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2+1d CFTs, usually occur at quantum critical points

Introduction

Classic example: quantum critical point between superfluid and Bose 

Mott insulator.



Challenge of studying 2+1d CFTs:

Standard methods of studying 2+1d CFTs are, 1/N expansion, epsilon 

expansion, both have difficulty of convergence for 2+1d CFTs.

Introduction

A powerful nonperturbative method: duality

Duality maps an unknown problem to a (hopefully) known problem.

Classic example: Particle-Vortex duality (Peskin, 1978, Dastupta, 

Halperin, 1981, Fisher, Lee, 1989, can be “derived” on the lattice):

MI of boson condensate of boson

MI of vortexcondensate of vortex

MI SF



Introduction

Classic example: Boson-Vortex duality (Peskin, 1978, Dastupta, 

Halperin, 1981, Fisher, Lee, 1989 , can be “derived” on the lattice):

MI of boson condensate of boson

MI of vortexcondensate of vortex

MI SF



Example 2: 3d Dirac fermion and bosonic QED with Chern-Simons 

term at level-1 (Chen, Fisher, Wu 1993, recent lattice version of the 

duality: Chen, et.al. arXiv:1705.05841):

Introduction

Trivial insu. Integer QH



Example 4: fermionic particle-vortex duality: (Son, 2015, Metlitski, 

Vishwanath, 2015, Wang, Senthil, 2015)

Introduction

+1/2 QH -1/2 QH

(1), the +-1/2 QH state is the anomalous effect at the boundary of the 

3d TI; (2), a only allows 4πn flux;

(3), These basic dualities can lead to a large web of dualities, some of 

these dualities are of great importance to CMT.



Restating the conjecture: the N=1 QED3 flows to an IR fixed point, 

which is equivalent to a noninteracting Dirac fermion.

Self-dual N=2 QED3

Assuming this is true, we can derive the following descendant duality:

The N=2 QED3, if it is a CFT, is self-dual, Xu, You, arXiv:1510.06032 



Step 2: Integrating out dynamical gauge field a:

Self-dual N=2 QED3

Step 1: run the fermion-fermion duality for each flavor:

Deriving the self-duality (Xu, You, arXiv:1510.06032):

Other Derivation of this duality: Mross, et.al. arXiv:1510.08455

Karch, Tong, arXiv:1606.01893, Hsin, Seiberg, arXiv:1607.07457



Self-dual N=2 QED3

Comments:

1, the N=2 QED3 has O(4) symmetry. The SO(4) ~ SU(2) x SU(2) is 

the flavor symmetry of both ψ and χ. The Z2 subgroup of O(4) is the 

self-duality transformation.

There is another way to see the O(4) symmetry, by mapping this model 

to a low-energy effective field theory in terms of gauge invariant O(4) 

vector boson (Senthil, Fisher 2005).



Self-dual N=2 QED3

Comments:

2, there is an O(4) breaking but SO(4) invariant relevant perturbation: 

Tuning m drives a transition from a bosonic SPT state to a trivial state 

(Grover, Vishwanath, 2012, Lu, Lee, 2012): 

the Chern-Simons level of A and B changes by +2 and -2 respectively. 

In this case, there are extra background terms CS1[A] CS-1[B] +



Self-dual N=2 QED3

Comments:

3, there is also a SO(4) breaking fermion mass term, that drives the 

system into two different superfluid phases:

Superfluid phase

SSB of A+BSSB of B-A

Superfluid phase



4, evidences for the N=2 QED3 to be a CFT

4.1 Direct numerical evidence: Karthik, Narayanan arXiv:1606.04109

Self-dual N=2 QED3

4.2 the tuning parameter                            drives a topological phase 

transition, and the Chern-Simons level of the back ground field A and 

B change by +2 and -2 respectively. If we enhance A and B to SU(2) 

background gauge fields, their levels change by +1 and -1 respectively. 

Simulation on a lattice model with the same transition (Slagle, You, 

Xu, arXiv:1409.7401, He, etc. arXiv:1508.06389), 



We want to design a similar lattice model with all the key physics, and 

“easy” to study numerically:

Simple limits of this model:

(1) Noninteracting: bilayer quantum spin Hall, boundary has two 

channels of gapless fermion modes

Sign problem free lattice model



We want to design a similar lattice model with all the key physics, and 

“easy” to study numerically:

Simple limits of this model:

(2) Strong J-interacting limit: trivial Mott insulator, with inter-layer 

spin singlet one every site.

Sign problem free lattice model

What happens at intermediate J ?



interaction

Apparently, this model has at least U(1)spin x U(1)charge symmetry. At 

relatively weak interaction J, we can directly bosonize the edge 

states:

Sign problem free lattice model

When Hv is relevant, all the fermion modes are gapped at the 

boundary, but bosonic modes are gapless, and protected by symmetry. 

Thus the system becomes effectively a “bosonic topological insulator”



This model actually has an exact SO(4) symmetry. Spin-up and 

spin-down fermions have their individual SU(2) symmetry.

SO(4) vector:

Sign problem free lattice model



Determinant QMC data for bulk: 

(arXiv:1508.06389) we saw that 

the fermion gap is always finite, 

but bosonic modes, both spin and 

charge, becomes gapless at the 

SPT-trivial Quantum critical 

point. This is fundamentally 

different from free fermion 

topological transition.

Because the fermionic degrees of 

freedom never show up at low 

energy at either the boundary or 

the bulk quantum transition, the 

whole system can be viewed as a 

bosonic system.

Topological phase transition



Determinant QMC data for bulk: 

(arXiv:1508.06389) we saw that 

the fermion gap is always finite, 

but bosonic modes, both spin and 

charge, becomes gapless at the 

SPT-trivial Quantum critical 

point. This is fundamentally 

different from free fermion 

topological transition.

In terms of the N=2 QED 

language, this transition 

corresponds to changing the sign 

of the SU(2) invariant fermion 

mass term

m>0m<0

Topological phase transition



Step 2: Integrating out dynamical gauge field a:

More duality of N=2 QED3

Step 1: run the fermion-boson duality for each flavor:

Another duality of the same theory (Potter, et.al. arXiv:1609.08618, 

Wang et.al. arXiv:1703.02426)



More duality of N=2 QED3

SF ordered SF (VBS) order

More duality of N=2 QED3 (Potter, et.al. arXiv:1609.08618, Wang 

et.al. arXiv:1703.02426)



More duality of N=2 QED3

SF ordered SF (VBS) order

More duality of N=2 QED3 (Potter, et.al. arXiv:1609.08618, Wang 

et.al. arXiv:1703.02426)

All these are fancy theories…. What about predictions??



Implications of the proposed duality

Duality predicts:

Wang et.al. arXiv:1703.02426



The easy-plane J-Q model with a continuous AF-VBS transition

We look at Δ = ½ : ηAF = ηVBS = ηJQ
xy ~ 0.13(3), ηJQ

z ~ 0.91(3)



Further analysis of the Bilayer-Honeycomb (BH) model 

ηBH
Δ ~ 0.10(1), ηBH

ρ ~ 1.00(1) (consistent with lattice QED numerics)

More data available at arXiv:1705.10670. Within error bar, these two 

quantum critical points do seem dual to each other!!



The easy-plane J-Q model with a continuous AF-VBS transition

Compare Δ = 1, and Δ = ½:

Tri-critical point by tuning Δ?



The easy-plane J-Q model with a continuous AF-VBS transition

Tri-critical point by tuning Δ?

Δ, -r

Q/J, h

VBS

AF

continuous 1st order

Proposed theory:

-r=0



Potential Experimental Platform of Bosonic SPT, and Topological Transition

Claim: 

Bilayer graphene under (strong) magnetic field (with both z and 

inplane components), will be driven into a “bosonic” SPT state with 

U(1)xU(1) symmetry by Coulomb interaction.

Meaning: 

boundary states must remain gapless with U(1)xU(1) symmetry, but, 

only protected gapless bosonic modes, no gapless fermion modes, 

under Coulomb interaction. (Bi, et.al. arXiv:1602.03190)



Predictions:

Main prediction, the boundary of bilayer graphene under B field is 

a conductor with a single particle gap;

Single particle gap comes from 

interaction, which is tunable by 

tuning the distance to the 

metallic gate (screening):

Tunneling from a normal tip would see this gap, but a superconductor 

tip would see zero gap. 

Potential Experimental Platform of Bosonic SPT, and Topological Transition



Summary

Proposed duality between two exotic quantum critical points: 

bosonic topological transition and the easy-plane deconfined 

quantum critical point;

Numerical simulation does support the theoretical predictions!


