + 0.2143 \cdot e^{-3t/T_1} + 0.0286 \cdot e^{-t/T_1} +]$

Note: this is the only way to measure $1/T_1$ accurately at the ¹⁷O sites, even though the signal intensity is miserably small!

¹⁷O nuclear spin-lattice relaxation rate $1/T_1$ at the Main site

$$\frac{1}{T_1} \propto T \cdot \sum_{\vec{q}} |A_{hf}(\vec{q})|^2 \frac{\chi''(\vec{q}, f_{NMR})}{f_{NMR}} \sim \sum_{\vec{q}} |A_{hf}(\vec{q})|^2 S(\vec{q}, f_{NMR})$$

$$(1/T_1)_{\infty} \sim \frac{A_{hf}^2}{J} \sim 3,300 \text{ sec}^{-1}$$

Parameter-free theoretical estimation in the high temperature limit (T >> J) based on Moriya's Gaussian approximation applied to kagome Heisenberg model (J = 180 K)

N.Sherman, T.I., R.R.P. Singh PRB 94 (2016) 140415(R).

A comparable gap Δ deduced from inelastic neutron scattering

0.5

к

(нно) 西西 Ф

FIG. 12 (Color online) Momentum structure of the INS data at 0.4 meV and 1.3 meV for single crystal herbertsmithite at 2 K in the (HK0) scattering plane (top row) and (HHL) scattering plane (bottom row) (Han *et al.*, 2015). The plots in the right column are the calculated structure factor for near neighbor AF correlations between copper defects on the zinc sites, taking into account the copper form factor. These correspond to correlations between the brown and the gray sites of Fig. 1, which sit in successive triangular planes.

Magnitude of gap comparable to NMR results

T.-H. Han, M. Norman, Y.S. Lee *et al*. PRB (2016). Arxiv:1604.03048

Additional complications caused by defects

Key Conclusions

- Cu²⁺ defect spins occupy the Zn sites with ~15% probability; (Zn_{0.85}Cu_{0.15})Cu₃(OH)₆Cl₂.
- Defect spins exhibits Curie-Weiss behavior: $\chi_{defect} \simeq C/(T + \theta)$ with $\theta \simeq +1$ K.

• No evidence for Zn anti-site defects at the kagome Cu sites in anomalous X-ray, powder Rietveld refinement, ²D single-crystal NMR, nor ¹⁷O single crystal NMR.

• kagome spin susceptibility $\chi_{kagome} \rightarrow 0$ at T = 0 with a small, field-dependent gap; $\Delta \simeq 0.05$ J.

• Lattice deformation freezes in the immediate vicinity of defects below ~50 K; (Open question) effects on the overall magnetism of the kagome planes?

Thank you for your attention!

Intrinsic susceptibility χ_{kagome} of the kagome plane as determined from the ¹⁷O Knight shift at the main sites measured with B = 3.2 T || a*

• All NMR lines broaden in proportion to χ_{defect} .

- But we can trace the Main1 peak down to 1.8 K (~0.01J), because it is singularly larger than all other peaks.
- Main1 peak frequency reaches a maximum at ~60K, then shifts back to the zero Knight shift position at low temperatures.
- We cannot resolve the central peak of Main2, but its uppermost satellite peak displays qualitatively the same trend.

Larger frequency shift Larger ${}^{17}\!K$ Larger $\chi_{\rm kagome}$

Semi-quantitatively the same results for Δ