The KITS 2017 Forum, March 27-29, 2017

On the pairing mechanism of unconventional high temperature superconductor materials

Qi-Kun Xue

Tsinghua University

<u>Acknowledgements</u>

Group Members:

Xucun Ma, Canli Song, Lili Wang, Ke He, Wei Li, Ding Zhang Jinfeng Jia (SJTU)

Students: Q. Y. Wang, Y. F. Lv, W. H. Zhang, Yong Zhong, Yang Wang, Sha Han, Wenlin Wang, Hao Ding, Yimin Zhang, Ziyuan Dou Transport: Yayu Wang (Tsinghua), Jian Wang (Peking)

ARPES: Xingjiang Zhou, Hong Ding (IOP), Zhixun Shen (Stanford)

Optics: Jimin Zhao (IOP)

Theory: Xincheng Xie, Fuchun Zhang (KITP)

BSCCO Samples: Genda Gu (Brookhaven)

Financial Supports: NSF, MOST and MOE of China

Material View: High-Temperature Superconductivity

> Layered structure (Bi₂Sr₂CaCu₂O_{8+δ})

NON-SC	BiO/SrO	非超导层
SC	CuO ₂	超导层
NON-SC	BiO/SrO	非超导层
SC	CuO ₂	超导层
NON-SC	BiO/SrO	非超导层
SC	CuO ₂	超导层
NON-SC	BiO/SrO	非超导层
SC	CuO ₂	超导层
NON-SC	BiO/SrO	非超导层
SC	CuO ₂	超导层
NON-SC	BiO/SrO	非超导层
SC	CuO ₂	超导层
NON-SC	BiO/SrO	非超导层
SC	CuO ₂	超导层
NON-SC	BiO/SrO	非超导层
SC	CuO ₂	超导层
NON-SC	BiO/SrO	非超导层
SC	CuO ₂	超导层
NON-SC	BiO/SrO	非超导层

The most unconventional aspect of HTS

- **1.** Complex layered structure
- 2. Carrier density in CuO₂ (FeAs/FeSe)

Bi-2212

BiOterminated surface

The most unconventional aspect of HTS

Complex layered structure Carrier density in CuO₂ (FeAs/FeSe)

STM/STS of FeSe on STO

Q. Y. Wang et al., Chin. Phys. Lett. 29, 037402 (2012)

Monolayer FeSe on STO: Tc ~ 65 K - 100 K

My group: Chin. Phys. Lett. 29, 037402 (2012)

Gap Symmetry & Tc by ARPES: Isotropic

Plain s-wave pairing + electron-phonon coupling

FFT (B=0)

Z. X. Shen & D. H. Lee Nature 515, 245 (2014)

Jimin Zhao PRL 116, 107001 (2016)

T. Zhang & D. L. Feng Nature Physics 11, 946 (2015)

Ozone-assisted MBE growth of CuO₂ films on Bi-2212

Zhong and Wang et al., Sci. Bull. 61, 1239 (2016)

Ji et al., PRL 100, 226801 (2008)

Bi-2212 surface: UHV cleaving CuO₂ growth: Cu: 99.9% Ozone flux: $1.0 \sim 5.0 \times 10^{-5}$ Torr

MBE growth of CuO_2 films on $Bi_2Sr_2CaCu_2O_{8+\delta}$

CuO₂ •••••• •O •Sr •Cu •Ca •Bi

The same to the bulk

Two important results from 1UC CuO₂ films

(1) No change in the Mott-Hubbard band structure of CuO_2 (regardless of the doping).

(2) U-shaped gap on CuO_2 , not the V-gap on the cleaved BiO surface.

The assumption that the "V" gap is tunneling from the underlying CuO_2 is NOT correct.

Cuprates: interface enhanced BCS superconductor?

Robust U-Gap of Monolayer CuO₂ on Bi-2212 (raw data)

Red background: normal-state fit The normal state: particle-hole symmetry (Fermi-liquid behavior) Red background: normal-state fit The normal state: particle-hole asymmetry (doped Mott insulator)

Zhong et al., unpublished data (2017)

Robust U-Gap of Monolayer CuO₂ on Bi-2212

Zhong et al., unpublished data (2017)

STS spectra of the cleaved CuO₂ surface of BSCCO

Yazdani Group: PRL 89, 087002(2002)

Our original proposal for raising T_c (2008)

BCS
Theory
$$T_{c} = \frac{w_{0}}{1.2} \exp\left[-\frac{1.04(1+\lambda)}{\lambda - \mu^{*}(1+0.62\lambda)}\right] \qquad w_{o} \sim 300 \text{ K}$$

W. L. McMillan, Phys. Rev. B16, 643 (1977)

Metal: conducting, but low Debye W_o

Ceramic (diamond): high Debye W_0 , but insulating. (Heavy doping destroys phase coherence)

To raise Tc under BCS e-ph coupling scheme

"soft" conductor + "hard" reservoir: heterostructure of two materials may overcome the Tc limit for one material

High Tc by doping of a parent insulator

Conduction

Band (Ec)

High mobility 2DEG in modulation-doped semiconductor heterostructures Dingle

Dingle, Störmer, Gossard, Wiegmann, APL **33**, 665 (1978)

- (1) Charge transfer \rightarrow Band bending \rightarrow QW (2DEG).
- (2) Without QW formation in its interface side, the GaAs cannot conduct !!!
- (3) Spatially separated electrons and their parent atoms.

Our Model: 2D Hole Liquid (2DHL)

Band bending occurs at Mott-insulator/STO heterostructure

BCS superconductors

 $T_{C} \sim 40 \text{ K}$ (low w_{o} and limited λ)

conventional

T_C > 77 KInterface Enhancementat heterostructures

unconventional

Thank you very much!