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Outline

 A brief introduction to Kitaev honeycomb model

 The construction of exactly solvable models

 Generating new models: 1D, 2D and 3D

 A particular example in 2D: a Mott insulator model 

 3D examples and possible realization in real 

materials



Kitaev Honeycomb model

Kitaev (2006)

 Exact solvability

 Quantum paramagnet 

 SU(2) invariant ground state

 Emergent SU(2) symmetry

 Fractional spin excitations

 Topologically distinct phases

 Two spins per unit cell

Spin-1/2 model (compass model)

Feng, Zhang, Xiang (2007); Chen, Nussinov (2008)

Brick-wall representation



Existing generalizations

 Spin-1/2 models in 2D

 Yao, Kivelson (2007); Yang, Zhou, Sun (2007); Baskaran, Santhosh, Shankar 

(2009); Tikhonov, Feigelman (2010); Kells, Kailasvuori, Slingerland, Vala (2011); …

 Spin-1/2 models in 3D

 Si, Yu (2007); Ryu (2009); Mandal, Surendran (2009); Kimchi, Analytis, Vishwanath

(2014); Nasu, Udagawa, Motome (2014); Hermanns, O'Brien, Trebst (2015); 

Hermanns, Trebst (2016); …

 Multiple-spin interactions

 Kitaev (2006); Lee, Zhang, Xiang (2007); Yu, Wang (2008); …

 SU(2)-invariant models

 F. Wang(2010); Yao, Lee (2011); Lai and O. I. Motrunich (2011); …

 Higher spin models

 Yao, Zhang, Kivelson (2009); Wu, Arovas, Hung (2009); Chern (2010); Chua, Yao, 

Fiete (2011); Nakai, Ryu, Furusaki (2012); Nussinov, van den Brink, (2013); …



Our goals

 Provide some generic rules for searching generalized Kitaev

spin-1/2 models in arbitrary dimensions.

 Constrict ourselves on spin-1/2 models.

 Demonstrate some models of particular interest.



Construction of spin-1/2 models

Basic idea: ① Construct exactly solvable 1D spin chains and ② then 

couple them to form a connected lattice in arbitrary dimensions.

Steps:

① Construct spin-1/2 chains that can be exactly solved by  the 

Jordan-Wigner transformation.

② Couple these chains to form a connected lattice on which the 

spin-1/2 model can be still exactly solved by the Jordan-Wigner 

transformation.

Parquet rules:

① Elementary rules

② Supplementary rules



Sites and links on a lattice

 Consider a 𝒅-dimensional cube, 𝒅 = 𝟐, 𝟑, 𝟒,⋯
 Site labelling: 𝒏 = 𝒏𝟏, 𝒏𝟐, ⋯ , 𝒏𝒅 , 1 ≤ 𝒏𝒋 ≤ 𝑳𝒋, 𝒋 = 1,⋯,𝒅

 Ordering of sites

 Define a number,𝑵 = 𝒏𝟏 + σ𝒋=𝟐
𝒅 𝒏𝒋 − 𝟏 ς

𝒍=𝟏
𝒋−𝟏

𝑳𝒋 , for each site 𝒏;

 If 𝑵 < 𝑴, then 𝒏 < 𝒎.
 Link: a pair of sites (𝒏,𝒎)

 Local link: σ𝒋=𝟏
𝒅 𝒏𝒋 −𝒎𝒋 = 𝟏

 Nonlocal link: σ𝒋=𝟏
𝒅 𝒏𝒋 −𝒎𝒋 > 𝟏

ordering of sites local and nonlocal links



Construction rules 

Interactions

 𝐻𝑙𝑜𝑐𝑎𝑙
(2)

: local two−spin terms, 𝐽
𝑛,𝑛+෡1
𝛼𝛽

𝜎𝑛
𝛼𝜎

𝑛+෡1
𝛽

and 𝐽𝑛,𝑛+෠𝑘
𝑧𝑧 𝜎𝑛

𝑧𝜎𝑛+෠𝑘
𝑧 ;

 𝐻𝑛𝑜𝑛𝑙𝑜𝑐𝑎𝑙
(2)

: nonlocal two−spin terms, 𝐽𝑛𝑚
𝑧𝑧 𝜎𝑛

𝑧𝜎𝑚
𝑧 ;

 𝐻𝑛𝑜𝑛𝑙𝑜𝑐𝑎𝑙
(𝑀)

: nonlocal multiple−spin terms, 𝐽𝑛𝑚
𝛼𝛽
𝜎𝑛
𝛼 ς𝑛<𝑙<𝑚𝜎𝑙

𝑧 𝜎𝑚
𝛽
, etc.,

where 𝛼, 𝛽 = 𝑥, 𝑦, and ෠𝑘 = ෠1,⋯ , መ𝑑.

Model Hamiltonian

𝐻 = 𝐻𝑙𝑜𝑐𝑎𝑙
(2)

+ 𝐻𝑛𝑜𝑛𝑙𝑜𝑐𝑎𝑙
(2)

+ 𝐻𝑛𝑜𝑛𝑙𝑜𝑐𝑎𝑙
(𝑀)



 Firstly, divide the lattice into white (w) and black (b)  sublattices

arbitrary.

 Elementary rules:

① For a (local or nonlocal) link (𝑛,𝑚):
an 𝑥-bond is allocated for 𝑛 ∈ 𝑤 and 𝑚 ∈ 𝑏;  

a 𝑦-bond is allocated for 𝑛 ∈ 𝑏 and 𝑚 ∈ 𝑤;  

an 𝑥𝑦-bond is allocated for 𝑛 ∈ 𝑤 and 𝑚 ∈ 𝑤; 

a 𝑦𝑥-bond is allocated for 𝑛 ∈ 𝑏 and 𝑚 ∈ 𝑏;

② Different 𝑧-bonds are not allowed to share the 

same site.

𝝈𝒏
𝒙𝝈𝒎

𝒙

𝝈𝒏
𝒚
𝝈𝒎
𝒚

𝝈𝒏
𝒙𝝈𝒎

𝒚

𝝈𝒏
𝒚
𝝈𝒎
𝒙

Construction rules 

beyond compass models 

𝒙𝒚−bond

𝒛−bond

𝒙−bond

𝒚−bond

𝒚𝒙−bond

𝝈𝒏
𝒛𝝈𝒎

𝒛



Exactly solvability: quadratic fermion terms

Construction rules 

Jordan-Wigner transformation Majorana fermion representation

𝑱
𝒏,𝒏+෡𝟏

𝜶𝜷
𝝈𝒏
𝜶𝝈

𝒏+෡𝟏

𝜷

𝑱𝒏𝒎
𝜶𝜷

𝝈𝒏
𝜶 ෑ

𝒏<𝒍<𝒎
𝝈𝒍
𝒛 𝝈𝒎

𝜷

All the possible quadratic γ−fermion
terms by J−W transformation.



Exactly solvability: biquadratic fermion terms

Construction rules 

Majorana fermion representation

" − ": 𝑛 & 𝑚 ∈ the same sublattice
" + ": 𝑛 & 𝑚 ∈ opposite sublattice

𝐽𝑛𝑚
𝑧𝑧 𝜎𝑛

𝑧𝜎𝑚
𝑧

 Elementary rules:

① …

② Different 𝑧-bonds are not allowed 

to share the same site.

෡𝐷𝑛𝑚, ෡𝐷𝑛′𝑚′ = 0, ෡𝐷𝑛𝑚, 𝐻 = 0.

𝐷𝑛𝑚 ∶ a set of good quantum #s

෡𝐷𝑛𝑚
2 = 1 ⇒ 𝐷𝑛𝑚 = ±1

Static 𝒁𝟐 gauge field

 The eigenstates can be divided into
different sectors according to 𝐷𝑛𝑚 .

 In each sector, allowed spin terms are
trasformed to quadratic γ−fermion
terms.



To lift the local degeneracy: couple isolated 𝜼𝒏 using nonlocal terms

Construction rules 

Separation of degrees of freedom
Majorana fermion representation

It is possible that some isolated 𝜂𝑛 do not show up in 𝐻𝜂 ⇒ local degeneracy

quadratic 𝛾−fermion termsquadratic 𝜂−fermion terms



Construction rules 

quadratic 𝛾−fermion termsquadratic 𝜂−fermion terms

Duality

 A similar duality relates topological trivial and 

non-trivial phases in interacting Kitaev chains.

J.J. Miao, H.K. Jin, F.C. Zhang, YZ (2017)

𝑤 ⟺ 𝑏
𝛾 ⟺ 𝜂

A way to construct new models



Shortcut multiple-spin interactions

Construction rules 

New multiple-spin interaction



 Supplementary rules:

① To add 𝜂-fermion quadratic terms using a nonlocal link (𝑛,𝑚): 𝑛 and 𝑚
are not allowed to  coincide with site connected by existing z-bonds in the 

original Hamiltonian constructed subjected to the two elementary rules.

② To add shortcut multiple-spin interactions: for a step along the ෠1-direction, 

the two-spin term should be 𝜎𝑙
𝛼𝜎

𝑙+෡1
𝛽

with 𝛼, 𝛽 = 𝑥, 𝑦; for a step along the 

other directions, the two-spin terms should be 𝜎𝑙
𝑧𝜎𝑙+𝛿

𝑧 with 𝛿 ≠ ෠1, and 

there must exist a local 𝑧-bond on this step in the original Hamiltonian.

③ In the above, the indices 𝛼 and 𝛽 should be chosen as follows: for 𝑙 ∈ 𝑤
and 𝑙 + ෠1 ∈ 𝑏, (𝛼, 𝛽) = (𝑥, 𝑥); for 𝑙 ∈ 𝑏 and 𝑙 + ෠1 ∈ 𝑤, (𝛼, 𝛽) = (𝑦, 𝑦); 
for 𝑙 ∈ 𝑤 and 𝑙 + ෠1 ∈ 𝑤, (𝛼, 𝛽) = (𝑥, 𝑦); for 𝑙 ∈ 𝑏 and 𝑙 + ෠1 ∈ 𝑏, 

(𝛼, 𝛽) = (𝑦, 𝑥).

Construction rules 



Generating new models: 1D examples

Three parent models in 1D

𝑤 ⟺ 𝑏
𝛾 ⟺ 𝜂

(1) duality

Dual models in 1D

𝒙𝒚−bond

𝒛−bond

𝒙−bond

𝒚−bond

𝒚𝒙−bond



Generating new models: 1D examples

Three parent models in 1D

(2) split one site and insert a local bond

Models with enlarged unit cell

𝒙𝒚−bond

𝒛−bond

𝒙−bond

𝒚−bond

𝒚𝒙−bond



Generating new models: 1D examples

(3) erase bonds and add nonlocal bonds

𝒙𝒚−bond

𝒛−bond

𝒙−bond

𝒚−bond

𝒚𝒙−bond



Generating new models: from 1D to 2D

Two parent models in 2D

couple through 𝒛−bond

𝒙𝒚−bond

𝒛−bond

𝒙−bond

𝒚−bond

𝒚𝒙−bond



Generating new models: 2D examples

Duality transformation can be performed along each chain independently.

𝒙𝒚−bond

𝒛−bond

𝒙−bond

𝒚−bond

𝒚𝒙−bond



Generating new models: 2D examples

Split sites and insert nonlocal bonds

𝒙𝒚−bond

𝒛−bond

𝒙−bond

𝒚−bond

𝒚𝒙−bond



Generating new models: 3D examples

Two parent models in 3D Three types of unit cells



Elementary plaquette & Flux operator

𝑯𝟎: two−spin interactions

𝑯𝟏: four−spin interactions
→ lift local degeneracy

2D example: a Mott insulator model



2D example: a Mott insulator model

Majorana representation
Jordan-Wigner transformation

Static Z2 gauge field:



2D example: a Mott insulator model

𝑯𝟎: Absence of 𝜼𝟑 → 𝟐𝑳𝒙𝑳𝒚/𝟐−fold degeneracy
𝑯𝟏: Lift the local degeneracy

Majorana representation

Exact solvability: Given 𝑫𝒓 = ±𝟏 → Both 𝑯𝟎 and 𝑯𝟏 are quadratic form.

Separation of degrees of freedom



2D example: a Mott insulator model

Ground state: 𝝅 − flux state, 𝝓𝒑 = −𝟏, on every plaquette

𝑯𝟏: Free Majorana fermions 𝜼𝟑 on a square
lattice, coupled to a static 𝒁𝟐 gaugefield 𝑫𝒓

Lift the local degeneracy

Energy dispersion: 𝝅 − flux state



2D example: a Mott insulator model

Boundary conditions: open BC vs. periodic BC

Boundary terms — JW transformation

Fluxes on edge plaquettes

Open boundary condition Periodic boundary condition

 Good quantum #s: 𝐷 Ԧ𝑟

 2𝐿𝑦-fold degeneracy: Majorana

zero modes at edges

 Good quantum #s: {𝜙𝑝, Φ𝑥, Φ𝑦}

 𝑍2 global fluxes:  Φ𝑥, Φ𝑦



2D example: a Mott insulator model

Degrees of freedom: a 𝟑 × 𝑳𝒙 × 𝑳𝒚 lattice

 Possible spin states: 23𝐿𝑥𝐿𝑦

 Possible fermion states: 23𝐿𝑥𝐿𝑦+1

 {𝜙𝑝, Φ𝑥, Φ𝑦}: 2
𝐿𝑥𝐿𝑦+1

 {𝜂 Ԧ𝑟,3, 𝛽Ԧ𝑟,1, 𝛽Ԧ𝑟,2, 𝛽Ԧ𝑟,3}: 2
2𝐿𝑥𝐿𝑦

Half of the states in the fermion 

representation are unphysical.

Projection: to remove the unphysical states

Origin: {𝜙𝑝, Φ𝑥, Φ𝑦} is presumed.

① For a given set of {𝜙𝑝, 𝛷𝑥, 𝛷𝑦}, the projection ෠𝑃 survives half fermionic states 

with compatible 𝐹.

② A physical spin excitation should be composed of even number of fermions.

total fermion # parity:

Deductions: 



2D example: a Mott insulator model

Ground states: topological degeneracy

 Ground states: 𝝅 − flux states

 Unprojected degenerate ground states: 

Φ𝑥 = ±1,Φ𝑦 = ±1

 Topological degeneracy: ∆𝐸 ∝ 1/𝐿

 Projection: survives 3 ground states

 ෠𝑃| ۧ𝐺 Φ𝑥=Φ𝑦=1 = 0 for 𝐿𝑥 , 𝐿𝑦 = 𝑒𝑣𝑒𝑛

 Pairing terms vanish at 𝑞𝑥 = 𝑞𝑦 = 0

 Robust against disorders

3-fold topological degeneracy on a torus



2D example: a Mott insulator model

Bulk spinon excitations

 𝝅 − flux states: magnetic unit cell

 6 sites in each magnetic unit cell

 Six bands for 𝛽-Majorana fermions

 Two point nodes:  0,0 and (0, π)

 Dirac-like dispersion around nodes



2D example: a Mott insulator model

Breaking time-reversal symmetry (TRS)

 Magnetic field

 3rd order perturbation: exactly solvable

 Chern numbers

 5th order perturbation: open a gap for 𝜂3 MFs



2D example: a Mott insulator model

Breaking time-reversal symmetry (TRS)

 Z2 vortices

 PBC: even # of vortices

 A pair of vortices

 One Majorana zero mode (MZM) 

in each vortex core center

 Extra double degeneracy due to 

MZMs?

 MZM changes Fermion # parity 

→ Projection removes half states.

 4-fold GS degeneracy regarding 

global fluxes Φ𝑥 and Φ𝑦

 𝟐𝒏 well-separated vortices

 2𝑛+1-fold degeneracy



2D example: a Mott insulator model

Summary

 Mott insulator model: odd number of spin-1/2 per unit cell.

 Algebraic quantum spin liquid ground state.

 Ground states are of three-fold topological degeneracy.

 Bulk spinon excitations: two Dirac nodes.

 Breaking TRS

 Topologically nontrivial spinon bands: odd Chern numbers.

 Z2 vortices obey non-Abelian statistics.



More models in 3D

Si, Yu (2007); Ryu (2009); Mandal, Surendran (2009); Kimchi, Analytis, Vishwanath (2014); Nasu, 

Udagawa, Motome (2014); Hermanns, O'Brien, Trebst (2015); Hermanns, Trebst (2016)

Generate new models from an existing model.

hyperhoneycomb hyperoctagon



Possible material realization

Metal organic framework (MOF)

Hyerhoneycomb: Cu-network

Zhang, Baker, …, Pratt, et. al. (2018)



Summary

 Construct a class of generalized Kitaev spin-1/2 

models in arbitrary dimensions

 Beyond the category of quantum compass models

 Provide some methods to generate new models 

from existing models.

 A particular 2D example: Pristine Mott insulator.



Thank you for attention


