Gapless Spin Liquid Ground State in the S=1/2 Kagome Antiferromagnet

Tao Xiang

Institute of Physics

Chinese Academy of Sciences

txiang@iphy.ac.cn

Acknowledgment

1. H. J. Liao, et al, PRL 118, 137202 (2017)

2. H. J. Liao, et al, PRB 93, 075154 (2016)

3. Z. Y. Xie, et al, PRX 4, 011025 (2014).

Bruce Normand

Haijun Liao

Zhiyuan Xie

Jing Chen

Ruizhen Huang

Questions to Address

S=1/2 Kagome Heisenberg

$$H = J \sum_{\langle ij \rangle} \vec{S}_i \cdot \vec{S}_j, \quad J > 0$$

Is the ground state

- 1. gapped or gapless?
- 2. a quantum spin liquid?

Herbertsmithite: ZnCu₃(OH)₆Cl₂

✓ Valence bond crystal

	Singh & Huse, PRB	2008	series expansion
	Evenbly & Vidal, PRL	2010	MERA
	Iqbal, Becca & Poilblanc, PRB	2011	VMC
\checkmark	Gapped Z₂ spin liquid (Topological)		
	Sachdev, PRB	1992	Schwinger boson
	Gotze, et al, PRB	2011	coupled cluster
	Jiang, Weng & Sheng, PRL	2008	DMRG
	Yan, Huse & White, Science	2011	DMRG
	Depenbrock, McCulloch & Schollwock, PRL	2012	DMRG
	Jiang, Wang & Balents, Nature Physics	2012	DMRG
	Nishimoto, Shibata, Hotta Nat. Commun.	2013	DMRG
	Gong, Zhu & Sheng, Scientific Reports	2014	DMRG
	Li, arXiv:1601.02165	2016	VMC
	Mei, Chen, He & Wen, arXiv:1606.09639	2016	SU(2)-TNS
✓	Gapless spin liquid (Algebra)		
	Ran, Hermele, Lee, Wen, PRL	2007	VMC
	Iqbal, Becca, Sorella, Poilblanc, PRB	2013	VMC+Lanczos
	Iqbal, Poilblanc, Becca, PRB & 1606.02255	2015	VMC
	Hu, Gong, Becca & Sheng, PRB	2015	VMC
	Jiang, Kim, Han & Ran, arXiv:1610.02024	2016	SU(2)-PEPS
	Liao et al, arXiv:1610.04727, PRL 2017	2016	PESS
	He, Zaletel, Oshikawa, Pollmann, 1611.06238	2016	DMRG

Hints from Experiments

Fractionalized excitations in the spin-liquid state of a kagome-lattice antiferromagnet

Nature 492 (2012) 406

Tian-Heng Han¹, Joel S. Helton², Shaoyan Chu³, Daniel G. Nocera⁴, Jose A. Rodriguez-Rivera^{2,5}, Collin Broholm^{2,6} & Young S. Lee¹

Gapless spin liquid

Along the (H, H, 0) direction, a broad excitation continuum is observed over the entire range measured

Herbertsmithite $ZnCu_3(OH)_6Cl_2$: Neutron scattering

Hints from Experiments

Evidence for a gapped spin-liquid ground state in a kagome Heisenberg antiferromagnet

Science 360 (2016) 655

Mingxuan Fu,¹ Takashi Imai,^{1,2}* Tian-Heng Han,^{3,4} Young S. Lee^{5,6}

Gapped spin liquid

NMR Knight shift

 $\Delta(0)/J = 0.03$ to 0.07

Problems in the theoretical studies

✓ Density Matrix Renormalization Group (DMRG):

strong finite size effect

error grows exponentially with the system size

Depenbrock et al, PRL 109, 067201 (2012)

Problems in the theoretical studies

✓ Density Matrix Renormalization Group (DMRG):

strong finite size effect

error grows exponentially with the system size

✓ Variational Monte Carlo (VMC)

need accurate guess of the wave function

✓ Quantum Monte Carlo

Minus sign problem

Tensor-Network States

- 1. A variational wave function that satisfies the area law of entanglement entropy
- 2. Control parameter: bond dimension **D**

the wave function is exact in the $D \rightarrow \infty$ limit

Kagome Frustrated lattice

Local tensors defined on the honeycomb lattice Rank-3 tensors, no frustration

Comparison between PEPS and PESS

Projected Entangled Pair State (PEPS)

tensors defined on the original lattice

Rank-5 tensors High cost

Virtual spins at two neighboring sites form a maximally entangled state Projected Entangled Simplex State (PESS)

tensors defined on honeycomb lattice

Rank-3 tensors Low cost

Virtual spins at each simplex form a maximally entangled state

Advantage in using tensor-network states

- 1. No finite lattice size effect: PESS is defined on an infinite lattice
- 2. Most accurate method for studying large lattice size systems

Stoudenmire and White, Annu. Rev. CMP 3, 111(2012)

Advantage in using tensor-network states

- 1. No finite lattice size effect: PESS is defined on an infinite lattice
- 2. Most accurate method for studying large lattice size systems
- 3. The ground state energy converges fast with the increase of the bond dimension *D*
 - Converge exponentially with D if the ground state is gapped
 - Converge algebraically with D if the ground state is gapless
 We use this property to determine whether the ground state is gapped or gapless

Disadvantage: Cost is very high

	Double-layer	
Computational Cost	$O(D^{12})$	
Memory Cost	$O(D^8)$	
Limit of D	13	

Reduce the Cost by Dimension Reduction

	Double-layer	Shifted single-layer
Computational Cost	$O(D^{12})$	$O(D^8)$
Memory Cost	$O(D^8)$	$O(D^6)$
Limit of D	13	25 (not use symmetry)

S=1/2 Kagome Heisenberg: Ground State Energy

Is this *D* large enough?

Kagome Heisenberg: Gapless

Energy converges algebraically with the bond dimension

Results obtained on the Husimi lattice provide good references

Make comparison between Kagome and Husimi results

(b) Husimi Lattice

- ✓ Highly frustrated
- \checkmark D is generally less than 20

- ✓ Tree Structure
- ✓ Tensor renormalization is rigorous, *D* can reach 1000

S=1/2 Husimi Lattice: Gapless Spin Liquid

Both energy and magnetization converge algebraically with D

S=1 Husimi: Gapped Ground State

Energy converges exponentially with the bond dimension

Kagome Magnetization: magnetic order free

 $M_{Kagome} < M_{Husimi}$

Magnetization: decays algebraically with D

Stability of the gapless spin-liquid state against other interactions

Bond dimension dependence of the magnetic order

Bond dimension dependence of the magnetic order

Bond dimension dependence of the magnetic order

Kagome $J_1 - J_2$ model: phase diagram of infinite D limit

✓ We have performed a large scale tensor
 renormalization group calculation for the S=1/2
 Kagome Heisenberg model

✓ Our result suggests that the ground state of this system is a gapless quantum spin liquid