Emergent SO(5) symmetry and dualities at deconfined critical points

Adam Nahum (Oxford) Beijing, July 2017

(ENS)

Pablo Serna Andres Somoza (Murcia)

Miguel Ortuno (Murcia)

John Chalker (Oxford)

Emergent SO(5) symmetry at the Neel-VBS transition, PRL '15 DQC, scaling violations, and classical loop models, PRX '15

G. J. Sreejith (IISER Pune)

Stephen Powell (Nottingham)

To appear

Chong Wang (Harvard)

(PRX, to appear)

Max Metlitski

(MIT)

Deconfined quantum critical points: symmetries & dualities, '17

Cenke Xu (UCSB)

T. Senthil (MIT)

Drive transition with e.g. 4-spin interaction (JQ model, Sandvik '07)

Senthil, Vishwanath, Balents, Sachdev, Fisher '04

Spin-1/2s on square lattice:

$$H = J \sum \vec{S}_i \cdot \vec{S}_j + \dots$$

Drive transition with e.g. 4-spin interaction (JQ model, Sandvik '07)

Senthil, Vishwanath, Balents, Sachdev, Fisher '04

Neel-VBS transition

Landau-Ginsburg theory fails to capture quantum #s of topological defects.

Vortex in VBS order parameter $\vec{\varphi}$:

Captured with fractionalised representation of Neel order parameter:

$$ec{N} = \mathbf{z}^{\dagger} ec{\sigma} \mathbf{z}$$
 $\mathbf{z} = (z_1, z_2),$ U(1) gauge symmetry: $\mathbf{z} \sim e^{i\chi} \mathbf{z}$
 $\mathbf{z} \sim \ \text{VBS vortex}$

Senthil, Vishwanath, Balents, Sachdev, Fisher '04 Levin & Senthil '04

NCCP¹ model

$$\mathcal{L} = |(\partial - ia)\mathbf{z}|^2 + m^2|\mathbf{z}|^2 + \lambda(|\mathbf{z}|^2)^2$$

Operators

- **Neel** order parameter
- **VBS** order parameter: inserts monopoles in gauge field

Internal symmetries

Spin symmetry: SO(3) rotations of N Flux conservation (emergent): U(1) rotations of $\vec{\varphi}$

Could there be an emergent symmetry relating \dot{N} and $ec{arphi}$?

$$\vec{N} = \mathbf{z}^{\dagger} \vec{\sigma} \mathbf{z}$$

$$\varphi_x + i\varphi_y = \mathcal{M}_a$$

$$(\circ \pm i) \circ - \Lambda$$

Neel-VBS superspin

Field theory directly in terms of \vec{N} , $\vec{\varphi}$?

$$\vec{n} = (N_x, N_y, N_z, \varphi_x, \varphi_y)$$

WZW term to attach spin-1/2 to VBS vortex: Tan More formally, to ensure correct anomalies for SO(3)xO(2) Ser

Tanaka & Hu '05 Senthil & Fisher '06

$$S = \int \left(\frac{1}{g} (\nabla \vec{n})^2 + \text{strong anisotropies} \right) + S_{\text{WZW}}$$

reduce symmetry to
SO(3)xO(2) or SO(3)xlattice

Motivation to speculate about SO(5)

• Numerically: SO(5) emerges to excellent precision at J_c

[1D reminder: spin-1/2 chain]

Flows to a conformal field theory with the emergent symmetry

$$\frac{SU(2) \times SU(2)}{\mathbb{Z}_2} = SO(4) \qquad \begin{array}{l} \text{(1+1D conformal invariance} \\ \implies \text{conserved currents doubled)} \end{array}$$

This SO(4) rotates the 'superspin' $\vec{n} = (\varphi, N_x, N_y, N_z)$

$$S = \frac{1}{g} \int \mathrm{d}x \mathrm{d}t \, (\nabla \vec{n})^2 + \frac{2\pi i \,\epsilon_{abcd}}{\mathrm{Area}(S^3)} \int \mathrm{d}u \mathrm{d}x \mathrm{d}t \, n_a \partial_x n_b \partial_t n_c \partial_u n_d$$

WZW term attaches spin-1/2 to VBS domain wall

Duality web

SO(5) can be understood in terms of a web of dualities

None of these theories has explicit SO(5).

DCP also related to two theories with explicit SO(5):

- QCD with Nf=2, Nc=2
- Surface of 3+1D topological paramagnet (SPT) with SO(5)

Wang, AN, Metlitski, Xu, Senthil '17

True critical point?

At first glance, numerics (up to L=640) show continuous transition. However, strong violations of finite-size scaling

Kuklov et al 08, Sandvik '11, Banerjee et al '10, Harada et al '13...

AN, Chalker, Serna, Ortuno, Somoza '15 Shao, Guo, Sandvik '16

also, tension with conformal bootstrap bounds for SO(5) Simmons-Duffin; Nakayama, Ohtsuki '16

One scenario is that transition is ultimately first order, with $\xi >> 640$. If so, SO(5) & dualities are approximate, not exact.

RG analysis: even in this scenario there is 'quasiuniversality':

Large ξ and SO(5) symmetry are *robust*, not due to fine-tuning. SO(5) holds up to accuracy "1/ ξ ^{const}"

AN, Chalker, Serna, Ortuno, Somoza '15 Wang, AN, Metlitski, Xu, Senthil '17

Introduction

Evidence for SO(5) at the Neel-VBS transition

Possibility of 'pseudocritical' behaviour

SO(5) in a very different microscopic model

Introduction

Evidence for SO(5) at the Neel-VBS transition

Possibility of 'pseudocritical' behaviour

SO(5) in a very different microscopic model

Evidence for SO(5) at the Neel-VBS transition

- Strategy for simulations
- Numerical results
- 'Naive' RG interpretation

Strategy for simulations

Mapping between Heisenberg AFM and stat mech of loops in one higher dimension.

loops = worldlines of spinons

 $z_1 \quad z_2$ $\vec{N} = \mathbf{z}^{\dagger} \vec{\sigma} \mathbf{z}$

For Heisenberg AFM,

$$Z(\beta) = \operatorname{Tr}\left(e^{-\delta tH}\right)^{\beta/\delta t}$$

partition function for loops in discrete space, continuous time

Simplify: construct loop model with same universal properties, but **isotropic in spacetime**

Strategy for simulations

Mapping between Heisenberg AFM and stat mech of loops in one higher dimension.

loops = worldlines of spinons

 $z_1 \quad z_2$ $\vec{N} = \mathbf{z}^{\dagger} \vec{\sigma} \mathbf{z}$

For Heisenberg AFM,

$$Z(\beta) = \operatorname{Tr}\left(e^{-\delta tH}\right)^{\beta/\delta t}$$

partition function for loops in discrete space, continuous time

Simplify: construct loop model with same universal properties, but **isotropic in spacetime**

1+1D example: spin-1/2 chain

Standard 2D loop model → universal physics of spin-1/2 chain

Gapped VBS states

Long loops mediate power law $\langle \vec{N}(0).\vec{N}(r) \rangle$ correlations Two packings of short loops → two VBS configurations

Model for 2+1D Neel-VBS transition

Neel \rightarrow long loops. VBS \rightarrow short loops. 4 'VBS' states:

Model for 2+1D Neel-VBS transition

Neel \rightarrow long loops. VBS \rightarrow short loops. 4 'VBS' states:

Model for 2+1D Neel-VBS transition

Neel \rightarrow long loops. VBS \rightarrow short loops.

Drive Neel—VBS transition using interaction between φ s

Long-distance properties as in JQ model, but more efficient to simulate. Exact spacetime isotropy also removes some scaling corrections. SO(5)

Look for emergent U(1) in (φ_x, N_x) plane

Scaling of Neel and VBS fluctuations (up to L=512)

Fluctuations scale identically at Jc

Contrast with $\sqrt{\langle \varphi_x^2 \rangle} / \sqrt{\langle N_x^2 \rangle} \sim L^{x_N - x_{\varphi}}$

Scaling of Neel and VBS fluctuations (up to L=512)

Fluctuations scale identically at J_c

Contrast with $\sqrt{\langle \varphi_x^2 \rangle} / \sqrt{\langle N_x^2 \rangle} \sim L^{x_N - x_{\varphi}}$

Joint Neel/VBS probability distribution

Scaling of Neel and VBS fluctuations

$$F_2^4 = \langle \tilde{N}_x^4 - \tilde{\varphi}_x^4 \rangle = \begin{cases} -1.2 & \text{Neel phase} \\ 0 & \text{SO(5)} \\ 1.5 & \text{VBS, U(1) regime} \\ 2 & \text{VBS, "Z4" regime} \end{cases}$$

As a function of coupling

As a function of L

Classify operators into SO(5) multiplets

Vector
$$\vec{n} = (\varphi_x, \varphi_y, N_x, N_y, N_z)$$

Symmetric traceless 2-cpt and 4-cpt tensors

$$X_{ab}^{(2)} = n_a n_b - \frac{1}{5} \delta_{ab} n^2 \qquad \qquad X_{abcd}^{(4)} = n_a n_b n_c n_d - (\dots)$$

We have also tested for symmetry relations between two-point correlation functions of **n** and of **X**⁽²⁾

Classify operators into SO(5) multiplets

Vector
$$\vec{n} = (\varphi_x, \varphi_y, N_x, N_y, N_z)$$

Symmetric traceless 2-cpt and 4-cpt tensors

$$X_{ab}^{(2)} = n_a n_b - \frac{1}{5} \delta_{ab} n^2$$

$$\varphi_x N_z \qquad \varphi_x \varphi_y \qquad \frac{3}{5} \vec{\varphi}^2 - \frac{2}{5} \vec{N}^2 \qquad X_{abcd}^{(4)} = n_a n_b n_c n_d - (\dots)$$

We have also tested for symmetry relations between two-point correlation functions of **n** and of **X**⁽²⁾

Symmetry between components of vector

 $\eta_{\rm N\acute{e}el} = 0.259(6)$

$$\eta_{\rm VBS} = 0.25(3)$$

Symmetry between cpts of symmetric tensor: $X_{ab}^{(2)}$

$$\langle \mathcal{O}(0)\mathcal{O}(r)\rangle \text{ for } \mathcal{O} = \begin{cases} \varphi_x N_z \\ \varphi_x \varphi_y \\ \frac{3}{5}\vec{\varphi}^2 - \frac{2}{5}\vec{N}^2 \end{cases}$$

Emergence of SO(5)

$$\vec{n} = (\varphi_x, \varphi_y, N_x, N_y, N_z)$$

For exact SO(5) to emerge, need sufficiently stable fixed point.

$$X_{ab}^{(2)} = n_a n_b - \frac{1}{5} \delta_{ab} n^2$$

$$X_{abcd}^{(4)} = n_a n_b n_c n_d - (\ldots)$$

SO(5) singlets

RG relevant

Must be RG irrelevant

Contrast Wilson-Fisher CFTs where singlet mass strongly relevant

$$\mathcal{L} = \mathcal{L}_{\mathrm{SO}(5)} - \delta J \sum_{a=1,2} X_{aa}^{(2)} + \lambda \sum_{a,b=1,2} X_{aabb}^{(4)} + \kappa \sum_{a=1,2} X_{aaaa}^{(4)} + \dots$$

$$\begin{array}{c} \text{Tuning} \\ \text{parameter} \\ \sim \vec{\varphi}^2 - \frac{2}{3}\vec{N}^2 \end{array} \quad \begin{array}{c} \text{Higher Neel-VBS} \\ \text{or } \vec{\varphi}^2 - \frac{2}{3}\vec{N}^2 \end{array} \quad \begin{array}{c} \text{"Z4" VBS} \\ \text{or } \vec{\varphi}^2 - \frac{2}{3}\vec{N}^2 \end{array} \quad \begin{array}{c} \sim (\vec{\varphi}^2)^2 + \dots \end{array} \quad \begin{array}{c} \sim \varphi_x^4 + \varphi_y^4 + \dots \end{array}$$

irrelevant

Plan

Introduction

Evidence for SO(5) at the Neel-VBS transition

Possibility of 'pseudocritical' behaviour

SO(5) in a very different microscopic model

Two duality webs

Particle-vortex duality for complex scalar field

$$\mathcal{L} = |\partial \Phi|^2 + m^2 |\Phi|^2 + \lambda |\Phi|^4$$

$$\mathcal{L}_{\text{dual}} = |(\partial - ia)w|^2 - m^2|w|^2 + \lambda'|w|^4 + \dots$$

Gauge invariant U(1) order parameter:

 $\Phi \hspace{0.1in} \longleftrightarrow \hspace{0.1in} \mathcal{M}_{a}$ inserts monopole in $\, a$

L and L_{dual} describe same system with different bare couplings. May have same IR behaviour and in fact they do.

Recently, extension of particle-vortex duality idea to Dirac fermion Wang & Senthil '15; Metlitski & Vishwanath '16; Seiberg et al '16; Karch & Tong '16; Son '15;

[Aside: strong and weak duality]

for two field theories A and B which share the 'microscopic' symmetry $G = G_A \cap G_B$:

Weak statement (derived):

Theories A and B have the same operator content and anomalies.

Strong statement (conjectured):

Theories A and B become the same under RG

For DCPs, it is the strong dualities that imply large emergent symmetries.

Dualities

Self-duality of NCCP¹

$$\mathcal{L} = |(\partial - ia)\mathbf{z}|^2 + m^2|\mathbf{z}|^2 + \lambda(|\mathbf{z}|^2)^2$$

Apply particle-vortex duality to both species of spinon $\begin{array}{c} z_1 \longrightarrow w_2 \\ z_2 \longrightarrow w_1^* \end{array}$

$$\mathcal{L}_{\text{dual}} = |(\partial - i\tilde{a})\mathbf{w}|^2 - m^2|\mathbf{w}|^2 + \lambda(|\mathbf{w}|^2)^2 + \kappa(\mathbf{w}^{\dagger}\sigma_z\mathbf{w})^2 + \dots$$

We have SU(2) for **z**. But a priori, do **not** have SU(2) for **w**.

$$\begin{array}{cccc} \varphi_x + i\varphi_y & N_x + iN_y & N_z \\ \end{array}$$

$$\begin{array}{cccc} \text{in } \mathcal{L} & \mathcal{M}_a & 2z_1^*z_2 & |z_1|^2 - |z_2|^2 \\ \end{array}$$

$$\begin{array}{cccc} \text{in } \mathcal{L}_{\text{dual}} & 2w_2^*w_1 & \mathcal{M}_{\tilde{a}}^* & |w_1|^2 - |w_2|^2 \end{array}$$

Self-duality of NCCP¹

Conjecture: at the critical point of \mathcal{L} , duality becomes a self-duality

$$\mathcal{L} = |(\partial - ia)\mathbf{z}|^2 + \lambda(|\mathbf{z}|^2)^2 \longleftrightarrow \mathcal{L}_{dual} = |(\partial - i\tilde{a})\mathbf{w}|^2 + \lambda(|\mathbf{w}|^2)^2$$

Dual field **w** has **emergent** SU(2) symmetry. This rotates Neel into VBS

		$\varphi_x + i\varphi_y$	$N_x + iN_y$	N_{z}
	in \mathcal{L}	\mathcal{M}_{a}	$2z_{1}^{*}z_{2}$	$ z_1 ^2 - z_2 ^2$
in	$\mathcal{L}_{ ext{dual}}$	$2w_{2}^{*}w_{1}$	${\cal M}^*_{ ilde{a}}$	$ w_1 ^2 - w_2 ^2$

This implies SO(5) (and vice versa).

Boson-fermion dualities

QED

Two 2-component Dirac fermions, dynamical U(1) gauge field

$$\mathcal{L}_{qed} = \sum_{j=1}^{2} i \bar{\psi}_{j} \not{D}_{a} \psi_{j} + \cdots \quad \text{SU(2) global flavour symmetry}$$

This is a theory of **bosons**: all gauge invariant operators are bosonic. What are the 'elementary' ones?

Naively, S=1 bilinears: $\bar{\psi}_i \vec{\sigma}_{ij} \psi_j$

In fact monopole is an S=1/2 boson:

$$f_i^{\dagger} \mathcal{M}_a$$

Borokhov, Kapustin, Wu '02

Possible duality with easy-plane NCCP1 model

Karch & Tong '16 Wang, AN, Metlitski, Xu, Senthil '17

QED-Gross-Neveu

Two 2-component Dirac fermions, dynamical U(1) gauge field

$$\mathcal{L}_{qed-gn} = \sum_{j=1}^{2} i\bar{\psi}_{j} \not{D}_{a} \psi_{j} + \phi \bar{\psi} \psi + V(\phi)$$

$$\int \mathbf{L}_{qed-gn} = \sum_{j=1}^{2} i\bar{\psi}_{j} \not{D}_{a} \psi_{j} + \phi \bar{\psi} \psi + V(\phi)$$

$$\int \mathbf{L}_{qed-gn} = \sum_{j=1}^{2} i\bar{\psi}_{j} \not{D}_{a} \psi_{j} + \phi \bar{\psi} \psi + V(\phi)$$

$$\int \mathbf{L}_{qed-gn} = \sum_{j=1}^{2} i\bar{\psi}_{j} \not{D}_{a} \psi_{j} + \phi \bar{\psi} \psi + V(\phi)$$

$$\int \mathbf{L}_{qed-gn} = \sum_{j=1}^{2} i\bar{\psi}_{j} \not{D}_{a} \psi_{j} + \phi \bar{\psi} \psi + V(\phi)$$

$$\int \mathbf{L}_{qed-gn} = \sum_{j=1}^{2} i\bar{\psi}_{j} \not{D}_{a} \psi_{j} + \phi \bar{\psi} \psi + V(\phi)$$

$$\int \mathbf{L}_{qed-gn} = \sum_{j=1}^{2} i\bar{\psi}_{j} \not{D}_{a} \psi_{j} + \phi \bar{\psi} \psi + V(\phi)$$

$$\int \mathbf{L}_{qed-gn} = \sum_{j=1}^{2} i\bar{\psi}_{j} \not{D}_{a} \psi_{j} + \phi \bar{\psi} \psi + V(\phi)$$

Elementary 'order parameters'

$$f_1^{\dagger} \mathcal{M}_a \qquad f_2^{\dagger} \mathcal{M}_a \qquad \phi$$

5 real components...

Dual representations of 5 order parameters

Conjecture: duality to NCCP¹, emergent SO(5)

Under previous assumptions about stability of SO(5) fixed point, *either* symmetry can protect emergent SO(5) (at critical point)

Wang, AN, Metlitski, Xu, Senthil '17

Dual representations of 5 order parameters

Ising mass Higher anisotropy

Dual representations of 5 order parameters

[Aside: duality building blocks] elementary bosonic duality

$$|D_A\Phi|^2 - |\Phi|^4 \longleftrightarrow |D_aw|^2 - |w|^4 + \frac{1}{2\pi}adA$$

elementary boson-fermion duality

$$i\bar{\psi} \not D_A \psi \longleftrightarrow |D_a w|^2 - |w|^4 + \frac{1}{2\pi} a dA + \frac{1}{4\pi} a da + \frac{1}{8\pi} A dA$$
$$\longleftrightarrow |D_{\tilde{a}} \tilde{w}|^2 - |\tilde{w}|^4 - \frac{1}{2\pi} \tilde{a} dA - \frac{1}{4\pi} \tilde{a} d\tilde{a} - \frac{1}{8\pi} A dA$$

"S" and "T" operations

- make background gauge field dynamical
- add level 1 Chern Simons term for background gauge field

integrate out gauge field

$$\int_{a} e^{\frac{i}{2\pi}\int a \mathrm{d}A} = \delta(A)$$

more handwavingly: deform each side to reach new fixed point

Can we make SO(5) explicit?

- in field theory?
- in lattice model?

Can we make SO(5) explicit?

WZW model?
$$S = \int \left(\frac{1}{g}(\nabla \vec{n})^2 + \text{strong anisotropies}\right) + S_{WZW}$$

Not well-defined ctm theory (nonrenormalizable), not useful for calculations

Possible alternative: QCD with $N_f = N_c = 2$

$$\mathcal{L} = \sum_{v=1,2} i \bar{\psi}_v \gamma^{\mu} (\partial_{\mu} - i a_{\mu}) \psi_v + \dots$$
SU(2) global $\longrightarrow v=1,2$
SU(2) gauge

This theory has exact SO(5) and the same anomalies as DCP

One way to see: couple to \vec{n} and integrate out fermions in large mass expansion (Abanov-Wiegmannization): gives WZW model

SO(5) anomaly

SO(5) cannot be incorporated in a microscopic 2+1D model, due to anomaly.

Must live at surface of SO(5) SPT ('topological paramagnet') with correct response to SO(5) gauge field $(n_1, n_2, n_3, n_4, n_5)$

QCD description implies a 3+1D parton construction for this SPT. Is there a nicer picture for its wavefunction?

Plan

Introduction

Evidence for SO(5) at the Neel-VBS transition

Possibility of 'pseudocritical' behaviour

SO(5) in a very different microscopic model

Pseudocriticality

Quasi—universality at a weak first order transition, due to nearby unphysical fixed point.

Illustrate using Q-state Potts model in 2d

Nienhuis et al '79 Cardy, Nauenberg, Scalapino '80

For $Q \gtrsim Q_*$, slow RG flow due to inaccessible nearby fixed point.

 $\xi \sim \exp\left(\frac{\pi^2}{\sqrt{\Omega + \Omega}}\right)$

Pseudocriticality

Same topology of RG flows in many other theories, with different 'deformation parameter' τ

Small $\tau - \tau_*$: RG flows attracted to quasiuniversal flow line

- Effective exponents, etc. drift as λ flows
- \bullet However, these drifts are quasiuniversal when $~\xi$ is large

AN, Chalker, Serna, Ortuno, Somoza '15 Wang, AN, Metlitski, Xu, Senthil '17

Application to NCCP¹

NCCP¹ in d=3 plausibly in this regime with $\xi \gg 640$

RG fixed points for NCCPⁿ⁻¹ in d dimensions

Conjecture based on large n, 2+e, 4-e, replica limit.

Slice at constant n=2 (NCCP¹):

Can explain ubiquitous 'drifts' at DCP as quasiuniversal feature of flow line

Can also be made compatible with SO(5)

AN, Chalker, Serna, Ortuno, Somoza '15 Wang, AN, Metlitski, Xu, Senthil '17

Plan

Introduction

Evidence for SO(5) at the Neel-VBS transition

Possibility of 'pseudocritical' behaviour

SO(5) in a very different microscopic model

SO(5) in a very different model

Classical dimers in 3D: columnar ordering transition Argued to be described by NCCP¹ Powell, Chalker '08

Chen, Gukelberger, Trebst, Alet, Balents, '09

JQ model and loop model had $SO(3) \times lattice$ symmetry. Here, only lattice $\times U(1)$.

SO(5) in a very different model

Microscopic symmetry $(\varphi_x, \varphi_y, N_x, N_y, N_z) \rightarrow SO(5)?$ U(1) \rtimes lattice

Emergence of SO(5) is allowed here:

$$\mathcal{L} = \mathcal{L}_{SO(5)} + \delta J \sum_{a=1,2} X_{aa}^{(2)} + \lambda \sum_{a=1,2} X_{aabb}^{(4)} + \kappa \sum_{a=3,4,5} X_{aaaa}^{(4)} + \dots$$

Classical dimers: numerics

Check emergent U(1) symmetry for (N_x, φ_x)

Moment ratios consistent with SO(5) to very good precision

Confirmation that SO(5) is generic

Sreejith, AN, Powell, in preparation

Outlook

Emergent SO(5) in Neel—VBS transition and related models to very high precision

Conjectured duality webs for SO(3)-symmetric and easy-plane deconfined criticality. Further simulations for fermionic theories?

Picture for 'quasiuniversal' behaviour due to nearby fixed-point annihilation. Applications to other quantum phase transitions?

Connection to 3+1D SO(5) topological paramagnet Nice model for this?

extra slides

Strategy for simulations

Heisenberg AFM \rightarrow stat mech of loops in spacetime

imaginary time

Change basis on B sublattice so singlet is

$$\frac{1}{\sqrt{2}} \left(|\bullet\rangle_A |\bullet\rangle_B + |\bullet\rangle_A |\bullet\rangle_B \right)$$

Two spins with S.S coupling:

$$e^{-\delta t H} \simeq \int_{a}^{a} \int_{b}^{b} + \delta t J \int_{b}^{a} \int_{b}^{a}$$

Graphical representation for partition function:

$$Z(\beta) = \operatorname{Tr} \left(e^{-\delta tH} \right)^{\beta/\delta t} = \sum_{\substack{\text{coloured}\\\text{loop configs}}} (\dots)$$

Strategy for simulations

Heisenberg AFM \rightarrow stat mech of loops in spacetime

Change basis on B sublattice so singlet is

$$\frac{1}{\sqrt{2}} \left(|\bullet\rangle_A |\bullet\rangle_B + |\bullet\rangle_A |\bullet\rangle_B \right)$$

Two spins with S.S coupling:

$$e^{-\delta t H} \simeq \int_{a}^{a} \int_{b}^{b} + \delta t J \int_{b}^{a} \int_{b}^{a}$$

Graphical representation for partition function:

$$Z(\beta) = \operatorname{Tr} \left(e^{-\delta t H} \right)^{\beta/\delta t} = \sum_{\substack{\text{coloured}\\\text{loop configs}}} (\dots)$$

'Old' emergent U(1) symmetry for VBS

 $\langle \cos 4\theta' \rangle = 0.0028(14)$ (Variances normalized to one)

Interactions

Loop configuration given by breaking up each node

$$Z = \sum_{\substack{\text{coloured}\\\text{loop configs}}} \exp\left(J\sum\varphi\varphi\right)$$

Interaction is between n.n. nodes on same sublattice

Mapping to NCCP¹ model

Analogous to Heisenberg magnet.

(transfer matrix \rightarrow spin- $1/_2$ on square lattice)

Exact mapping of loop model to lattice CP¹ model. Microscopic gauge group is compact, but: Explicit Berry phase calculation for hedgehogs:

|, **i**, **-|**, **-i**

only quadrupled hedgehogs in continuum.

(Dual point of view: VBS vortex = spinon worldline) PRL 107, 110601 (2011), PRB 88, 134411 (2013), and arXiv: 1506.06798

Microscopic hedgehog fugacity proportional to [, i, -], -i

Coarse-grained hedgehog fugacity vanishes \Rightarrow NCCP^I

(More precisely: only quadrupled hedgehogs in continuum)

Direct, apparently continuous transition

Scaling collapse fails (e.g. order parameters, heat capacity.....)

Diverging Neel stiffness

Critical exponents drift

Power law divergence, not log (cf Sandvik '10)

Violation of unitarity bounds

Assuming $G(r, L) = L^{-(1+\eta)} f(r/L)$, anomalous dimensions for Neel/VBS become negative at large size

 $\label{eq:but} \begin{array}{l} \operatorname{But} & \eta \geq 0 \\ \\ \text{for any unitary CFT} \end{array}$

extra slides

