Hole Pairs (PDW) in the PG State ?

S. Uchida Univ. of Tokyo AIST (Tsukuba) IOP-CAS (Beijing)

1. Residual resistivity produced by untary scatterers: Zn in cuprates

$$\rho_0^{2D} = 4(\hbar/e^2) (n_i/n) \sin^2 \delta_0$$

the unitarity limit ($\delta_0 = \pi/2$)

Y. Fukuzumi, SU et al., PRL 76, 5654 (1996).

1. Residual resistivity produced by untary scatterers: Zn in cuprates

$$\rho_{0}^{2D} = 4(\hbar/e^{2}) (n_{i}/n) \sin^{2}\delta_{0}$$

the unitarity limit $(\delta_{0} = \pi/2)$
$$(1)^{2} + ($$

Y. Fukuzumi, SU et al., PRL 76, 5654 (1996).

Transformation of the Fermi arc (small Fermi surface) to a large Fermi surface at p ~ 0.2

1. Residual resistivity produced by untary scatterers: Zn in cuprates

Y. Fukuzumi, K. Mizuhashi, K. Takenaka, SU, PRL 76, 5654 (1996).

2. Electronic thermal conductivity: Lorenz number

$$L = \kappa / \sigma T = (\pi^2/3) \ (k_{\rm B}/e)^2 \longrightarrow L^* = (\pi^2/3) \ (k_{\rm B}/2e)^2 = L/4$$

K. Takenaka, SU et al., PRB 56, 5654 (1997).

2. Electronic thermal conductivity: Lorenz number

$$L = \kappa / \sigma T = (\pi^2/3) \ (k_{\rm B}/e)^2 \longrightarrow L^* = (\pi^2/3) \ (k_{\rm B}/2e)^2 = L/4$$

K. Takenaka, SU et al.; PRB 56, 5654 (1997).

Various signatures of Pair Formation above Tc

1) Transverse Josephson plasmon above T_c

A. Dubroka, C. Bernhard, PRL **106**, 047006 (2011)

2) Diamagnetic signal above T_c / Vortex Nernst effect

Z.A. Xu, N.P. Ong, SU, Nature **406**, 486 (2000)

3) Bogoliubov QP interference above T_c

Jhinhwang Lee et al., Science 325, 1099 (2009)

Various signatures of Pair Formation above Tc

1) Transverse Josephson plasmon above T_c

A. Dubroka, C. Bernhard, PRL **106**, 047006 (2011).

2) Diamagnetic signal above T_c / Vortex Nernst effect

Z.A. Xu, N.P. Ong, SU, Nature **406**, 486 (2000).

3) Bogoliubov QP interference above T_c

Jhinhwang Lee *et al.*, Science **325**, 1099 (2009).

Intra-bilayer Josephson plasma mode persists above T_c

Emergence of a transverse Josephson plasma (t-JP) mode at T_{onset} , well above T_c :

Establishment of intra-bilayer phase coherence

K.M. Kojima, M. Nakajima, S. Tajima, SU, *unpublished results*.

Anomalous optical phonon modes

Weights of two optical phonon modes decrease with lowering *T*, associated with the development of t-JP

A. Dubroka, C. Bernhard *et al.*, PRL **106**, 047006 (2011).

K.M. Kojima, M. Nakajima, S. Tajima, SU, *unpublished results*.

Phonon anomalies associated with the development of t-JP

Phonon anomalies associated with the development of t-JP

The phonon anomalies can be explained by changes of the local electric fields acting on the ions upon the onset of intra-bilayer Josephson tunneling.

D. Munzar, C. Bernhard *et al.*, Solid State Commun. **112**, 365 (1999).A.V. Boris, D. Munzar *et al.*, PRL **89**, 277001 (2002).

t-JP & phonon anomaly in the bilayer cuprate

T_{onset} ~ T_{CDW} < T* in underdoped cuprates

M. Hücker *et al.*, PRB **90**, 054513 (2014).

Pair formation and charge order (CDW) in hole-doped two-leg ladder cuprate

- # Pseudogap (spin gap)
- **# Hole pairs**
- # Charge order (PDW)
- **# Phonon anomaly**
- # Superconductivity @ P

T.M. Rice, K.Y. Tang, F.C. Zhang, Rep. Prog. Phys. 75, 061502 (2012).

Similarity of the optical spectrum between bilayer cuprate and two-leg ladder cuprate

Transverse Josephson plasma & phonon anomaly

Phonon modes showing an anomaly in the ladder cuprate

520 cm⁻¹ (1): leg-O phonon (chain-O buckling)
630 cm⁻¹ (2): rung-O phonon ('apical'- O)

Onset of t-JP & phonon anomaly

K.M. Kojima, M. Nakajima, S. Tajima, SU, *unpublished results*.

Onset temperature of t-JP & phonon anomaly

K. Takenaka, H. Takagi, SU, PRB **50**, 6534(R) (1994).

T. Osafune, SU, S. Tajima et al.; PRL 82, 5654 (1999).

Charge (hole-pair) order in two-leg ladder cuprate

A. Rusydi, P. Abbamonte et al., Phys. Rev. Lett. 97, 016403 (2006).

Underdoped cuprate vs Ladder cuprate

M. Hücker et al., PRB 90, 054513 (2014).

Congratulations to KITS, Fu-Chun Zhang, Jiang-Ping Hu, and other members

Pressure-Induced Dimensional Crossover and Superconductivity in the Hole-Doped Two-Leg Ladder Compound Sr_{14-x}Ca_xCu₂₄O₄₁

T. Nagata,¹ M. Uehara,¹ J. Goto,¹ J. Akimitsu,¹ N. Motoyama,² H. Eisaki,² S. Uchida,² H. Takahashi,³ T. Nakanishi,³ and N. Môri⁴ Phys. Rev. Lett. 58, 758 (2002).

Controversy in the doped hole density

A. Rusydi, P. Abbamonte *et al.*, Phys. Rev. Lett. **97**, 016403 (2006).
K. Wohlfeld, A. Oles, G.A. Sawatzky, PRB **75**, 180501(R) (2007).

J. Almeida, G. Roux, D. Poilblanc, PRB 82, 041102(R) (2010).

Controversy in the doped hole density

Wavenumber (cm⁻¹)

Spectroscopic signature of the charge order

T. Osafune, SU, S. Tajima *et al.*; PRL **82**, 5654 (1999).

Transient SC-Tc'(p) follows T*(p).

S. Kaiser, A.Cavalleri *et al.*; PRB **89**, 184516 (2014). C.R. Hunt, A.Cavalleri *et al.*; PRB **94**, 224303 (2016).

Interbilayer coherence is transiently established.

YBCO6.45 excited by ~ 20 THz pulsed laser

Transient Tc'(p) follows T*(p).

Quantum Shot Noise & Johnson Noise

GaAs/GaAlAs or Graphene

Quantum shot noise results from the discreteness of the current-carrying charges, and so is proportional to the charge of the quasiparticles.

> V.J. Goldman, B. Su; Science **267**, 5200 (1995).

Johnson noise thermometry measures electronic thermal conductivity, and can test the Wiedemann-Franz law.

J. Crossno, P. Kim *et al.*, Science **351**, 1058 (2016).