

The KITS 2017 Forum New Horizons in Condensed Matter Physics 27-29 March 2017, Beijing, China

Scanning Tunneling Spectroscopy Study of Cuprates and a Topological Superconductor

Dong-lai Feng

Department of Physics, Fudan University

Outline

- ✓ Cross-Sectional STM Study of $Bi_2Sr_2CaCu_2O_{8+\delta}$ and YBa₂Cu₃O_{7-x}
- ✓ Nematic (2-fold symmetric) field dependence of the superconducting gap of Cu_xBi₂Se₃

Acknowledgement

- Fudan STM team: Mingqiang Ren, Yajun Yan, Wei Chen, Chen Chen, Xi Liu, Ran Tao, Tong Zhang
- Samples: Xin Yao (for YBCO), Hiroshi Eisaki (for Bi2212 and LSCO) Y. Ando (Cu_xBi₂Se₃)
- Discussions:
 - Jiangping Hu, Yan Chen, Tao Xiang, Ruihua He, Darren Peets, Yihua Wang
 - Guoqing Zheng, Liang Fu

Cross-Sectional STM Study of $Bi_2Sr_2CaCu_2O_{8+\delta}$ and $YBa_2Cu_3O_{7-x}$

Cuprates

Crystal structure of cuprates

schematic diagram

charge reservoir

CuO₂ layer

charge reservoir

CuO₂ layer

Uchida S I 2015 High Temperature Superconductivity, the Road to High Critical Temperature (New York: Springer)

We are told: The cuprates are made of conducting CuO₂ layers and insulating charge reservoir oxide layers

d –wave gap and pseudogap

Uchida S I 2015 High Temperature Superconductivity, the Road to High Critical Temperature (New York: Springer)

the nodal superconducting gap and the pseudogap are critical characteristics of the CuO₂ planes

Gap in STS

Spectrum of various cuprates

Under-doped Bi2212

Fischer Ø et al 2007 Rev. Mod. Phys. 79 353

d-wave nodal superconducting gap behaves as a V-shaped gap and the pseudogap appears as a spectral weight suppression over hundreds of meV in STS.

Possible S-wave Pairing ?

CuO₂ monolayer grown on Bi 2212 substrate

Pseudogap is inherent to the BiO planes and likely irrelevant to pairing
 CuO₂ films grown on Bi2212 shows a U-shaped gap

Zhong Y et al 2016 Chin. Sci. Bull. 61 1239 Lv Y F et al 2015 Phys. Rev. Lett. 115 237002 Lv Y F et al 2016 Phys. Rev. B 93 140504 The usual STM and ARPES measurements may contain contributions from both the CuO_2 layers and the charge reservoir layers

Possible S-wave Pairing ?

Bi2212 thin films (100nm) Tc = 84 K cleaved mechanically at room temperature in vacuum

U-gap can be fitted by d-wave pairing considering that the *c*-axis tunneling is dominated by the $(\pi, 0)$ region.

Misra S et al 2002 Phys. Rev. Lett. 89 087002

Experimental Setup

Optical microscope image

 $\label{eq:measurement temperature T = 4.5K} \\ Bi2212: T_c = 88K \ \ YBCO \ film \ \ (600nm \ thick) \ : T_c = 88K \\ Cleavage \ condition \ : \ about \ 80K \ in \ vacuum \ \ (1x \ e^{-10}m \ bar) \\ \end{cases}$

M. Q. Ren, Y. J. Yan, T. Zhang, DLF, CHIN. PHYS. LETT. 33, 127402 (2016)

$Bi_2Sr_2CaCu_2O_{8+\delta}$ (100) plane

Cut along (001) Over 1nm Bi 2212 single crystal Tc =88K (c) (d) 1530(b) → [001] 14 $\mathbf{29}$ 0.9nn 1328points 1-15 points 16-30 12271126dI/dV (arb. units) 1025 $\mathbf{24}$ 9 238 1 nm [010] $\overline{7}$ 226 211 nm 1V 30pA 0 $\mathbf{5}$ 2019 ım 3 18the overall roughness is less $\mathbf{2}$ \geq 171 16 than 1 nm Tilt from the (100) plane < 7° -100-500 50 100 -100 - 5050100 0 Bias (mV) Bias (mV)

STS shows strong spatial dependence.

The U-shaped gap gradually become V-shaped within ~ 1 nm

$Bi_2Sr_2CaCu_2O_{8+\delta}$ (100) plane

Early Bi2212 data

(100) plane of Bi 2212 prepared with diamond-filing in nitrogen

Hasegawa T, Kitazawa K, 1990 Jpn. J. Appl. Phys. 29 L434 Suzuki K et al 1999 Phys. Rev. Lett. 83 (3) 616-619 (h,k,0) plane of Bi 2212 prepared with razor blade in air

Previous STM experiments did not observed the U-shaped gap on Bi2212.

Difference: their samples were prepared outside the vacuum.

$YBa_2Cu_3O_{7-x}$ (100) plane

YBCO thin film grow on MgO Thickness: 600 nm Tc =88K

Cuts along [001] direction Spatial distance : 0.3 nm (c) (d) 30 29 13 28 12 27 11 26 10 25 d//dV (arb.units) 9 d//dV (arb.units) 24 23 4.2 nm 22 6 21 5 20 4nm 19 3 18 2 17 16 -100 -50 50 -100 -50 0 100 0 50 100 Bias (mV) Bias (mV)

STS shows strong spatial dependence.

The U-shaped gap gradually becomes V-shaped.

$YBa_2Cu_3O_{7-x}$ (100) plane

$YBa_2Cu_3O_{7-x}$ (110) plane

- Well defined U-shaped gap with coherent peaks
- The gap size varies in space
- The maximum gap size on the (110) plane is reduced, compared with that on the (100) plane

$YBa_2Cu_3O_{7-x}$ (110) plane

YBCO thin film grow on MgO **Representative STS spectra** Thickness: 600 nm Tc =88K U-shaped gap d//dV (arb.units) 10 - 25 meV double superconducting gap? bosonic modes? 0 -50 50 -100 0 100 Bias (mV)

Observations:

- The low-energy electronic structure of both Bi2212 and YBCO is strongly spatially dependent.
- There are generally two types of gaps: well defined Ushaped gap and small V-shaped gap

Open issues:

- Need atomically resolved cross-sectional images
- The effects of tunneling matrix elements
- Complexity of polar surface

▶

A possibility: proximity effects

From YBCO (100) plane

STS on different layers of (Li_{0.8}Fe_{0.2})OHFeSe

Yan Y J et al 2016 Phys. Rev. B 94 134502

Proximity effect from the superconducting layer (U - shaped gap) to the charge reservoir layers (V - shaped gap)

Simulation of the tunneling matrix element effects

Empirical model based on WKB approximation

YBCO (100) plane YBCO (110) plane

gap function:

Simulations based on a *d*-wave gap cannot readily reproduce the measured U-shaped gap

Suzuki K et al 1999 Phys. Rev. Lett. 83 (3) 616-619 E. L. Wolf, Principles of Electron Tunneling Spectroscopy (Oxford University Press, New York, 1989)

Lack of zero bias peak

- We did not observe a peak at zero bias on cleaved YBCO along the (110) plane
- Maybe due to the different sample preparation and surface conditions ?

YBCO single crystals with Tc=91K The surface was prepared by chemical etching

Yeh N C et al 2001 Phys. Rev. Lett. 87 087003

YBCO film (110) plane grown on STO air-exposure time of about 30 min.

L. Alff et al 1997 Phys. Rev. B 55 R1457

s-wave pairing evidence ?

ARPES study on various cuprates

muon-spin rotation study on the nearly optimally doped YBCO

Khasanov R et al 2004 Phys. Rev. Lett. 92 057602

electron phonon coupling signature in ARPES.

Isotope effects of the superfluid density

Summary

- Electronic states of Bi2212 and YBCO
 have strong spatial dependence along
 c.
- U shaped gap on both YBCO(100) and
 YBCO (110) plane
- U shaped gap could not easily understood
 based on *d* wave pairing
- V shaped gap maybe in the charge reservoir layers, whose role needs to be checked further.
- There is a long list of experiment supporting d-wave, our findings need further investigations.

Nematic (2-fold symmetric) field dependence of the superconducting gap of Cu_xBi₂Se₃

Ya-Jun Yan

(REM nipic.com/letxingming

Thank you