Nonlinear Langevin equation (NLE) theory and its application to colloidal polymer glass

Kang Chen (陈 康)

Soochow University

From supercooled liquids to glasses: Current challenges for amorphous materials, KITS 2017

Center for Soft Condensed Matter Physics & Interdisciplinary Research

Background

- The basics of the NLE theory
- The unique role of bond length in colloidal polymer glass

Backgroud

The basics of the NLE theory

The unique role of bond length in colloidal polymer glass

🐠 Glass transition

Backgroud

The basics of the NLE theory

The unique role of bond length in colloidal polymer glass

MLE theory for colloidal glass

Motion of a single particle: r(t)--scalar

DDFT, Local Equilibrium Approximation, Vineyard Closure

$$\int \int \frac{\partial r(t)}{\partial t} = -\frac{\partial}{\partial r} F_{dyn} [r(t)] + \eta(t) + \eta(t) + \eta(t) + \eta(t)$$
short time friction white noise

$$\int \int \frac{\partial r(t)}{\partial t} = -\frac{\partial}{\partial r} F_{dyn} [r(t)] \qquad \alpha \equiv 3/2r_{loc}^2 \qquad \text{Naive MCT}$$

$$Kirkpatrick \& Wolynes, 1987 \qquad \alpha = \frac{1}{2}\beta K(t \to \infty)$$

$$\int \int \frac{\partial q}{\partial r} F_{dyn} [r(t)] \qquad \qquad = \frac{1}{6} \int \frac{\partial q}{(2\pi)^3} \rho q^2 C^2(q) S(q) e^{-q^2/4\alpha(1+S^{-1}(q))}$$

MLE theory for colloidal glass

Motion of a single particle: r(t)--scalar

DDFT, Local Equilibrium Approximation, Vineyard Closure

$$\int \int \frac{\partial r(t)}{\partial t} = -\frac{\partial}{\partial r} F_{dyn} [r(t)] + \eta(t)] \quad \text{K.S. Schweizer J. Chem. Phys. (2005)}$$

short time friction white noise

$$F_{dyn}(r) = -3k_BT \ln(r) - k_BT \int \frac{d\bar{q}}{(2\pi)^3} \rho C^2(q) S(q) [1 + S^{-1}(q)]^{-1} e^{-q^2 r^2 [1 + S^{-1}(q)]/6}$$

translational entropy Inter-particle interactions (caging effect)
favors fluid localized solid

S(q): Static Structure Factor C(q): Direct Correlation Function

> Crossover: Φ

Localized, activated hopping dynamics

 \succ Characteristic lengths: r_{LOC} , R^* , r_{R}

The "confined" space of the particle's motion- "cage size"

Related to the Lindemann length at the crossover

 \blacktriangleright Barrier and the relaxation time: F_{B} , τ_{α}

Structural relaxation

Escaping the cage

Mirigian and Schweizer JPCL 2013

$$F_{tot} = F_B + F_e$$

Kramers first-passage theory:

$$\tau_{\alpha} = \tau(\phi) \exp(F_{tot}/k_B T)$$

For hard-sphere

$$\frac{\tau(\phi)}{\tau_0} = \frac{2\pi g(\sigma) k_B T}{\sigma^2 \sqrt{K_0 K_B}}$$

$$\tau_0 = \sigma^2 \zeta_0 / k_B T$$

 $au(\phi)$ is a weak function of volume fraction

 $\phi_c \text{ or } 1/T_c$

Backgroud

The basics of the NLE theory

The unique role of bond length in colloidal polymer glass

Yang et al., Phys. Chem. Chem. Phys. 2010

Zhao et al., J. Phys. Chem. Lett. 2013

Features of molecular polymer

- Bond length is not a controllable variable
- Ambiguity of the basic unit

Colloidal polymer as a model system

- Unambiguity of the basic unit
- Flexibility in tuning the architecture, especially the bond length

<u>Current theoretical and simulation research</u>

- Based on Gaussian or bead-spring chain
- Focus on the influence of chain length and rigidity

NLE theory for chain molecules

$$F_{dyn}(r) = -3k_{B}T\ln(r) - k_{B}T\int \frac{d\bar{q}}{(2\pi)^{3}}\rho C^{2}(q)S(q) \left[1 + S^{-1}(q)\right]^{-1} e^{-q^{2}r^{2}\left[1 + S^{-1}(q)\right]/6}$$

$$F_{dyn} = -3k_{B}T\ln(r) - k_{B}T\int \frac{d\bar{q}}{(2\pi)^{3}} \left[C^{2}(q)\rho S(q)\omega(q) + C_{intra}(q)(\omega - 1)\right]$$

$$\times \left[1 + S^{-1}(q)\right]^{-1} e^{-q^{2}r^{2}\left[1 + S^{-1}(q)\right]/6}$$

$$\omega(q) = \frac{1}{(2\pi)^{3}} \left[C^{2}(q)\rho S(q)\omega(q) + C_{intra}(q)(\omega - 1)\right]$$

$$\omega(\mathbf{q}) = \frac{1}{1 - \rho C_{\text{intra}}(\mathbf{q})}$$

$$h(q) = \omega(q)C(q)[\omega(q) + \rho h(q)] \qquad S(q) = \omega(q) + \rho h(q)$$

Intramolecular correlation function

Koyama distribution for worm-like chain

l: bond length ε : rigidity *N*: chain length

$$\left\langle r_{ab}^{2} \right\rangle = \left| a - b \right| l^{2} \left[\frac{1 - \left\langle \cos \theta \right\rangle}{1 + \left\langle \cos \theta \right\rangle} + \frac{2 \left\langle \cos \theta \right\rangle}{n} \frac{1 - \left(- \left\langle \cos \theta \right\rangle \right)^{|a-b|}}{\left(1 + \left\langle \cos \theta \right\rangle\right)^{2}} \right]$$

$$\left\langle r_{ab}^{4} \right\rangle = \left\langle r_{ab}^{2} \right\rangle^{2} + D_{ab}l^{4} \quad D_{ab} \longrightarrow D_{ab} (\langle \cos \theta \rangle, \langle \cos^{2} \theta \rangle)$$

$$\left\langle \cos\theta\right\rangle = \frac{\int_{\theta_0}^{\pi} e^{-\varepsilon(1+\cos\theta)} \cos\theta \sin\theta d\theta}{\int_{\theta_0}^{\pi} e^{-\varepsilon(1+\cos\theta)} \sin\theta d\theta} = \frac{1}{\varepsilon} - \frac{e^{\varepsilon} + \cos\theta_0 e^{-\varepsilon\cos\theta_0}}{e^{\varepsilon} - e^{-\varepsilon\cos\theta_0}}$$

$$\left\langle \cos^2 \theta \right\rangle = \frac{2}{\varepsilon} \left\langle \cos \theta \right\rangle + \frac{e^{\varepsilon} - \cos^2 \theta_0 e^{-\varepsilon \cos \theta_0}}{e^{\varepsilon} - e^{-\varepsilon \cos \theta_0}}$$

Intramolecular correlation function

 $1+2(N-1)\sin(ql)/Nql$

Asymptotics between colloidal and Gaussian chain of short bond length

 $\phi = 0.55$

- *l*=4/3 has the largest barrier height.
- The barrier height increases with the increase of rigidity and decreases with chain length.

Unique role of bond length

Barrier and hopping time nonmonotonicity 25 25 *l*=1.1 l=4/3, ε=0, №=10 F_{tot} 1=4/3 hard sphere 25 *l*=4/3 *ε*=0, *N*=10 20 20 l = 1.7l = 1.120 hard sphere 15 $\frac{F_{tot}}{k_{\scriptscriptstyle B}T}^{\rm 15}$ 15 Barriers *l*=1.7 15 hard sphere 10 *ε*=0, *№*=10 10 5 5 5 0 0 0.50 0.52 0.54 0.56 0.58 0.60 0.62 0.15 0.2 0.05 0.10 0.00 £=0 25 l=4/3, N=10 $\phi - \phi_c$ ε**=0.4** Ø 20 *ε*=0.7 25 F_{tot} 15 25 *ε*=0 *№*=10 hard sphere =0.4 **№**=20 $k_{\rm B}T$ 10 20 20 =0.7 №=50 $\frac{F_{tot}}{k_BT}$ 15 F_{tot} 15 hard sphere *N*=100 $k_{\scriptscriptstyle B}T_{-10}$ hard sphere 10 25 N=10 *l*=4/3, ε=0 5 5 N=20 20 *l*=4/3, *N*=10 *l*=4/3, *ε*=0 N=50 0 0 15 N=100 0.09 0.12 0.05 0.10 0.15 0.06 0.15 0.18 0.2 0.00 hard sphere 10 $\phi - \phi_c$ $\phi - \phi_c$ 5 0.50 0.52 0.54 0.56 0.58 0.60 0.6

Ø

Unique role of bond length in determining the barriers

$$\tau_{\alpha} \propto \exp\left(u_{0}^{2}/\langle u^{2} \rangle\right)$$

$$\tau_{\alpha} \propto \exp\left(a^{2}/2\langle u^{2} \rangle + \delta^{2}/8\langle u^{2} \rangle^{2}\right)$$

$$\tau_{\alpha} \propto \exp\left[\left(u_{0}^{2}/\langle u^{2} \rangle\right)^{\alpha/2}\right]$$

PNAS 112, 2966 (2015)

Unique role of bond length in the universal relationship between localization length and relaxation time.

nonmonotonicity

- Colloidal polymer is a promising model system to study glassy behavior of chain "molecules".
- The influence of chain length and rigidity on the local length scale and activated barrier is encoded in the critical volume fraction.
- In contrast, bond length plays a special role in determining the behavior of localization length and dynamic barrier.
- We find nonmonotonic dependences of structure factor, barrier height and the universal relationship on the bond length.

Backgroud

The basics of the NLE theory

The unique role of bond length in colloidal polymer glass

Simulation as the input

Possible reasons for the discrepancy:

- 1. density-controlled vs temperature-controlled
- incomplete consideration of intrachain excludedvolume interaction

Mechanical response and Active glass

r

$$\overrightarrow{} = \overrightarrow{} = \overrightarrow{\phantom$$

 τ : Applied Stress

External force on segment $\propto \sigma^2 \tau$

Instantaneous Mechanical work ~ $-\tau \Delta V \propto -\sigma^2 \tau r$

$$F_{dyn}(r;\tau) = F_{dyn}(r;\tau=0) - c\sigma^2 \tau r$$

Structural correlations **NOT** affected by stress

Brownian motion + driven by propelling force

Modified structural correlations by simulation + the stress effect?

Former PhD student: Bo-kai Zhang

Fundings:

973 Program 2012CB821505 NSFC No. 11074180, 21374073, 21574096

