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Absence of Diffusion in Certain Random Lattices
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This paper presents a simple model for such processes as spin diffusion or conduction in the “impurity
band.” These processes involve transport in a lattice which is in some sense random, and in them diffusion
is expected to take place via quantum jumps between localized sites. In this simple model the essential
randomness is introduced by requiring the energy to vary randomly from site to site. It is shown that at low
enough densities no diffusion at all can take place, and the criteria for transport to occur are given,

“All states are localized in one dimension...”
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Non-Hermitian Localization in Biological Networks

» Non-Hermitian matrices, with complex
eigenvalue spectra, arise naturally in simple
models of sparse neural (and ecological )
networks.

» Striking departures from the conventional
wisdom about localization in one-dimensional
non-Hermitian random matrices

Ariel Amir
Harvard/SEAS

» An intricate eigenvalue spectrum controls the
spontaneous activity and induced response.
Directed rings of neurons lead to a hole or
“band gap” centered on the origin in the
complex plane.

» All states are extended on the rim of this hole, Naomichi Hatano
while the states outside the hole are localized. University of Tokyo



Eigenvectors and eigenvalues |y
in biology: rabbits vs. sheep 2 ¢ 5 i<
sheep \ (3,2)
¥ dx =3x(1-x/3 | 1
O =30-x/3)
y - — o—<—
% i (1)
=
: t x(t) = number of rabbits
decoupled model: Y(t) = number of sheep

two logistic equations
Im A

linearize about the fixed point at (3,2)
x'()=x@)=3, y'(t)=y(t)-2

dx'(t) I dt N =3 0\ x'(2) 2, A
(dy'(t)/dt]N(O —ZJ(y'(t)j e Re /
x'(t) =x'(0)e™, y'(r) = y'(0)e™

two real eigenvalues:
A, =-3, A, =2, stable fixed point




Eigenvectors and eigenvalues competitive exclusion
in biology: rabbits vs. sheep

sheep
d. . ?
D 3x(l-x/3-2y/3)
dt ¥ 1
ﬁ VS.
dy " |
—=2y(1-y/2-x/2) ) |
dt i g é 3 rabbits
or.... two coupled inhibitory neurons
v, = firing rate deviation from the
background rate of the i neuron
T% =—v, +tanh [M11V1 + Mlzvz]
o (]
r% =—v, +tanh [M21V1 +M22v2]

M 0 -—s
B —g 0 S. H. Strogatz, Nonlinear dynamics and chaos. with applications to
physics, biology, chemistry, and engineering. Westview press, 2014.



Eigenvectors and eigenvalues
in biology: Rabbits vs. Sheep

§=3x(1—x/3—2y/3)
dt ¥

dy
& o2v(=v/2—x]2
» yAd-y x/2)

® .
) =

either sheep or rabbits win
or “fix” at long times...

| R

1

2 3 rabbits

Four fixed points are obtained: (0,0), (0, 2), (3,0), and (1,1).

linearize about the fixed point at (1,1)
x'(1)=x@) -1, y'(r)=»(r)-1

dx'(t) I dt -1 -2\(x'(¢)
(a’y )/ dtj N [—1 —1)( y'(t)]
two real eigenvalues control dynamics:
A =—1+~2, 1, =-1-/2

due to interactions, there is now one
stable and one unstable eigendirection

Ay

Im A

° Re A

S. H. Strogatz, Nonlinear dynamics and chaos. with applications to
physics, biology, chemistry, and engineering. Westview press, 2014.



Rabbits vs. Foxes: complex Y, () = number of rabbits
eigenvalues lead to oscillations... Y,(t) = number of foxes

X =const. density of grass
IT. LOTKA-VOLTERRA EQUATION

dY, -
=1 XY — e 1Y . . 3 O
T 1 1 2X1 12 =) 2 fixed leI‘ltLﬂe 0) fké" ;*2 )
dY. .
— = ahiYs — Y,
Stability matrix: M (Y,Ys) = ( Er]h{fz‘}ff " f.'ﬂ’fllgf Ir:.‘:_s )
. - C1X 0
1%t fixed point: M (0,0) = 0 . or.... coupled
. *3

excitatory &
m=) eigenvaluesare X, —C3 mm) Saddle Point mhlbltory

ey o1 X ( 0 _FR) neurons
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b o Co ) 1N 0
1 E
==) eigenvalues are +i\/c3c; X ™% Center




Fray-Predator Cycles

II. LOTKA-VOLTERRA EQUATION

lojep=ld




Random matrix theory applied to N-species ecology models (N >> 1)

1. Assume each species in isolation would obey a stable logistic equation
with stable eigenvalue -1 then switch on random interactions of either sign

=x,(1-x)—- ZByxlx], Letx,'(#) =x,(t) —x*=x-1 R. M. May. Nature,
s 238 413 (1972)
2. %, (t zﬁ:A X, '(¢), x'(¢) 1s an N-component vector of species
j=1
deviations from the logistic fixed point (x,*x,*,...,x,*) =(11,...,1)
3. A~—I —C, where C is an N-component interaction matrix with zero unstable modes
mean for each element and each with standard deviation o \

The spectrum of C is a uniform distribution
of complex eigenvalues in unit circle

In the complex plane of radius oV N.
Universal density of states for large N!

"Girko's Law"
Any ecological system becomes
unstable for sufficiently large N!




Random Matrices in Neuroscience

Spike rate r(t) o
depends on Rk s o
orientation of bar — C

moving across the

Visual stimulus s(t)
transferred from retinal
neurons > LGN -
V1 region of the visual
coretex

lateral

/—' geniculate (LGN)

visual field nucleus
60 e === Gl
spike rate « * , agortex
. tP ) \4@ g b
uning Ny ——~"
40 curve r(t) 2 j
lateral
geniculate
30+ _ hucleus
20 ]
Pathway from the retina through
10 the lateral geniculate nucleus
0 e . | | | (LGN) to the primary visual cortex

signal S(t): orientation in degrees Dayan and Abbott: Theoretical Neuroscience



Random matrix models of the brain (H. Sompolinsky, L. Abbott et alia)

» Random neural connections can be formed during development, with many
stochastic attachments of axons and dendrites to other neurons.

» Over time, pruning and strengthening/weakening of connections allow neural
circuits to "learn" various functions. .
Girko’s Law

» The spectra and eigenfunctions of completely
random neural networks with a mixture of inhibitory
and excitatory connections, can describe neural
activity during the early stages of development.
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K. Rajan, 2009 Spontaneous and Stimulus-driven Network

Dynamics. Doctoral Dissertation, Columbia University. | LS




Random matrix model of a sparse neural network

Sensory inputs, possibly

after a processing step, are

ua2) Sentvia feed forward
couplings into a circular

2 ring of N neurons Note that
M(1,2) and M(2,1) can not
only be unequal, but also of
opposite sign, if one
direction is excitatory and
the other inhibitory.

v, = firing rate deviation from background of the i” neuron in recurrent network

u; = Input firing rate of the 7™ neuron in the input (feed forward) network

dv, N 3
r—’:—vl-+tanh ZMijvj"'hi ’ hi:ZWijuJ

dt j= =

@,

N
~-v,+ > M, +h (linear approximation)
j=1

T
dt



Non-Hermitian neural networks with random excitatory
(M(i,j) > 0) and Inhibitory (M(i,j)< 0) connections

N
M= [sie [7)(i+1 +s5e | +2) (]
j=1

g provides a systematic clockwise (g > 0) or
counterclockwise (g < 0) directional bias

Study eigenvalues and eigenvectors of directed,
banded non-Hermitian random matrices

0 se 0 sye ®
. Ling sse 0 s,€f 0
s, s, ==x1, Indep. _ . :
2= TR ey o) 0 et . 0
random variables; _ 0 : b g
: ' Sy_1€
Set g = 0 for now = random L
g =0f syet .. 0 s,.e° 0

sign model of J. Feinberg and
A. Zee, PRE 59 6433 (1999)



Eigenvalue distribution in the complex plane A = 4, +i4,
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Result of exact diagonalization of 10,000 N x N matrices with N=5000andg=0
(Suppress negative relaxation rate: Spectrum How localized are

now shifted to be centered on origin....) the eigenfunctions??



Eigenfunctions within circle on right side

What does are highly localized w/real eigenvalues
“localization” mean? A
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What iS the eﬂ:ECt Of > Excitatory (glutamate)

the bias parameter g? - — = -> Inhibitory (GABA)
g>0
_O_g Sl+ Oeg +Og O Sy o8 , P > ;\
5 € 5, € \\\~
M=l 0 se* - 0 @ @
) 0 S;_leg \\‘ / |
stet L. 0 s,,0° 0 L . /

+ _ - T _g=
s; =+ % = +1 with equal prObablllty As g increases from 0, it tunes down the

0<g<o (noDale's law for now) amount of feedback in a “feed clockwise”
recurrent network...
@

Hidden

Similar layered neural nets
used for image & sound
classification, etc. in machine
learning algorithms.

Many layers = “deep learning”



Effect of a directional bias around the chain (g > 0)

N =5000, g=0.0

12




Effect of a directional bias around the chain (g > 0)

N =5000, g=0.002




Effect of a directional bias around the chain (g > 0)

N =5000, g=0.01

12




Effect of a directional bias around the chain (g > 0)

N =5000, g=0.05

12

As the network becomes
increasing feed-clockwise,
a gap or hole appears in
the eigenvalue spectrum
in the complex plane...



Effect of a directional bias around the chain (g > 0)

N =5000, g=0.1

2




Effect of a directional bias around the chain (g > 0)

N =5000, g=0.2

12




Effect of a directional bias around the chain (g > 0)

N =5000, g=0.5

12

These states move
around the ring —
they delocalize...




|_ocalization lengths

and edge states
Define inverse participation ratio

IPREZW“ /Z\qﬁj\z

IPR ~ inverse localization length

TmaglA]
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Real[A]

Eigenvalue spectrum for g = 0 (or, for
any g with open boundary conditions!)

» Many extended states.... Localization length diverges
on the rim of the hole when g > 0 = extended states

extended state: ¢, ~1/ JN, V]
PR=Y|p[ 13 ]p| ~11 N <<1

J J
localized state, ¢, ~exp[-|x; —x, |[/&,.]

PR=Y | 13 ]g,| =0

—0.15

Tmag[A]

—0.1

-0.05

=,

-2 -1.5 -1 -05 0 0.5 1 1.5 2
Reall )

Eigenvalue spectrum for g =0.1
with periodic boundary conditions
Hole states become edge
states for open boundary
conditions when g > 0



The shape Contours of constant inverse localization length «(E,, E,)
obtained by solving the electrostatic "Thouless relation”
of the hole

VZK(EliEz) =®(E,, L))

I'maglA]
R S I R - T S T R S

Inverse localization length

for g > 0 given by ‘

x(E,E, g) =x(E,E,0)-g




What about Dale’s @

v/ \v N=5¢g=0.0
law? All neurons Aoa
must be purely G- \~@ e

excitatory or

Inhibitory.... - -
- N — i . .
M = —Zl [Sj e ‘j+1> <]‘ tS,e ) ‘]><J +1[| \IjaegLabCIZszvltl/i’:fxnoanI\r/nN of

= l

them...
N

G =—;ak e [k +1) (k| + e |k —1)(k]]

The spectra and eigenfunctionsof M and G are essentially identical! The spectral
properties are determined in both cases by above/below diagonal products such as
M(j,j+)-M(j+1 j)=ss; and G(j,j+1)-G(j+Lj)=0,0,,,

which have identical statistics!!



Large g spectra: perturbation theory about a “delay ring”

0 s 0 sye
s;ef 0 syef 0 After a similarity
_ +,-8 " " I
M=l 0 sle . : 0 transformation
O S]:,_leg 1
) o M—>M'=A+B
Sye’ 0 syqe” 0
N=4 / \ [ \
0100 000 b Eigenvectors of A
are plane waves
0010 000
A — 9 _ B=¢1 oB — piki L — o—ikj
0001 06,00 k=2mn/N,n=0,1...(N —1)

\1000/ b.:S;S]_. \U{]bglj)

A = eI + 6_9[6_%(51 + ba... + b1 + bn)/N] = random walk



Large g limit: Plane wave states, all eigenfunctions delocalized

..........
0. .0
+* *

» Trajectories of eigenvalues for N=100 _
and values of g decreasing from 1 I
down to zero.

» Eigenvalues "flow" in the complex
plane. :; ;:

» Motion stops once eigenvalues i ) :
localize

.
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Im A

The gap rimmed by extended states Is robust...

st =+1 s, =+, N=1000,

Single box distribution
N=1000,g=0.5

N
g = 0.1, but with diagonal randomness P(s)
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Energy gap 4 ! ‘ ' I T 4— T [
and rings of
extended states

also appear for 2|
coupled neural

clusters ~<
— o
i extended [

1000 triangular P . states
neural clusters, —2 r YARN 25N &

obeying Dale’s law, Y

and coupled together e é : “Band theory” for

to form a ring v neural networks?

Layered neural - =’ 0 2

network with tunable
back propagation RP A




Non-Hermitian Localization in Ecological and Neural Networks

» Non-Hermitian matrices, with complex
eigenvalue spectra, arise naturally in simple J ﬁank #Ou ,,
models of complex ecosystems, and neural
networks.

» Striking departures from the conventional
wisdom about localization arise in the one-
dimensional non-Hermitian random matrices
that describe sparse neural and ecological
networks.

» An intricate eigenvalue spectrum controls the
spontaneous activity and induced response.
Directed rings of neurons lead to a hole
centered on in the density of states in the
complex plane.

» All states are extended on the rim of this hole,
while the states outside the hole are localized.

Naomichi Hatano



