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Chapter 1

Quantum Mechanics as a Machine
Learning Problem

Every machine learning approach has two fundamental ingredients.

1. The machine: typically an artificial neural-network, it is a highly dimensional
(non-linear) function F (x; p1 . . . pNp) of the parameters p1 . . . pNp

2. The learning: the parameters p are learned on the basis of a stochastic optimiza-
tion, that minimizes some average loss function 〈L〉(p) on a dataset x1,x2 . . .xNs .
For example L(xi) = |F (xi;p)− yi| ,in the supervised learning setting with ex-
pected labels yi.

On the other hand, the central goal in quantum mechanics is to find a solution to
Schroedinger equation

H|Ψi〉 = Ei|Ψi〉, (1.1)

for i = 0, 1, . . . and E0 < E1 < . . . . How can we reduce quantum mechanics then to a
machine learning problem?

First of all, I will address the requirement 2, which has been done by pioneers in
computational quantum physics like Bill McMillan, in the 60s. Then, I will address
requirement 1, which has been done instead only very recently, thus completing the
connection between machine learning and quantum mechanics.

1.1 Variational Monte Carlo

To satisfy requirement 2, we need to transform this eigenvalue problem (1.1) into a
stochastic optimization problem. To achieve this, we start from an alternative for-
mulation of Schroedinger’s equation, based on the variational principle. In particular,
consider the energy functional:

E[Ψ] = 〈Ψ|H|Ψ〉 ≥ E0, (1.2)

where Ψ is some arbitrary physical state, and E0 is the exact ground-state energy of
the Hamiltonian H. From the variational theorem it is then clear that one can find the
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exact ground-state wave-function as the solution of the optimization problem:

Ψ0 = argminΨE[Ψ]. (1.3)

For an arbitrary state Ψ, however it is seldom possible to compute analytically
the energy functional, since it involves integrals over a high-dimensional space. To
solve this problem, in the 60s McMillan realized that the energy functional can be
computed stochastically. [McMillan1965] In particular, the Variational Monte Carlo
method is rooted into the observation that expectation values like (1.2) can be written
as statistical averages over a suitable probability distribution.

Let us assume that our Hilbert space is spanned by the many-body kets |x〉. These
in practice depend on the system in exam. For example in the case of spins 1/2 we would
typically have |x〉 = |σz1, σz2, . . . σzN〉, for second-quantized fermions |x〉 = |n1, n2, . . . nN〉,
for particles in continuous space |x〉 = |~r1, ~r2, . . . ~rN〉. The only difference is of course
that in the first two cases one has a discrete set of quantum numbers, whereas in the
latter case the degrees of freedom are continuos. In both cases we will denote sums
over the Hilbert space with discrete sums, although one should always bear in mind
that in the case of continuous variables these sums must be interpreted as integrals. In
particular we will use the closure relation

∑
x |x〉〈x| = 1.

1.1.1 Stochastic Estimates of Properties

Using the closure relation, we can rewrite a generic quantum expectation value of some
operator O as

〈Ψ|O|Ψ〉
〈Ψ|Ψ〉

=

∑
x,x′〈Ψ|x〉〈x|O|x′〉〈x′|Ψ〉∑

x〈Ψ|x〉〈x|Ψ〉
(1.4)

=

∑
x,x′ Ψ?(x)Oxx′Ψ(x′)∑

x |Ψ(x)|2
. (1.5)

There can be, in general, two cases:

1. The operator O is diagonal in the computational basis, i.e. Oxx′ = δxx′O(x).
Then

〈Ψ|O|Ψ〉
〈Ψ|Ψ〉

=

∑
x |Ψ(x)|2O(x)∑

x |Ψ(x)|2
(1.6)

≡ 〈〈O〉〉, (1.7)

where 〈〈. . . 〉〉 denote statistical expectation values over the probability distribu-
tion Π(x) = |Ψ(x)|2. In other words, in this case quantum expectation values are
completely equivalent to averaging over Hilbert-space states sampled according
to the square-modulus of the wave-function.

2. The operator O is off-diagonal in the computational basis. Then, we can define an
auxiliary diagonal operator (often called, in a somehow misleading fashion, local
operator or estimator)

Oloc(x) =
∑
x′

Oxx′
Ψ(x′)

Ψ(x)
, (1.8)
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such that it is easily proven that

〈Ψ|O|Ψ〉
〈Ψ|Ψ〉

=

∑
x |Ψ(x)|2Oloc(x)∑

x |Ψ(x)|2
(1.9)

≡ 〈〈Oloc〉〉. (1.10)

For any observable, then, we can always compute expectation values over arbitrary
wave-functions as statistical averages. In the case of off-diagonal operators, it should
be noticed that the sum

∑
x′ Oxx′

Ψ(x′)
Ψ(x)

, is extended to the tiny portion of the Hilbert

space for which x′ is such that Oxx′ 6= 0. For the great majority of physical observables,
and for a given x, the number of elements x′ connected by those matrix elements is
polynomial in the system size, thus the summation can be carried systematically. This
has to be contrasted instead to the summations in

∑
x |Ψ(x)|2, where one typically

has an exponentially large number of possible values of x on which to perform the
summation, and therefore cannot be done by brute-force. The powerful idea of the
Variational Monte Carlo, is therefore to replace these sums over exponentially many
states, with a statistical average over a large but finite set of states sampled according to
the probability distribution Π(x). We therefore have a way to compute, stochastically,
the expectation value of all the properties of interest. For example we might want to
compute the expectation value of σxi for a spin system, the expectation value of c†icj for
fermions, or even the expectation value of the interaction energy Wee(~r1 . . . ~rN) for our
electronic structure problems.

1.1.1.1 Energy

An immediate corollary of the previously presented scheme, is that also the expectation
value of the Hamiltonian H (which is itself a generic off-diagonal operator) can be
computed using the estimator (1.10). Historically, the local estimator associated to the
Hamiltonian is called “local energy”:

Eloc(x) =
∑
x′

Hxx′
Ψ(x′)

Ψ(x)
. (1.11)

1.2 Stochastic Variational Optimization

The final goal we want to achieve here is to optimize the variational energy. In practice,
we assume that the wave function depends on some (possibly millions of) parameters
p = p1, . . . pM . We have seen that the expectation value of the energy can be written
as a statistical average of the form

〈H〉 ' 〈〈Eloc〉〉. (1.12)

It is easy to show that also the gradient of the energy can be written under to form of
the expectation value of some stochastic variable. In particular, define

Dk(x) =
∂pkΨ(x)

Ψ(x)
, (1.13)
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then

∂pk〈H〉 = ∂pk

∑
x,x′ Ψ?(x)Hxx′Ψ(x′)∑

x |Ψ(x)|2

=

∑
x,x′ Ψ?(x)Hxx′Dk(x

′)Ψ(x′)∑
x |Ψ(x)|2

+

∑
x,x′ Ψ?(x)D?

k(x)Hxx′Ψ(x′)∑
x |Ψ(x)|2

−
∑

x,x′ Ψ?(x)Hxx′Ψ(x′)∑
x |Ψ(x)|2

∑
x |Ψ(x)|2 (Dk(x) +D?

k(x))∑
x |Ψ(x)|2

=

∑
x,x′

Ψ?(x)
Ψ?(x′)

Hxx′Dk(x
′)|Ψ(x′)|2 +

∑
x,x′ |Ψ(x)|2Hxx′D?

k(x
′)Ψ(x′)

Ψ(x)∑
x |Ψ(x)|2

−〈H〉
∑

x |Ψ(x)|2 (Dk(x) +D?
k(x))∑

x |Ψ(x)|2

' 〈〈ElocD
?
k〉〉 − 〈〈Eloc〉〉〈〈D?

k〉〉+ cc. (1.14)

We can therefore compactly write ∂pk〈H〉 ' 〈〈Gk〉〉, with the gradient estimator being

Gk(x) = 2Re [(Eloc(x)− 〈〈Eloc〉〉)D?
k(x)] . (1.15)

1.2.1 Zero-Variance Property

One of the most interesting feature of the energy and energy-gradient estimators so-
far presented is that they have the so-called zero-variance property: their statistical
fluctuations are exactly zero when sampling from the exact ground-state wave-function.
Let us consider for example

var(Eloc) = 〈E2
loc〉 − 〈Eloc〉2

=
∑
x

Ψ(x)2Eloc(x)2 − 〈H〉2

=
∑
x

∑
x1

Hx,x1Ψ(x1)
∑
x2

Hx,x2Ψ(x2)− 〈H〉2

=
∑
x1

Ψ(x1)
∑
x

Hx,x1

∑
x2

Hx,x2Ψ(x2)− 〈H〉2

= 〈H2〉 − 〈H〉2, (1.16)

where we have assumed for simplicity that the wave-function is real. Therefore the
variance of the local energy is an important physical quantity: the energy variance. It
is easy to see that if Ψ is an eigenstate of H then 〈H2〉 = 〈H〉2 = E2

0 , and var(Eloc) = 0,
i.e. the statistical fluctuations completely vanish. This property is very important
since it also implies that, in a sense to be specified below, the closer we get to the
ground-state, the less fluctuations we have on the quantity we want to minimize, the
energy.
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1.2.2 Stochastic Gradient Descent

The gradient descent method is the simplest optimization scheme, where at each itera-
tion i the variational parameters are modified according to

pi+1
k = pik − η∂pk〈H〉, (1.17)

where η is a (small) parameter called the “learning rate” in the machine learning com-
munity. An important difference with respect to the non-stochastic (deterministic)
gradient descent approach, is that now we only have stochastic averages of the gradient
which is therefore subjected to noise. Let us assume for simplicity that all the compo-
nents of the gradient are subjected to the same amount of gaussian noise with variance
σ,i.e.

∂pk〈H〉 = Normal (〈Gk〉, σ) . (1.18)

We can then compare Eq. 7 to the discretized Langevin equation:

pi+1
k = pik − δt〈Gk〉+ Normal

(
0,
√

2δtT
)
, (1.19)

where δt is a small time step. This equation samples the Boltzmann distribution

ΠB(p1 . . . pM) = e−
〈H〉
T , (1.20)

which in the limit T → 0 would converge to the variational ground-state, i.e. to
minp〈H〉(p). We therefore see that the variance of the gradient corresponds to the
effective temperature as

σ2 = var(Ḡk) = 2T/δt (1.21)

η = δt. (1.22)

Since we want to find the variational ground state, we should have a scheme in which
the temperature is gradually decreased at each optimization step, i.e. T1 > T2 > T3 . . . ,
as in the simulated annealing optimization protocol. The first thing we notice is that
σ2 ' 1

Ns
, decreases like the number of samples in the Markov chain, therefore

T =
ηvar(Ḡk)

2
(1.23)

∝ η

Ns

var(Gk) (1.24)

and convenient ways to reduce the temperature are either to reduce the learning rate:
η(i) = η0/

√
i+ 1 or to increase the number of samples with the iteration count.

During the optimization however if often happens that if we are close enough to the
ground-state solution var(Gk) → 0. Indeed, it is easy to show that for an exact eigen-
state the statistical fluctuations of the gradient are exactly vanishing, i.e. var(Gk) = 0.
In practice then, even a constant number of samples and a fixed (small) η are sufficient
to converge to the ground-state, provided that one checks during the optimization that
the value of the effective temperature (1.23) is actually going to zero as expected.
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1.3 Example: Jastrow Factors

Let us give a specific example of variational states, we consider now a system of inter-
acting particles in continuous space, for which the most general Hamiltonian is

H = − ~2

2m

N∑
i

∇2
~ri

+
∑
i

V1(~ri) +
∑
i<j

V2(~ri, ~rj), (1.25)

where V1 and V2 are generic one and two-body interaction potential.
We now define the exact Jastrow-Feenberg expansion for the many-body state:

Ψp(~r1, . . . ~rN) = Ψ0(~r1, . . . ~rN)× exp

[∑
i

J1(~ri) +
1

2

∑
i 6=j

J2(~ri, ~rj) +

+ . . .
1

p!

∑
i1 6=i2 6=...ip

Jp(~ri1 , ~ri2 . . . ~rip)

 , (1.26)

where Ψ0(~r1, . . . ~rN) is some parameter-independent wave-function, and the variational
parameters are the functions J1(~r),J2(~r, ~r′),... Jp(~r1, ~r2 . . . ~rp). These expansion is clearly
exact when p = N , however in practice one observes convergence to the exact ground-
state much sooner, and typically p = 2, 3 are enough to obtain very accurate results.

1.3.1 One-dimensional trapped particles

As a simple exercise one can consider single-particle, one-dimensional Hamiltonians of
trapped particles, for which V1(x) is an even function of x and V2 = 0 (non-interacting
particles). In this case (for symmetry reasons) one can write the function expansion
J1(x) = p1x

2 + p2x
4 + . . . , where p1 ,p2 etc are the parameters to be determined

variationally

1

Ψ(x)

∂2

∂x2
Ψ(x) = J ′′1 (x) + J ′1(x)2. (1.27)

In this case it is easy to show that

Eloc(x) = − ~2

2m

(
J ′′1 (x) + J ′1(x)2

)
+ V1(x) (1.28)

Dk(x) = x2k. (1.29)
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Chapter 2

Neural-Network Quantum States

In the first part of this lecture we have rephrased the problem of finding a ground
state in terms of a stochastic optimization problem. To really take advantage of the
potentialities of machine learning, however it is still necessary to accomplish task 1, in
our previous list: we need to define a suitable machine to solve our learning problem.
This is what we have done in our recent work. [CarleoTroyer2017]

2.1 Wave-Function as a Neural Network

The fundamental problem with the stochastic optimization problem described before is
that, in principle, to achieve the exact ground state energy one needs to consider expo-
nentially many parameters. To see this point, consider the case of N spin 1/2 particles,
then the exact ground-state wave-function is fully specified by the 2N amplitudes

〈x|Ψ〉 = Ψ(x), (2.1)

for all the possible values of x = σz1σ
z
2 . . . σ

z
N .

This task however is clearly unfeasible when the number of particles N is too large.
For example, one can do a back-of-the-envelope calculation to show that only storing
the wave-function for more than 100 spins would require a number of atoms larger than
what can be found on our planet!

However, this exponential complexity is not necessary a limiting factor. In this
case we can indeed think of using the ability of artificial neural networks to compress
high-dimensional data into a low-dimensional representation.

The starting point is to ask a suitable neural network to compute the wave-function
amplitudes. Formally, we then set:

Ψ(x) = F (x; p1, p2 . . . pNp), (2.2)

where F is the output of a suitably chosen artificial neural network, depending on a set
of parameters p.
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2.2 Restricted Boltzmann Machines

The choice of the specific neural network used to represent the wave-function is arbitrary,
provided that it is reasonably expressive (i.e. that in the limit of large Np we can always
recover the exact wave-function).

A convenient choice is the so-called Restricted Boltzmann Machine (RBM), which
is defined as:

Frbm(σz1, σ
z
2, . . . σ

z
N) =

∑
{h}

exp

[∑
ij

Wijσ
z
i hj +

∑
j

hjbj +
∑
i

σzi ai

]
, (2.3)

where the network parameters are W ,a, and b. This architecture corresponds to the
partition function of a gas of M hidden units (hj) connected to the physical spins
(σzi ). Since the connections are allowed only between hidden and visible units, but not
between hidden units, nor between visible units, this architecture is called restricted.
Because of this restriction, however it is easy to compute F explicitly. Indeed

∑
{h}

exp

[∑
ij

Wijσ
z
i hj +

∑
j

hjbj +
∑
i

σzi ai

]
= (2.4)

e
∑
i σ
z
i ai ×

∑
{h}

Πj exp

[∑
i

Wijσ
z
i hj + hjbj

]
= (2.5)

e
∑
i σ
z
i ai × Πj

(
exp

[∑
i

Wijσ
z
i + bj

]
+ exp

[
−
∑
i

Wijσ
z
i − bj

])
= (2.6)

e
∑
i σ
z
i ai × Πj2 cosh

[∑
i

Wijσ
z
i + bj

]
. (2.7)

Because the wave-function, in general, can be complex valued, also the weights in
this expression should be taken complex. It is easy to convince one-self that if this is
the case than the wave-function takes arbitrary complex values.

2.3 An example implementation

During the lecture I will show an example implementation of the stochastic optimization
algorithm for neural-network RBM states. In particular, I will consider the transverse-
filed Ising hamiltonian in 1D:

H = −h
∑
i

σxi − J
∑
i

σzi σ
z
i+1, (2.8)

with periodic boundary conditions over a ring of L sites. To simplify things, and
knowing that the ground-state wave-function in this case is positive definite, I will
consider the following quantum state [TGC2017]:

Ψ(σz1, σ
z
2, . . . σ

z
N) =

√
Frbm(σz1, σ

z
2, . . . σ

z
N), (2.9)
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where the specific RBM taken here contains only real-valued parameters. An advantage
of this formulation is that sampling from |Ψ(σz1, σ

z
2, . . . σ

z
N)|2 = Frbm(σz1, σ

z
2, . . . σ

z
N) is

particularly easy, since it can been done using alternate Gibbs sampling.

2.3.1 Gibbs Sampling

Gibbs sampling is a special case of the Metropolis-Hastings algorithm (see Appendix A).
When the RBM has only real-valued parameters, then one can interpret the quantity

P (σ, h) = exp

[∑
ij

Wijσ
z
i hj +

∑
j

hjbj +
∑
i

σzi ai

]
, (2.10)

as a joint probability density (apart from a global normalization) of the physical and
hidden units. [FischerIgel2014]

The idea of alternate Gibbs sampling is then to devise a two step Markov-chain
sampling with transition probabilities:

Tσ((σ, h)→ (σ′, h)) =
P (σ′, h)∑
σ′′ P (σ′′, h)

= P (σ′|h) (2.11)

Th((σ, h)→ (σ, h′)) =
P (σ, h′)∑
h′′ P (σ, h′′)

= P (h′|σ). (2.12)

The acceptance probability for these two type of moves can be readily computed using
the Metropolis-Hasting acceptance rule:

A(x→ x′) = min

(
1,

Π(x′)

Π(x)
× T (x′ → x)

T (x→ x′)

)
, (2.13)

where in one case spin configuration are changed, x′ =(σ′, h) and in the other case
hidden variable configuration are changed, thus x′ =(σ, h′). For example, in the first
case the acceptance probability reads:

A((σ, h)→ (σ′, h)) = min

{
1,
P (σ′, h)

P (σ, h)
× Tσ((σ′, h)→ (σ, h))

Tσ((σ, h)→ (σ′, h))

}
= min

{
1,
P (σ′, h)

P (σ, h)
× P (σ|h)

P (σ′|h)

}
= 1, (2.14)

where in the last line we have used the fact that

P (σ|h)

P (σ′|h)
=

P (σ,h)∑
σ′′ P (σ′′,h)

P (σ′,h)∑
σ′′ P (σ′′,h)

=
P (σ, h)

P (σ′, h)
. (2.15)

The same reasoning can be done for moves that change the hidden units only, and one
gets an acceptance of 1 as well. The important point is that P (σ|h) and P (h|σ) can be
computed exactly for an RBM.
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For example, we have that:

P (h|σ) =
P (σ, h)∑
h′′ P (σ, h′′)

=
e
∑
i σ
z
i ai × Πj exp [

∑
iWijσ

z
i hj + bjhj]

e
∑
i σ
z
i ai × Πj2 cosh [

∑
iWijσzi + bj]

, (2.16)

and each hidden variable has a probability which is independent on the value of the
other hidden variables. We have:

P (hj = 1|σ) = Logistic(2θj) (2.17)

P (hj = −1|σ) = Logistic(−2θj), (2.18)

where Logistic(x) = 1
1+exp(−x)

and θj =
∑

iWijσ
z
i + bj. A similar expression can be

derived also for the other conditional probability, which reads:

P (h|σ) =
P (σ, h)

P (h)

=
e
∑
j hjbj × Πi exp

[∑
jWijσ

z
i hj + aiσi

]
e
∑
j hjbj × Πi2 cosh

[∑
jWijhzj + ai

] , (2.19)

and each spin variable has a probability which is independent on the value of the other
spin variables. We then have:

P (σi = 1|h) = Logistic(2γi) (2.20)

P (σi = −1|h) = Logistic(−2γi), (2.21)

where γi =
∑

jWijh
z
j +ai. Proposing spin and hidden variable configurations according

to the Gibbs transition probability is therefore very easy and consists in the following:

1. Generate N random numbers ri ∈ [0, 1).

2. Set the i-th spin with probability P (σi = 1|h) = Logistic(2γi), i.e. if P (σi =
1|h) > ri then set σ′i = 1 otherwise σ′i = −1.

3. Generate M random number lj ∈ [0, 1).

4. Set the j-th hidden unit with probability P (hj = 1|σ) = Logistic(2θj), i.e. if
P (hj = 1|σ) > lj then set h′j = 1 otherwise h′j = −1.

Repeating these steps Ns times, we then generate spin configurations which are sampled
from |Ψ(σz1, σ

z
2, . . . σ

z
N)|2 = Frbm(σz1, σ

z
2, . . . σ

z
N) –Eq. (2.3). Notice that this scheme is

rather easy to implement since we do not need to perform a Metropolis-Hastings test
at each step of the Markov chain, given that all moves are accepted (see Appendix A
for details).
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2.3.2 Computing the local energy

For a given spin configuration, we also need to compute the local energy:

Eloc(σ) =
∑
σ′

Hσ,σ′
ψ(σ′)

ψ(σ)
. (2.22)

For the transverse-field Ising model, the sum runs over theN+1 configurations σ′(0) = σ
and σ′(k) = σz1 · · · − σzk . . . σzN , with Hσ,σ = −J

∑
i σ

z
i σ

z
i+1 and Hσ,σ′(k>0) = −h. This

sum can then be computed in polynomial time, and it is efficiently done pre-computing
the values of the “angles” θj. In particular,

ψ(σ′(k))

ψ(σ)
= e−2akσk × Πj

cosh(θj − 2σkWjk)

cosh(θj)
. (2.23)

2.3.3 Computing the variational derivatives

The variational derivatives

Dk(σ) =
∂pkΨ(σ)

Ψ(σ)
, (2.24)

can also be computed efficiently and read:

Dai(σ) =
1

2
σzi , (2.25)

Dbj(σ) =
1

2
tanh(θj), (2.26)

DWij
(σ) =

1

2
tanh(θj)σ

z
i . (2.27)
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Appendix A

Sampling Methods

During the lecture we have established a fundamental connection between quantum
mechanics and statistical sampling. For this mapping to be efficient, we need an efficient
way of sampling from the probability distribution Π(x) = |Ψ(x)|2. In particular the
goal is to generate Ns samples x(1),x(2), . . .x(Ns) such that we can estimate expectation
values as averages over those samples:

〈〈Oloc〉〉 '
1

Ns

∑
i

Oloc(x
(i)). (A.1)

A.0.1 Markov Chain and Detailed Balance

A Markov chain is completely specified by the transition probability T (x(i) → x(i+1)),
i.e. given a sample x(i), we transition to the next element of the chain with probability T .
The transition probability (as all well-define probabilities) must always be normalized:∑

x′ T (x→ x′) = 1.
We would like to devise a Markov chain process such that Πmc(x) = Π(x), i.e. that

the probability with which a given state x appears in the chain is equal to desired
probability we want to sample from.

An important condition for this to happen is that the probability distribution Πmc(x)
is stationary, i.e. all states along the chain should be distributed according to the same
probability, and this should not change along the chain. A sufficient condition for this
to happen is that

Π(x)T (x→ x′) = Π(x′)T (x′ → x), (A.2)

which is called detailed balance equation. This condition basically enforces stationarity
(also called micro-reversibility) in the chain: the probability of being in a given state
x and of doing a transition to another state x′ must be equal to the reverse process,
starting from x′ and transitioning to x.

A.0.2 The Metropolis-Hastings Algorithm

There exist many possible transition probabilities that satisfy the detailed balance con-
dition (A.2), however the most famous choice is certainly the Metropolis-Hastings pre-
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scription. In this case, we separate the transition process into two steps:

T (x→ x′) = T (x→ x′)A(x→ x′), (A.3)

i.e. we first propose a state with some (simple) probability distribution T (x → x′) we
can easily sample from, and then accept or reject the new state x′ as the next element
of the chain with probability A(x→ x′).

Using the detailed balance condition, we see that the acceptance probability must
satisfy:

A(x→ x′)

A(x′ → x)
=

Π(x′)

Π(x)
× T (x′ → x)

T (x→ x′)
. (A.4)

A possible acceptance that satisfies this condition is:

A(x→ x′) = min

(
1,

Π(x′)

Π(x)
× T (x′ → x)

T (x→ x′)

)
. (A.5)

Notice that this acceptance probability satisfies (A.4), since if Π(x′)
Π(x)
× T (x′→x)

T (x→x′)
< 1 then

Π(x)
Π(x′)

× T (x→x′)
T (x′→x)

> 1, A(x′ → x) = 1 and (A.4) is trivially verified. The same reasoning

can be applied for the case Π(x′)
Π(x)
× T (x′→x)

T (x→x′)
> 1.

The Metropolis-Hasting Algorithm can be then summarized in the following steps:

1. Generate a random state x′ drawing from the (simple) transition probability
T (x(i) → x′).

2. Compute the quantity

R =
Π(x′)

Π(x(i))
× T (x′ → x(i))

T (x(i) → x′)
. (A.6)

3. Draw a uniformly distributed random number η ∈ [0, 1).

4. If R > η, accept the new states, i.e. x(i+1) = x′. Otherwise, the following state in
the chain stays the current one: x(i+1) = x(i).

Notice that steps 2-4 are necessary to decide whether to accept or reject the proposed
state according to the Metropolis probability (A.5).
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Appendix B

Estimating Errors and
Auto-Correlation Times

Since Markov chains are generated transitioning from a state to the next one, it is
natural to expect that adjacent points in the chain will be statistically correlated. To
quantify this notion of correlation more precisely, let us first consider the Markov chain
estimate for the expectation value of a given function:

ḡns =
1

ns

ns∑
i

gi, (B.1)

where we have used the short-hand gi ≡ g(x(i)). The law of large numbers states that

ḡns
−−−−−→ns →∞

∑
x

Π(x)g(x), (B.2)

and the central limit theorem says that ḡns is a random variable normally distributed,

Prob(ḡns) = Normal(ḡ∞, σ
2), (B.3)

with expected value ḡ∞ and variance σ2 = var(ḡns), where the variance is computed
over different realizations of the Markov chain. It explicitly reads

var(ḡns) = var

(
1

ns

∑
i

gi

)
=

1

n2
s

∑
ij

〈gigj〉 −
1

n2
s

∑
ij

〈gi〉〈gj〉

=
1

ns

(
1

ns

∑
i

(
〈g2
i 〉 − 〈gi〉2

)
+

2

ns

∑
i

∑
j=i+1

(〈gigj〉 − 〈gi〉〈gj〉)

)

=
1

ns
var(g0) + 2

ns∑
j=1

(〈g0gj〉 − 〈g0〉〈gj〉)
(

1− j

ns

)
, (B.4)

where we assumed that the Markov chain is stationary, i.e. var(gi) does not depend on
the index i and the same for the covariance. Therefore

var(ḡns) =
1

ns
var(g0)2τint, (B.5)
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having defined the integrated auto-correlation time as

τint =
1

2
+

ns∑
j=1

(〈g0gj〉 − 〈g0〉〈gj〉)
(

1− j

ns

)
. (B.6)

We therefore see that unless the Markov chain samples are completely uncorrelated
(i.e. 〈gsgj〉 − 〈gs〉〈gj〉 = 0) the statistical error on the estimator ḡns is increased by the
positive factor τint.

A way to correctly estimate the integrated autocorrelation time is through the cor-
relation function

ρ(j) =
〈g0gj〉 − 〈g〉2

〈g2〉 − 〈g〉2
, (B.7)

and a numerically stable estimate of the correlation time is given by

τint '
1

2
+

jcut∑
j=1

ρ(j), (B.8)

where jcut is chosen for numerical stability as the first j such that ρ(jmax) < 0. In
practice, given a sequence of estimates g1, . . . gns = g, then the correlation function can
be efficiently estimated with a sequence of Fast Fourier Transforms and its inverses:

A = FFT (g − ḡ), (B.9)

B = AA?, (B.10)

ρ =
FFT−1(B)

〈g2〉 − 〈g〉2
. (B.11)
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