

Investigations on α-RuCl₃, a material proximate to the Kitaev quantum spin liquid

Jinsheng Wen (温锦生) Department of Physics, Nanjing University jwen@nju.edu.cn; http://neus.nju.edu.cn

Acknowledgement

> NJU Neutron Scattering Group

Theory: Jianxin Li's group

Introduction

Spin-wave excitations in \alpha-RuCl3

Fragile magnetic order
 Magnetic field, pressure, and doping

Magnetism in two dimensional

Quantum Spin Liquids

Heisenberg Model:

$$H = J \sum_{\langle i,j \rangle} \mathbf{S}_i \cdot \mathbf{S}_j$$

Honeycomb lattice

Kagome lattice

Triangular lattice

Quantum Spin Liquids

P. W. Anderson, Mater. Res. Bull. 8, 153 (1973) P. W. Anderson, Science 235, 1196 (1987)

- A new quantum state of matter
- Quantum computing
- High- T_c superconductivity

Kitaev model

A. Kitaev, Annals of Physics 321, 2 (2006)

Kitaev and Wen receive 2017 Buckley Prize

Alexei Kitaev California Institute of Technology

Xiao-Gang Wen Massachusetts Institute of Technology

"For theories of topological order and its consequences in a broad range of physical systems, including the fractional quantum Hall effect, frustrated magnets, and topological states protected by symmetry."

Kitaev interaction in real materials

Rau et al., Annu. Rev. Conden. Matter Phys. 7, 195 (2016).

Kitaev interaction in real materials

CHEMISTRY

Anhydrous Ruthenium Chlorides

THE contrasting magnetic behaviour (Table 1 and Fig. 1) of the α - and β -forms of RuCl₃ is of interest in relation to the different types of stereochemical arrangements¹ shown by the transition metal halides: it has also allowed the presence of α -RuCl₃, produced in the usual method of preparation of β -RuCl₃, to be detected. A material, hitherto considered^{2,3} as yet another form of RuCl₃, is now shown to be Ru₂^{IV}OCl₆ (Table 1), a member of a class of oxide chlorides of binuclear ruthenium in which the average oxidation state of ruthenium changes from +4 through + 3.5 to +3.

 α -RuCl₃. This is produced^{3,4} by a slow reaction between the metal and chlorine in siliceous vessels at temperatures above 600° C. However, contact of the metal with the

Fletcher *et al.*, Nature 199, 1089 (1963)

 α -RuCl₃

Phys. Rev. B 90, 041112(R) (2014). Phys. Rev. B 91, 144420 (2015).

A. Banerjee et al., Nature Mat. 15, 733 (2016).

 α -RuCl₃

Neutron Scattering experiment

Neutron Scattering experiment

Phys. Rev. Lett. 118, 107203 (2017)

Zigzag magnetic order in Ω -RuCl₃

Cao et al., Phys. Rev. B 93, 134423 (2016)

Phys. Rev. Lett. 118, 107203 (2017)

Majorana mode?

Banerjee et al., Science 356, 1055 (2017)

Do et al., arXiv:1703.01081

Phys. Rev. Lett. 118, 107203 (2017)

Minimal model

See Wang et al., arXiv:1612.09515 for more details.

Spin-wave excitations in RuCl₃

Phys. Rev. Lett. 118, 107203 (2017)

Spin-wave excitations in RuCl₃

Which is the best?

J-K model: may be incompatible with the order Chaloupka *et al.*, Phys. Rev. Lett. 105, 027204 (2010) Chaloupka *et al.*, Phys. Rev. Lett. 110, 097204 (2013)

Extended J-K model: recessary for the gap
Winter *et al.*, Phys. Rev. B 93, 214431 (2016)
Banerjee *et al.*, Nature Mater. 15, 733 (2016)
Hou et al., arXiv:1612.00761

🕨 K-Γ-J model

Ran *et al.*, Phys. Rev. Lett. 118, 107203 (2017) Wang *et al.*, arXiv:1612.09515 Winter *et al.*, arXiv:1702.08466 Banerjee *et al.*, Science 356, 1055 (2017) Catuneanu *et al.*, arXiv:1701.07837 Janssen *et al.*, arXiv:1706.0538 Gohlke *et al.*, arXiv:1706.09908

Kitaev model: no magnetic orderDo et al., arXiv:1703.01081

Breakdown of Magnons in a Strongly Spin-Orbital Coupled Magnet

Stephen M. Winter,¹ Kira Riedl,¹ Andreas Honecker,² and Roser Valentí¹

 ¹Institut für Theoretische Physik, Goethe-Universität Frankfurt, Max-von-Laue-Strasse 1, 60438 Frankfurt am Main, Germany
 ²Laboratoire de Physique Théorique et Modélisation, CNRS UMR 8089, Université de Cergy-Pontoise, 95302 Cergy-Pontoise Cedex, France (Dated: March 1, 2017)

The description of quantized collective excitations stands as a landmark in the quantum theory of condensed matter. A prominent example occurs in conventional magnets, which support bosonic magnons - quantized harmonic fluctuations of the ordered spins. In striking contrast is the recent discovery that strongly spin-orbital coupled magnets, such as α -RuCl₃, may display a broad excitation continuum inconsistent with conventional magnons. Unraveling the nature of this continuum, however, remains challenging due to incomplete knowledge of the underlying interactions. While the most discussed explanation refers to a coherent continuum of fractional excitations analogous to the celebrated Kitaev spin-liquid, we present here a more general scenario. We propose the observed continuum represents incoherent excitations originating from strong magnetic anharmoniticity that naturally occurs in such materials. This scenario fully explains the observed inelastic magnetic response of α -RuCl₃ and reveals the presence of nontrivial excitations in such materials extending well beyond the Kitaev state.

arXiv:1702.08466

Introduction

Spin-wave excitations in \alpha-RuCl3

Fragile magnetic order
 Magnetic field, pressure, and doping

Magnetism in two dimensional

Fragile zigzag order: magnetic field

arXiv:1703.08474

Fragile zigzag order: magnetic field

arXiv:1703.08474

Fragile zigzag order: magnetic field

40 Z

Gap (

B (K)

Fragile zigzag order: pressure

Wang et al., arXiv:1705.06139 (2017)

Fragile zigzag order: pressure

Fragile zigzag order: doping

Phase diagram of Ru_{1-x}Ir_xCl₃

Lampen-Kelley et al., arXiv:1612.07202

LETTER

doi:10.1038/nature22391

Crl₃

Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit

Bevin Huang¹*, Genevieve Clark²*, Efrén Navarro-Moratalla³*, Dahlia R. Klein³, Ran Cheng⁴, Kyle L. Seyler¹, Ding Zhong¹, Emma Schmidgall¹, Michael A. McGuire⁵, David H. Cobden¹, Wang Yao⁶, Di Xiao⁴, Pablo Jarillo-Herrero³ & Xiaodong Xu^{1,2}

LETTER

doi:10.1038/nature22060

Cr₂Ge₂Te₆

Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals

Cheng Gong¹*, Lin Li²*, Zhenglu Li^{3,4}*, Huiwen Ji⁵, Alex Stern², Yang Xia¹, Ting Cao^{3,4}, Wei Bao¹, Chenzhe Wang¹, Yuan Wang^{1,4}, Z. Q. Qiu³, R. J. Cava⁵, Steven G. Louie^{3,4}, Jing Xia² & Xiang Zhang^{1,4}

Magnetism in 2D

α -RuCl₃

CrCl_{3,} MX₃

Results on the spin-wave excitations indicate that the Kitaev interaction has been realized in a real material Phys. Rev. Lett. 118, 107203 (2017)

High-field induces the quantum-spin-liquid state arXiv:1703.08474

The zigzag magnetic order can be tuned by pressure arXiv:1706.02697