The Transformation of the Superconducting Gap to an Insulating Pseudogap with Decreasing Hole Density in the Cuprates

> T. Maurice Rice ETH Zurich & Brookhaven National Lab.

A priori treatment of strong correlations easier in **r** – space.

BUT the Pseudogap is in **k**- space.

k- space analysis requires postulating low energy effective interactions which leads to qualitative results only

Y.-H. Liu, W.-S.Wang, Q.-H. Wang, F.C.Zhang & T. M. Rice arXiv1703.03695

Also Y. H. Liu, R. Konik. T.M.Rice & F.C.Zhang Nature Commun. **7** 10378 (2016) Giant Phonon Anomalies associated with the Pseudogap

Phase diagram of cuprates :

Fermi Surface Evolution : Overerdoped to Underdoped : Full Fermi surface in overdoped region

Fermi Surface from Quantum Oscillations B. Vignolle et al Nature 2008

Pseudogapped Fermi surface in underdoped region :T < T*

- Breakup of Fermi Surface -> 4 disconnected Pockets(Arcs)
- Centered on nodal direction ARPES : Norman . . . Hong Ding (1998)

Pseudogap is located at antinodal region

Precursor of the Mott Insulator ?

Pseudogap Phase only Short Range Order

ARPES on Ca_{2-x}Na_xCuO₂Cl₂ Kyle M. Shen et al Science 2005

Mott Insulating State viewed in k-space

Real space	k -space
Underlying lattice	Umklapp scattering processes allowed -> Momentum conserved modulo { <i>G</i> }
Band filling 1 el./site	Surface in k -space enclosing an area of ½ - Brillouin zone.

Conclusion ; Examine growing Umklapp processes as x decreases connecting *k* - points on a U-surface :

U-surface a) spanned by elastic U- scattering processes

b) enclosing an area of $\frac{1}{2}$ -Brillouin zone.

How to describe a Short Range Ordered State?

Use a Wave- Packet Formalism localized in both **k** & **r** – Space Approximate as a Lattice of Strongly Correlated Supercells – Ossadnik arXiv 1305.2534 & 1603.04041

Energy Spectrum of Single Supercells Decisive:

e.g $\frac{1}{2}$ -filled 2-Leg Hubbard Ladder with U-scattering processes

Isolated Unique Insulating Groundstate with Charge Gap and Spin Gap 1- & 2- particle gaps & S =1 gap

SRO : d-wave pairing & AF (π,π)

=> D-Mott Insulator Balents - Fisher '96 & '98 Continuous Crossover between weak and Strong Coupling.

Extend to 2D Square Lattice near $\frac{1}{2}$ - filling?

Umklapp Scattering Surface in 2D

Umklapp Scattering Surface Not at constant energy with nnn hopping BUT 8 x-points are degenerate and are connected by U -processes

Scattering in 1-Loop FRG gives a low energy effective model :

Strong p-h Umklapp - AF (π,π) & d-wave Cooper pair scatterings [Honerkamp et al '01, Q. H. Wang et al]

Modifying the Starting Occ / Unocc Surface to Maximize Umklapp Scattering

Maximize Overlap Occ/Unocc Surface with U-Surface with fixed electron count

Turn on Interactions => Large SRO Pairing & AF Gap fixed on U-surface

=> Real Gap Function with Insulating Character opens on the U-surface

U-Scattering Processes on the U-Surface

 (π, π) U Scattering Processes connect the perpendicular (1,1) & (1,-1) directions separately i.e. not between {U,D} & {R,L} patches => Treat each separately as 2-Leg Ladders

Map each set of {R ,L} and {U, D } patches to 2-Leg Ladders with k - dependent parameters

=> Pseudogap Energy Gaps to add both 1-el (E_1) & 2-els (E_2) leading to Insulating behavior

 \Rightarrow also SRO AF (π,π) in dSC (T < Tc) & normal states (T > Tc)

Pair Scattering Processes on the 4 Fermi Arcs => d-wave SC pairing => $E_2 = 0$

YRZ Ansatz for propagator with Energy Gap fixed on US

ARPES H. B. Yang et al, PRL 2011 BNL

Yang, Rice, Zhang, PRB '06

Hall Effect at onset of Pseudogap

Expts : Taillefer group 2016

ARPES{ single hole} Spectra{Symmetrized} Anzai et al(2013) on UD BSCCO sample Tc = 66K

Energy Symmetrized ARPES Spectra Note: Pairing Fluctuations at crossover T ~Tc broadens peaks Single Particle Energy Gaps Note: Pseudogap constant at T > Tc Scanning Tunneling Microscopy Results for $E_1(\mathbf{k})$ - Davis Group Fujita et al JPSJ (2012)

Unusual Giant Phonon Anomaly accompanies pairing Fluctuations

T^{ons} > T > Tc : Strong Damping of Phonons increasing as T -> T_c Not a softening as a precursor to a CDW instability

T < Tc Damping disappears and Dispersion dip appears

Conclusion : GPA is associated with the anomalous pairing fluctuations Puzzle : How are Finite Energy & Finite Wavevector Phonons coupled to Superconductivity Fluctuations at (k, ω) ≈ 0 ? Answer => Y. H. Liu, R. Konik. T.M.Rice & F.C.Zhang Nature Commun. 7 10378, (2016) Fermi Surface Breakup => SC Breakup into 2 sets of Cooper"subbands"?

м b Δ х d-wave symmetry Driver in overdoped region: Strong Intrasubband {a&b} d-wave Pairing possible Large Antinodal SC gaps due to Strong Repulsive connected by Strong (π,π) Cooper pair scattering Repulsive (π,π) Cooper pair scattering are absent in pseudogap region

Intersubband Cooper Pair Scattering should be weak due to cancellation of approximately equal and opposite sign regions

$$\Delta^{*}{}_{a}\Delta_{b} \sim \Sigma_{k,k'} \vee (k,k') \{ \langle c^{+}{}_{k,\sigma} c^{+}{}_{-k,-\sigma} \rangle_{a+} \langle c_{k',\sigma} c_{-k',-\sigma} \rangle_{b+} + (a-,b-) \\ + \langle c^{+}{}_{k,\sigma} c^{+}{}_{-k,-\sigma} \rangle_{a+} \langle c_{k',\sigma} c_{-k',-\sigma} \rangle_{b-} + (a-,b+) \}$$

Intrasubband Pairing Scale > > Intersubband Pairing Scale => Low Energy Leggett Mode due to Intersubband Phase Fluctuations; Leggett ('66) How do Intersubband Phase Fluctuations couple to Phonons?

An intersubband Q- phonon moves a single QP between subbands.

Cooper Pairs require Absorption & Emission of Q -phonons.

GPA : Giant Phonon Anomaly Phonon Self Energy T > Tc Leggett Mode Propagator Leggett Fluctuation Mode $L_{\mathbf{q},\omega}^{R} = \frac{I}{cN_{0}} \frac{1}{i\omega - \Gamma_{\mathbf{q}}^{(\mathrm{LM})}}$ La.iw $\Gamma_{\mathbf{q}}^{(\mathrm{LM})} = \tau^{-1} + Dq^2$ B : Pair Bubble **G**-p-Q+**q**,-iε-iΩ+**iω G**-p'+**q**,-iε'+**i**ω Yp+c $G_{p',i\epsilon'}$ $G_{p+Q,i\varepsilon+i\Omega}$ Q,iΩ Q,iΩ **D**iΩ-iv Phonon В В α Phonon Overdamped Leggett Fluctuations as T -> Tc G_{p,iε} $G_{p'+Q-k,i\varepsilon'+i\Omega-i\nu}$ Yρ G-p+(q-k),-iε+(iω-iv) G-p'-Q+q,-iε'-iΩ+**iω** Finite Energy Leggett Mode at T < Tc Lg-k,iw-iv Absorbing a Phonon with finite (Q,Ω) Leggett Fluctuation Mode & Emitting a nearby Phonon scatters a Cooper pair from subband $a \rightarrow b$ Almost Resonant Scattering of Y. H. Liu, R. Konik. T.M.Rice & F.C.Zhang Phonon -> Nature Commun. 7 10378, (2016) Phonon + 2 Overdamped Leggett Modes

 $T > T_c$ Strong Phonon Damping as T -> Tc at $Q \approx Q_{GPA}$

T<T_c GPA Very Weak Phonon Damping at Q ≈ Q_{GPA}

Finite Energy Leggett Mode => Damping -> 0 Dip in Phonon Dispersion remains at T = 0

$$\begin{split} \Pi &\propto & \operatorname{Tr} I_{\mathbf{q},\mathbf{k},\Omega} \\ &= & \operatorname{Tr} \int \frac{d\omega}{2\pi i} \frac{d\nu}{2\pi i} L_{\mathbf{q},\omega} L_{\mathbf{q}-\mathbf{k},\omega-\nu} D_{\Omega-\nu} \\ &= & \frac{4\Delta^4}{N_0^2} \frac{1}{\omega_{\mathbf{q}}\omega_{\mathbf{q}-\mathbf{k}}} \frac{2\left(\Omega_0 + \omega_{\mathbf{q}} + \omega_{\mathbf{q}-\mathbf{k}}\right)}{\Omega^2 - \left(\Omega_0 + \omega_{\mathbf{q}} + \omega_{\mathbf{q}-\mathbf{k}}\right)^2 + i\delta } \end{split}$$

Conclusions

- PS gap : Maximising U-scattering leads to Short Range Order due to conflicting AF & d-wave Pairing Correlations => YRZ Scenario
- Breakup of the Fermi Surface leads to 2-band Superconductivity with a soft Leggett mode and SC fluctuations over a large T interval > Tc in the Pseudogap phase
- Low Energy Intersubband Phase Fluctuations couple to Phonons and lead to Strong Phonon Damping at T > Tc but damping vanishes at T < Tc replaced by Dip in Phonon Dispersion
- Intrinsic Connection between Anomalous Pseudogap Phase, Enhanced Superconducting Fluctuations and Giant Phonon Anomalies
- No Static Long Range Charge Order also not in NMR Wu et al Nature Commun. 2015

Y. H. Liu, R. Konik. T.M.Rice & F.C.Zhang Nature Commun. **7** 10378 (2016)