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Introduction 1: 
Symmetry & Quantum Phases



Quantum Phases 
distinguished by symmetries 
1. Symmetry breaking 
2. Symmetry Protected Topological phases (SPTs)

Excitation 
gap

Smoothly connected? 
• Respects symmetries 
• Keeps the excitation gap

phase1

Phase2
Phase3GS 

degeneracy

…

Eigenvalues of H 
(under p.b.c)



Constraints on possible / allowed phases: 
Lieb-Schultz-Mattis theorem

• Generalization of “Haldane conjecture” 
• Constraints based on “Symmetries” + “filling”

Excitation gap

GS degeneracy Gapless

Case 1 Case 2 Case 3
Eigenvalues of H 

(under p.b.c)

• Band insulator 
• Haldane phase

• Band (semi)metal 
• Kagome spin liquid



Recent refinement of 
Lieb-Schultz-Mattis theorem

• Original LSM: Lattice translation + U(1) symmetry 
LSM (1961), Affleck-Lieb (1986), Oshikawa (2000), … 

• Stronger constraints nonsymmprhic space groups 
Parameswaran et al (2013) 

• Extended to all 230 SPACE GROUPS  
HW, H. C. Po, A. Vishwanath & M.P. Zaletel, PNAS (2015) 

• Stronger constraints in spin models  
H. C. Po, HW, C.-M, Jian & M. P. Zaletel, arXiv: 1703.06882

Dirac SM

Fu-Kane-Mele PRL (2007), Young et al PRL (2012)

β-cristobalite BiO2 (ab initio) Diamond lattice + SOC 
• Fd3m (No. 227) 
• ν = 2

1,651 Magnetic 
space groups?



Introduction 2: 
Symmetries and Band Structure



Topological (crystalline) 
insulator

• Presence of surface / edge state 
• Not smoothly connected to atomic limit



Computing Z2 index?

… difficult



• Strong index 
ν0 = Π i, j ,k = 0, π ξ(i, j, k) 

• Weak indices 
ν1 = Π j, k = 0, π ξ(π, j, k) 

ν2 = Π i, k = 0, π ξ(i, π, k) 

ν3 = Π i, j = 0, π ξ(i, j, π)

Fu-Kane formula for 
Inversion-symmetric TI

Combination of inversion eigenvalues indicates 
band insulator is TI protected by TR.

irreps at high-sym momenta

nontrivial (not adiabatically connected to the atomic limit)

Easy & Helpful for material search!



Band structures 
in momentum space



Typical band structure…

[Hemstreet & Fong (1974)]

Bands can cross 
only when 
different irreps

Relation among 
irreps upon 
symmetry lowering

Dimensions of 
the irreps  
→ degeneracy

Topological properties 
(i) Assume band gap 
at high sym momenta 
(ii) Forget energetics 
within a set of bands



Example: 
Inversion-symmetric 1D chain

k

E(k)

I : k → − k

• Two invariant momenta 
k = 0, π

• Inversion eigenvalues 
I = ± 1

→ Irreducible  
representation of Gk

→ High-symmetry momenta
Little group of k, Gk



Four possible combinations

k = 0 k = π

I   

+1 +1

-1 -1

+1 -1

-1 +1

b = (n0+, n0−, nπ+, nπ−)

b1 = ( 1 ,  0 ,  1 ,  0 )
b2 = ( 0 ,  1 ,  0 ,  1 )
b3 = ( 1 ,  0 ,  0 ,  1 )
b4 = ( 0 ,  1 ,  1 ,  0 )

Only three are independent
b1 + b2 = b3 + b4 

Example: 
Inversion-symmetric 1D chain
nkα : the number of times an irrep ukα appears in BS



n0+ + n0− = nπ+ + nπ− = ν (= # of bands) 

b = n0+ (1, −1, 0, 0) + nπ+ (0, 0, 1, −1) + ν  (0, 1, 0, 1)

→ {BS} ≡ set of valid b’s = Z3

Note: we extended possible values of n to all integers 
(Classification stable against subtracting bands)

Relation among nkα’s

Example: 
Inversion-symmetric 1D chain

b = (n0+, n0−, nπ+, nπ−) 



Group structure of  
Band structure

• k : a high-sym mometum.  
Collect all different types of k 

• Gk : the little group of k. i.e., { g in G | gk = k + G } 

• ukα (α = 1, 2, …): irreducible representation of Gk 
single rep for spinless electrons 
double reps for spinful electrons



• nkα : the number of times ukα appears in band structure 

• b = (nk11, nk12, … nk21, nk22, …) 

• Compatibility relations (+ TR sym) among {nkα}  

• The set of valid b’s : {BS} = ZdBS

Kruthoff et al. arXiv:1703.09706 
- spinless electrons in 2D 
- K-theory calculation

‘lattice’ of b’s

Group structure of  
Band structure

Σi mi bi     {BS}U |



Band structures 
in REAL space



Bloch vs Wannier

Wannier orbitals 
(symmetric,  

exponentially-localized)

Atomic Insulators 
(hopping → 0 limit. 

Product state)
=

• Real space picture

• Momentum space picture
Representations of Gk 

b = (nk11, nk12, … nk21, nk22, …)

Defines the trivial class of {BS}

H. C. Po, HW, M.P. Zaletel & A. Vishwanath,  
Science Adv. 2(4), e1501782 (2016)



• Two symmetric positions (in UC) 
x = 0, 1/2

→ Special position  
(Wyckoff position)

Little group of x, Gx

• Parity even/odd orbital

→ Irreducible  
representation of Gx

I=+1 I= −1

Example: 
Inversion-symmetric 1D chain

0 0.5 1 1.5-0.5-1



k = 0

k = π

Example: 
Inversion-symmetric 1D chain

I = +1

I = +1

k = 0

k = π

I = +1

I = −1



k = 0

k = π

Example: 
Inversion-symmetric 1D chain

I = −1

I = −1

k = 0

k = π

I = −1

I = +1



a1 = ( 1 ,  0 ,  1 ,  0 )

a2 = ( 0 ,  1 ,  0 ,  1 )

a3 = ( 1 ,  0 ,  0 ,  1 )

a4 = ( 0 ,  1 ,  1 ,  0 )

Example: 
Inversion-symmetric 1D chain

a1 + a2  
= a3 + a4 Set of all b corresponding to AI: {AI} = Z3 

In this example, {BS} = {AI} (but not necessarily in general)



Listing up all atomic insulators
• x: chosen from a special Wyckoff position.  
• Gx : the little group of x. i.e., { g in G | gx = x } 
• uxα (α = 1, 2, …): irreducible representation of Gx

• The combination (x, uxα) determines AI and its b
• Set of all a’s corresponding to AI: {AI} = ZdAI

Σi mi ai     {AI}U |



Indicator of  
Band Topology



Indicator of nontrivial 
band topology

• Set of valid b’s : {BS} = ZdBS 

• Set of all a’s (b’s corresponding to AI): {AI} = ZdAI 

Quotient space: X = {BS}/{AI}
{BS}: lattice of b’s

{BS} > {AI}

X = Z2 × Z2

{AI}: lattice of a’s



Indicator of nontrivial  
band topology

X = {BS}/{AI}= ZdBS−dAI  × Zn1 × Zn2× … × ZnN

We found dBS = dAI  holds for all SGs
→ We can, in fact, compute {BS} from {AI} (easy to get) 

i.e., no need to list up / solve all compatibility relations (tough)

Must be integer valued Can be fractional

b = Σi qi ai     {BS}U |

 basis vectors of{AI}

If necessary, one can impose  
the “nonnegative”constraint at the end.



230 SGs x TRS with SOC



230 SGs x TRS without SOC



Example 1: 
Representation-enforced 
Quantum Band Insulator

X = Z2 × Z2 × Z2 × Z4

Inversion &TR symmetric 3D system (SG2 & TRS)

weak TI strong TI + α

Two copies of TI 
No surface Dirac / no magnetoelectric response.

Still topologically nontrivial (residual entanglement) 
The experimental signatures are future work. 



Example 2:  
Representation-enforced Semimetal
Inversion symmetric but TR broken 3D system (SG2)

X = Z2 × Z2 × Z2 × Z4

Weyl SMA. Turner, …, A. Vishwanath (2010)

{BS}: “band structure” can be band insulator 
or semimetal (band touching at generic points in BZ)

(We demanded band gap only at high-symmetric momenta)



Magnetic space 
groups



Magnetic space group

• In addition to an ordinary SG, we have additional 
anti-unitary operation T’= TR * g 

• ex1: g = identity → M = SG x {1, TRS}. 

• ex2: g = half translation → AFM order 

• There are 1651 MSGs in 3D / 528 MLGs in 2D







X = Z2 × Z2 × Z2 × Z4

X = trivial



Example 3: 
Representation-enforced Semimetal

Magnetic Layer Group (2D)  
MSG 3.4 (Pa112) 
π rotation + TR * half translation.

X = Z2



Example 4: 
Filling-enforced Semimetal



Summary

• Higher symmetry → Richer phases & stronger 
constraints 

• Our band topology indicator might accelerate new 
material search / screening process


