
Symmetric Tensor Networks and 
Topological Phases

Ying Ran (Boston College)

KITS, Mar. 2017

Congratulations to KITS!



Two types of symmetric topological phases

SPT --- symmetry protected topological phases: (Pollmann, Berg, Turner, Oshikawa, Chen, 
Liu, Gu, Wen…)

Example: Haldane spin chain, integer quantum Hall states, topological insulators…

Features: 

• no topological order

• anomalous edge states protected by symmetry

SET --- symmetry enriched topological phases: (Wen, Essin, Hermele, Mesaros,YR, 
Barkeshli….)

Example: toric code, gapped quantum spin liquids, fractional quantum Hall states…

Features: 

• topological order (anyon excitations in 2d)

• symmetry can be fractionalized (e.g. e/3 quasiparticle in Laughlin’s state).
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Motivations

• We focus on bosonic topological (SET or SPT) phases, which require strong 
interactions to realize.

(1) Conceptual issues: 

-- Classification problems

(SPT phases with spatial symmetries.)

(2) “Practical” issues: How to realize them?

-- Physical intuitions/guiding principles? 

(Are there criteria like the band-inversion picture in topological insulators?)

-- Numerical methods suitable for searching for these  topological phases in 
models?

(How to write down generic variational wavefunctions?)     



Main result

Based on tensor-network formulation, we develop a machinery to:

(1) systematically (but partially) classify topological phases

(2) construct generic variational wavefunctions for these phases

(onsite and spatial ) 
symmetries of the system

(Partially) classification of topological 
phases and construction of generic 

wavefunctions for each class 

• This machinery answers:
How many classes of symmetric tensor-
network wavefunctions that cannot be 
smoothly deformed into each other under 
certain assumptions?

1D-MPS, 2D-PEPS, and 3D generalizations

figures from R. Orus, 
Annals Phys. (2014)
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Based on tensor-network formulation, we develop a machinery to:
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(2) construct generic variational wavefunctions for these phases
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symmetries of the system

(Partially) classification of topological 
phases and construction of generic 

wavefunctions for each class 

Numerically simulating
Topological phases in practical models

Combining with tensor-based
variational numerical  algorithms 



Some applications of this machinery

(1) Classification and simulation of competing spin liquids in the spin-1/2 
Heisenberg model on the kagome lattice.
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and many more



Some applications of this machinery

(1) Classification and simulation of competing spin liquids in the spin-1/2 
Heisenberg model on the kagome lattice.

𝐷𝑐𝑢𝑡 ~ virtual states kept 

when performing tensor 

contraction



Some applications of this machinery

(1) Classification and simulation of competing spin liquids in the spin-1/2 
Heisenberg model on the kagome lattice.

(2) Classification of bosonic cohomological SPT: 𝐻𝑑+1(𝑆𝐺, 𝑈 1 )

• 𝑆𝐺: on-site and lattice symmetries (onsite (Chen, Liu, Gu, Wen…), lattice (Chen, Hermele, Fu, 

Qi, Furusaki, Cheng…) )

• 𝑇 and 𝑃(mirror) should be treated as “anti-unitary”

• Generic tensor wavefunctions for every class (if SG is discrete)



Some applications of this machinery

(1) Classification and simulation of competing spin liquids in the spin-1/2 
Heisenberg model on the kagome lattice

(2) Classification of bosonic cohomological SPT: 𝐻𝑑+1(𝑆𝐺, 𝑈 1 )

• 𝑆𝐺: on-site and lattice symmetries (onsite (Chen, Liu, Gu, Wen…), lattice (Chen, Hermele, Fu, 

Qi, Furusaki, Cheng…) )

• 𝑇 and 𝑃(mirror) should be treated as “anti-unitary”

• Generic tensor wavefunctions for every class (if SG is discrete)

(3) A by-product: a general connection between “conventional” fractionalized 
phases and SPT phases in 2D via anyon condensation. 



• Anyon condensation mechanism: 

“conventional” fractionalized phases  SPT phases

Plan



Z2 gauge theory
Condense gauge fluxes

Trivial confined phase

A by-product: anyon condensation

An example:

This is the well-studied deconfinement-confinement phase transition.

I will show: 
implementing symmetry into such a transition can lead to SPT phases



Z2 gauge theory
Condense gauge fluxes

Trivial confined phase

Condense gauge fluxes
???

A by-product: anyon condensation

An example:

Z2 gauge theory with 

Ising symmetry g

(an SET phase)

SET: symmetry-enriched topological phases



Z2 gauge theory
Condense gauge fluxes

Trivial confined phase

Z2 gauge theory with 

Ising symmetry g

(an SET phase)

Condense gauge fluxes
???

A by-product: anyon condensation

An example:

• Consider a particular SET phase:

(e: gauge charge, m: gauge flux)

𝑔 𝑒 2= −1, 𝑔 𝑚 2 = 1

Namely: Ising symmetry is fractionalized on the e-particle

This is a rather conventional fractionalized phase without gapless edge states



Z2 gauge theory
Condense gauge fluxes

Trivial confined phase

Z2 gauge theory with 

Ising symmetry g

(an SET phase)

Condense gauge fluxes
???

A by-product: anyon condensation

An example:

• Consider a particular SET phase:

(e: gauge charge, m: gauge flux)

𝑔 𝑒 2= −1, 𝑔 𝑚 2 = 1

• Condense 𝑚 with 𝑔 𝑚 = 1 trivial Ising paramagnet

• Condense 𝑚 with 𝑔 𝑚 = −1 nontrivial Ising SPT

SET Nontrivial Levin-Gu SPT

Schematic phase diagram

Trivial paramagnet



• Gauge group: 𝑍𝑁1 × 𝑍𝑁2 ×⋯ & symmetry group: 𝑆𝐺

• e-particles feature nontrivial symmetry fractionalization

• m-particles have trivial fractionalization, but can carry usual quantum numbers

Ω𝑔1 ⋅ Ω𝑔2 = 𝝀 𝒈𝟏, 𝒈𝟐 ⋅ Ω𝑔1𝑔2 Ω𝑔 ~ symmetry defect,  𝜆 ~ certain 𝑚 particle 

• Condensing m-particles without breaking symmetry, which requires:

1. Condensed 𝑚’s carry 1D symmetry irrep: 𝝌𝒎 𝒈

2. 𝜒𝑚(𝑔) ⋅ 𝜒𝑚′(𝑔) = 𝜒𝑚𝑚′(𝑔)

• After condensing those 𝑚’s, we get an SPT phase 

𝜔 𝑔1, 𝑔2, 𝑔3 ≡ 𝜒𝜆 𝑔2,𝑔3 𝑔1 , [𝜔] ∈ 𝐻3(𝑆𝐺, 𝑈(1))

an SET phase
Condense gauge fluxes

an SPT phase

General criteria for anyon condensation



A somewhat simple model realizing SPT

• Following the anyon-condensation mechanism, we can design 
somewhat simple models realizing bosonic SPT phases. (need 3-
spin interactions)

• The model looks like this:

U(1)-Layer

Ising-Layer

𝐻 = 𝐻𝑈(1) +𝐻𝐼𝑠𝑖𝑛𝑔 + 𝜆 ∙ 𝑊

Global symmetry: U(1) x Ising

𝜆0 𝜆𝑐SET: Z2 gauge
e carry ½  U(1) charge 

Condensing 
Ising-odd m-particle

SPT: Ising-defect 
carry ½  U(1) charge 

𝐻𝐼𝑠𝑖𝑛𝑔 = ℎ ⋅ 𝛴𝜎𝑥

𝑊



A somewhat simple model realizing SPT

𝐻 = 𝐻𝑈(1) +𝐻𝐼𝑠𝑖𝑛𝑔 + 𝜆 ∙ 𝑊Global symmetry: U(1) x Ising

𝜆0 𝜆𝑐SET: Z2 gauge
e carry ½  U(1) charge 

𝐻𝑈(1) = −𝑡𝛴𝑏𝑖
+𝑏𝑗 + 𝑉1𝛴𝑛𝑖𝑛𝑗

+𝑉2𝛴𝑛𝑖𝑛𝑗 + 𝑉3𝛴𝑛𝑖𝑛𝑗

U(1)-layer: Half-filled hard-core bosons
on the kagome lattice

𝑡 ≪ 𝑉1 = 𝑉2 = 𝑉3 = 𝑉

In this regime, 𝐻𝑈(1) is in a deconfined

Z2 spin liquid phase:
e-particle carries ½  U(1)-charge.
(Balents,Fisher,Girvin 2001)
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𝑡 ≪ 𝑉1 = 𝑉2 = 𝑉3 = 𝑉

Ising-layer: transverse field Ising spins
on the honeycomb lattice

𝐻𝐼𝑠𝑖𝑛𝑔 = ℎ ⋅ 𝛴𝜎𝑥

ℎ ≪ 𝑉
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Ising-layer: transverse field Ising spins
on the honeycomb lattice

𝐻𝐼𝑠𝑖𝑛𝑔 = ℎ ⋅ 𝛴𝜎𝑥

ℎ ≪ 𝑉

𝜆 ∙ 𝑊: 3-spin interaction coupling two layers

𝜆0 𝜆𝑐SET: Z2 gauge
e carry ½  U(1) charge 

Condensing 
Ising-odd m-particle

SPT phase

𝑛𝑖
𝜎𝐼

𝜎𝐽

𝜆 ∙ 𝑊 = 𝜆 ∙ ∑(𝑛𝑖−1/2) ⋅ (𝑠𝐼𝐽𝜎𝐼
𝑧𝜎𝐽

𝑧)

𝑠𝐼𝐽=-1 on green bonds, 𝑠𝐼𝐽=+1 otherwise



A somewhat simple model realizing SPT
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ℎ ≪ 𝑉

𝜆 ∙ 𝑊: 3-spin interaction coupling two layers

𝜆0 𝜆𝑐SET: Z2 gauge
e carry ½  U(1) charge 

Condensing 
Ising-odd m-particle

SPT phase

𝑛𝑖
𝜎𝐼

𝜎𝐽

𝜆 ∙ 𝑊 = 𝜆 ∙ ∑(𝑛𝑖−1/2) ⋅ (𝑠𝐼𝐽𝜎𝐼
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One can analytically show: 
SPT phase is realized when

𝑡, ℎ ≪ 𝜆 ≪V



SPT: partial classification 

𝐻𝑑+1[𝑆𝐺, 𝑈 1 ]

𝑆𝐺: on-site & spatial symmetries

𝑇 and 𝑃 antiunitary

Fractionalized phases SPT
anyon condensation

Numerical simulation

Summary

Thank you!


