Experiments on Kagome Quantum Spin Liquids

Past, Present, Future.

(Harry) Tian-Heng Han (韩天亨)

July 6, 2017 Beijing

Outline

Herbertsmithite ZnCu₃(OH)₆Cl₂

- Look for fractionalized spin excitations above an energy gap
- Challenges: impurity, spin Hamiltonian
- High-stakes charge doping

$Zn_{x}Cu_{4-x}(OH)_{6}FBr (0 \le x \le 1)$

- \rightarrow x = 0: barlowite
- \succ x = 1: a new quantum spin-liquid candidate

PAST

Superconductivity

A condensed matter state that most grandparents have heard of.

Heike Kamerlingh Onnes

1911 Experimental discovery 46 years

Philip Warren Anderson

1987 Try my RVB state.

John Bardeen

Leon Neil Cooper

John Robert Schrieffer

1957 BCS theory

K. Alexander Müller

1986

High-temperature superconductivity

<u>31 years</u> +

Quantum Spin Liquids

Resonating Valence Bonds

- \rightarrow Superpose gazillions of spin bond configurations.
- \rightarrow Spins at zero Kelvin: strong interaction, no freezing
- \rightarrow Upon charge doping: spin dimers make Cooper pairs.

1973, Anderson

A kagome spin lattice covered with dimers

Full-throated proclamations from Patrick Lee, Leon Balents, and many:

 \rightarrow Lack of spin freezing is insufficient.

Can coexist with ordered moments.

 \rightarrow Emergent quasi-particles, fractional statistics, and more.

We Need a Unifier.

A material which bundles spins into a large entanglement.

Leon Balents' prophetic prescience, Circa 2010

Today is July 6, 2017.

Goldbach's conjecture

Every even integer greater than 2 can be expressed as the sum of two primes.

simple but not easy

S = 1/2 kagome Heisenberg antiferromagnet with only nearest neighbor exchanges What is the ground state $(H = J S_1 \cdot S_2, J > 0)$?

ground state

Most candidates order or freeze

Herbertsmithite ZnCu₃(OH)₆Cl₂

x=1 end member of Zn-paratacamite $Zn_xCu_{4-x}(OH)_6Cl_2$ (x>1/3)

M. Shores et al., J. Am. Chem. Soc. 127, 13462 (2005).

Matthew Shores Daniel Nocera

Pioneer studies on powder samples

Philippe Mendels

Fabrice Bert

Young Lee

Joel Helton

PRL **98**, 077204 (2007) Muon Spin Rotation PRL **98**, 107204 (2007) Thermodynamics Neutron Scattering

- J = 17 meV $T_{CW} = -300 \text{ K}$
- No spin ordering at 50 mK
- Persistent spin dynamics at 50 mK
- Gapless magnetic excitations

The defect controversy----"Cu²⁺ and Zn²⁺ trade their positions"

Picture adopted from PRB 85, 014422

In addition to the "Cu²⁺ in Zn²⁺site" defects, some Zn²⁺ with spin S=0 occupy the Cu²⁺ sites within the kagome planes, and induce singlets.

Powder ¹⁷O NMR Olariu *et al.,* PRL **100**, 087202 (2008)

Can we have single crystal samples of herbertsmithite?

Zn²⁺ ions in kagome layers cause strong disorder. Is this real in herbertsmithite?

PRESENT

Single Crystal Era: < 2010 to present

T. H. Han et al., PRB 83, 100402(R) (2011)

No antisite/strong disorder: anomalous x-ray diffraction on a single crystal

Freedman *et al.,* JACS **132**, 16185 (2010) de Vries *et al.*, Nature **468**, 908 (2010)

Refine kagome / interlayer sites <u>separately.</u>

- Perfect kagome layers
- Zn/interlayer sites: 15% Cu²⁺
- ➤ (Zn_{0.85}Cu_{0.15}) Cu₃(OH)₆Cl₂

Bè -n²⁺ 2+ B В В Α B Α В B B A B A٩

ъB

Takashi Imai Mingxuan Fu

Weak disorder: Cu²⁺ in Zn defect

- A-sites 13(4)% --- n.n. of Cu²⁺ in Zn defect
- B-sites 28(5)% --- 2nd n.n. of Cu²⁺ in Zn defect.

B

C-sites 59(8)% --- Main kagome sites

Mission impossible for powder NMR.

Fu et al., Science 350, 655 (2015)

Refining the Spin Hamiltonian Using Single Crystals

$$\mathcal{H} = J \sum_{\langle i,j \rangle} \mathbf{S}_{i} \mathbf{S}_{j} + \mathcal{H}_{DM} + \mathcal{H}_{EA}$$

$$\begin{array}{c} \text{Isotropic} \\ \text{Heisenberg} \end{array} >> \begin{array}{c} \text{Anisotropic} \\ \text{exchange} \end{array} \text{Spin-orbit coupling of Cu} \end{array}$$

$$\text{ESR experiment on powder sample:} \quad \mathcal{H}_{DM} = \sum_{\langle i,j \rangle} \left(\mathbf{D}_{ij} \cdot \mathbf{S}_{i} \times \mathbf{S}_{j} \right) \ \sim 0.08 \ J. \quad \text{Zorko et al., PRL 101, 026405 (2008)}$$

$$\text{How about} \quad \mathcal{H}_{EA} = \Delta \sum_{\langle i,j \rangle} \left(S_{i}^{x} S_{j}^{x} + S_{i}^{y} S_{j}^{y} \right) ?$$

Experiment: magnetic susceptibility on a quasi-cubic crystal

- $\chi = \partial M / \partial H$
- \succ Red data reflects the spin Hamiltonian.
- > Easy-axis exchange: $\Delta \sim -0.1 J$

 $\succ |\Delta| << |J|$

Validation of Heisenberg model approximation

T.-H. Han et al., PRL 108, 157202 (2012)

With large single crystals of herbertsmithite,

can we find direct evidence of a quantum spin-liquid

ground state?

Neutron Scattering Measurement of Spin Fractionalization

In a quantum spin liquid, a neutron detects two-spinon dispersion – a continuum in spectrum.

.....: a spinon / a domain boundary / an energized spin exchange

Dynamic structure factor $S(Q,\omega)$

- \hbar ω > 1.5 meV: signal (green-cyan)
- Broad hexagon rings
- Similarity between 11 meV and 1.5 meV

- ħω < 1 meV: signal (yellow)
- A distinct pattern
- Impurity or intrinsic?

T.-H. Han et al., Nature 492, 406 (2012)

continuum ≠ featureless

Leon Balents

Spin Gapped or Not ?

A mixed message from neutron scattering

Local Probe: NMR evidence of a spin gap

- A. Intrinsic kagome susceptibility \rightarrow no curie tail
- B. Spin gap $\Delta(0T) = 10(3)$ K 0.9(3) meV 0.05(2) J

 $S_{tot}(Q,\omega)$ (Barns st.⁻¹ eV⁻¹ form. unit⁻¹)

Temperature =1.6 K

Regarding the ~1 meV spin gap,

 \leftarrow How to understand this?

A Dichotomy of the Quantum Spin Liquid and the Correlated Impurity Spins

At T = 2 K, different **Q**-dependence below and above 0.8 meV

Top (a)(c) in [H K 0]:

- Spinon continuum at 1.3 meV
- Rotated by 30°, more diffuse at 0.4 meV

Bottom (b)(d) in [H H L]:

- Two dimensional at 1.3 meV
- Three dimensional at 0.4 meV

MACS II: cleaner lowenergy neutron scattering

T.-H. Han et al., PRB 94, 060409(R) (2016)

A Dichotomy of the Quantum Spin Liquid and the Correlated Impurity Spins

Modeling with interlayer spins for 0.4 meV data

- Interlayer triangular lattice mediated by kagome spins
- Correlation: nearest trans-kagome interlayer spin pairs
- ▶ 15% of interlayer sites have Cu²⁺
 Interlayer: 1-(1-0.15)⁶ = 62% of spins neighbor interlayer spins.
 Kagome: 0.15²=2% are amid interlayer spins. → weak disorder

Interlayer spins have cubic connectivity. 0.15 < 0.31 threshold → No ordering _{Wang et al., PRE 87, 052107}

T.-H. Han et al., PRB 94, 060409(R) (2016)

A Dichotomy of the Quantum Spin Liquid and the Correlated Impurity Spins

First neutron scattering evidence of a spin gap ≈ 0.7 meV = 0.04 J

T.-H. Han et al., PRB 94, 060409(R) (2016)

2

2

FUTURE

1. Advance in Magnetism: Defects and Spin Gap "Closing"

Zorko et al., PRL 118, 017202 (2017)

2. $\theta_{\rm CW}^{d_{II}} \sim 0$ Kagome: $Zn^{2+} < 1\%$? Or, interlayer spins perturb kagome?

Philippe Fabrice Mendels Bert

2. Advance in Electricity: Charge Doping Herbertsmithite

Tyrel McQueen PRX **6**, 041007 (2016)

Stable structure

 \succ Cu²⁺ \rightarrow Cu¹⁺

kagome & interlayer

Similar magnetism➢ no phase transition

reduced spin count

Zero electric conductivity

- disorder from Li ions
- kagome connectivity

Next Steps

Neutron Scattering

kagome magnetism with strong disorder Does the spinon continuum stay?

Position Targeted Doping

- stay away from kagome
- reduce interlayer spins

T (K)

T.-H. Han et al., PRL 113, 227203 (2014)

 $\mathbf{x} = \mathbf{0}$: $Cu_4(OH)_6FBr$

2D or not 2D? Almost 2D.

Interlayers need to be de-magnetized.

T.-H. Han et al., PRB 93, 214416 (2016)

 $\mathbf{x} = \mathbf{1}$: ZnCu₃(OH)₆FBr

x = 0: $P6_3/mmc$; a = 6.6799(4) Å, c = 9.3063(13)Å. x = 1: $P6_3/mmc$; a = 6.6678(2) Å, c = 9.3079(3) Å.

Guo-Qing Zheng

Jia-Wei Youguo Mei Shi

CPL 34, 077502 (2017)

x = 1: ZnCu₃(OH)₆FBr polycrystalline

- ≻ Θ_{cw} = −200 K
- Susceptibility: no spin ordering down to 2 K.
 ZFC/FC overlap: no glassy freezing down to 2 K.
- Heat capacity: no phase transition down to 50 mK
- NMR: a spin gap ~ 7.5 K

Summary

Herbertsmithite ZnCu₃(OH)₆Cl₂

- > First observation of a spinon continuum above a $\sim 0.05 J$ gap.
- > Complications: correlated impurity, perturbations.
- Charge doping 'failure' calls for immediate follow-ups.

A new quantum spin-liquid candidate ZnCu₃(OH)₆FBr

> Need further measurements to compare with herbertsmithite.

Acknowledgement

Herbertsmithite

- Michael Norman (Argonne)
- Collin Broholm (Hopkins)
- Young Lee (Stanford)
- Daniel Nocera (Harvard)
- Takashi Imai (McMaster)
- Nuh Gedik (MIT)
- Lu Li (U of Michigan)
- Joel Helton (USNA)
- Mingxuan Fu (Hopkins)

Barlowite

- Eric Isaacs (U of Chicago)
- John Schlueter (NSF)
- John Singleton (LANL)
- Yasumasa Takano (U of Florida)
- Thomas Rosenbaum (Caltech)
- Peter Littlewood (Argonne)
- John Mitchell (Argonne)

Grainger Fellowship, U.S. DOE, U.S. NSF, State of Florida