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Monte Carlo simulation: an unbiased method

A widely used numerical method in statistical physics and quantum many-body physics.

Unbiased: reliable statistical error bar.

Fast: error decreases as 1/
√
N .

Universal: applies to any model without the sign program.
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Introduction to MCMC

Consider a statistical mechanics model:

Z =
∑
C

e−βH[C] =
∑
C

W (C).

The Markov-chain Monte Carlo (MCMC) is a way to do importance sampling.

A Markov chain is constructed,

· · · → Ci−1 → Ci → Ci+1 → · · ·

Markov chain: p(Ci → Cj) only depends on Ci (no memory).

Goal: distribution of C converges to the Boltzmann distribution W (C).

Any observable can be measured from a Markov chain,

〈O〉 =

∑
O(C)W (C)∑

W (C)
' 1

N
∑
i

O(Ci ).
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Detailed balance

Detailed balance:
p(C → D)

p(D → C)
=

W (D)

W (C)
.

Detailed balance (and ergodicity) guarantees that IF the MC converges, it converges to
the desired distribution W (C).

Metropolis-Hastings algorithm: propose – accept/reject.

p(C → D) = q(C → D)α(C → D).

α(C → D) = min

{
1,

W (D)

W (C)

q(D → C)

q(C → D)

}
.
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Autocorrelation time

Autocorrelation time measures the efficiency of the update algorithm.

“time” sequence:

· · · → O(t − 1)→ O(t)→ O(t + 1)→ · · · , O(t) = O[C(t)].

Autocorrelation function

AO(∆t) = 〈O(t)O(t + ∆t)〉 − 〈O(t)〉2 ∝ e−∆t/τ .

Complexity ∝ τ

〈O〉 =
1

N
∑
i

O(Ci ).

Statistical error δO ∼ 1√
N only if O(i) are

independent.
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Metropolis algorithm

Local update: randomly select a site and flip the spin.

q(C → D) = q(D → C) = 1
N .

α(C → D) = min
{

1, W (D)
W (C)

}
.

N trials are counted as one MC step.

Very general: applies to any model.

N Metropolis, A W Rosenbluth, M N Rosenbluth, A H Teller, and E Teller, J Chem Phys
21, 1087 (1953).
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Critical slowing down

The real dynamical relaxation time diverges at the critical point: a critical system is slow
to equilibrate.

The local update mimics the real relaxation process: also exhibits the critical slowing down
phenomena.

τ ∝ Lz , z = 2.125 for the 2D Ising model.
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There’s a way around this: MCMC simulation does not have to mimic the real dynamics...
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Wolff algorithm: a cluster update

A cluster is built one bond at a time.

Probability of activating a bond is cleverly designed, such that

q(C → D)

q(D → C)
=

W (D)

W (C)
.

Thus we have the ideal acceptance ratio α = 1.

Very efficient update: τ ∼ L0.35.

Only works with two-body interactions: H = −
∑

ij Jijsi sj .

U Wolff, PRL. 62, 361 (1989).
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Challenge

Local update is too slow for many models: critical slowing down, glassy behavior,
separation of energy scales, etc.

Global update is only available for certain models. Like Wolff algorithm for two-body
interactions.

A good update algorithm for generic models?
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A good update samples low-energy states

A dilemma of local updates:

Step is too small: high acceptance, small difference.

Step is too big: low acceptance, big difference.

Global updates: explore the low-energy configurations.
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Modeling the update process

A stochastic function f : C 7→ D.

Parameterized: f = f (p1, p2, . . . , pn).

Analytically known q(C f7−→ D).

Optimize pi , such that

q(C f7−→ D)

q(D f7−→ C)
' W (D)

W (C)
.

Choose the acceptance ratio

α(C → D) = min

{
1,

W (D)

W (C)

q(D f7−→ C)

q(C f7−→ D)

}
' 1.

The approximation q(C
f7−→D)

q(D
f7−→C)
' W (D)

W (C) does not introduce error in the MC simulation, as

long as we know q(C f7−→ D) accurately.
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Design

Machine
Learning

(ii)Trial simulation by local update(i)
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Example:

The model:
H = −J1

∑
〈ij〉

si sj − J2

∑
ijkl∈

si sjsksl .

The effective model:
Heff = −Jeff

1

∑
〈ij〉

si sj .

We consider J1 = 1, J2 = 0.2.

An Ising transition at Tc = 2.493.
Ising model without J2 has Tc = 2.269.
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The self-learning update

The update: cluster is constructed using the effective model.

q(C → D)

q(D → C)
=

Weff(D)

Weff(C)
.

The acceptance ratio:

α(C → D) = min

{
1,

W (D)

W (C)

Weff(C)

Weff(D)

}
.

The algorithm still satisfies the detailed balance exactly, although the effective model is
approximate.
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Learning the effective model

1. Generate a sample using the local update.

2. Perform a linear regression,

Heff = Jeff
1

∑
〈ij〉

SiSj + E0.
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Unsupervised machine learning

The linear regression we just did can be viewed as an unsupervised machine learning.

Unsupervised ML: learning the underlying distribution from a sample of configurations.

We pretend that we didn’t know H, and learn a simpler model Heff.

The learned model describes the low-energy effective theory, where the high-energy
fluctuations are treated as noise in the sample.

Can incorporate more advanced ML models and algorithms.
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Learning the effective model

1. Generate a sample using the local update, at T = 5 > Tc .

2. Perform a linear regression,

Heff = Jeff
1

∑
〈ij〉

SiSj + E0.

3. Jeff
1 = 1.0726.

4. Generate another sample using the self-learning update, at T = Tc .

5. Jeff
1 = 1.1064.
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Autocorrelation time
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SLMC works well at moderate sizes
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The results look good at moderate sizes L = 20− 80, but the scaling behavior is
exponential...

Eventually, the self-learning update becomes slower than the local update.
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Limiting the cluster size

∆H = H − Heff scales with the perimeter of the cluster ∼ L.

τ ∼ eL/L0 because α ∼ e−β∆H ∼ e−L/L0 .

A simple effective model is not accurate: need more accurate model, with a hierarchy of
energy scales.

Quick fix: limit the cluster size during cluster growing. Still satisfies the detailed balance,
if α is corrected correspondingly.

A block update: same scaling as the local update, but with a smaller prefactor.
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Restricted-cluster-size update
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We restrict the cluster size to r = 40.
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Summary
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Determinant Monte Carlo: computational cost

Fermion coupling to (auxiliary) bosonic field.

H = −
∑
ij

tijc
†
i cj +

∑
i

σic
†
i ci + H[σ].

Simulation: use bosonic field as configurations.

C = {σi (t)}, i = 1, . . .N; 0 < t < β.

Weight of each configuration W (C): integrate out the fermions.

Computational cost: βN3.

Fast update: βN3 for βN steps of local updates.

Generating two independent configurations: βN3τL.
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Cumulative update

Idea: replace W (C) by W ′(C), which is much faster to evaluate.

Local updates guided by W ′(C):

C ⇒ D : C → C1 · · · → Ci−1 → Ci → Ci+1 → · · · → CM → D.

Detailed balance:
p(Ci → Ci+1)

p(Ci+1 → Ci )
=

W (Ci+1)

W (Ci )

For each path:

p(C → C1) · · · p(Ci → Ci+1)p(CM → D)

p(C1 → C) · · · p(Ci+1 → Ci )p(D → CM)
=

W ′(C1)

W ′(C)

W ′(C2)

W ′(C1)
· · · W ′(CM)

W ′(CM−1)

W ′(D)

W ′(CM)
=

W ′(D)

W ′(C)
.

Summing over all paths:

q(C → D)

q(D → C)
=

p(C ⇒ D)

p(D ⇒ C)
=

∑
Ci p(C → C1) · · · p(Ci → Ci+1)p(CM → D)∑
Ci p(C1 → C) · · · p(Ci+1 → Ci )p(D → CM)

=
W ′(D)

W ′(C)
.
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Cumulative update

Approximated weight:
W ′(C) 'W (C).

Update scheme:
q(C → D)

q(D → C)
=

W ′(D)

W ′(C)
' W (D)

W (C)
.

Acceptance ratio:

α(C → D) = min

{
1,

W (D)

W (C)

W ′(C)

W ′(D)

}
' 1.

Choose good W ′ and M ≥ τL: τCU ∼ 1.

Computational cost: βN3τ → βN3.

Again, W ′(C) 6= W (C) does not introduce approximation.
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Constructing effective weights

1. Physical intuition: bosonic effective model of Weff[σ] + Linear Regression.
Works best for gapped fermions.

H = −
∑
ij

tijc
†
iαcjα +

∑
i

σic
†
iασ

z
αβciβ + H[σ]

Weff[σ] =
∑
ij

Jijσiσj .

2. Machine Learning models: Restricted Boltzmann Machine, Neural Networks, etc.
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Self-Learning MC in action

Zi-Hong Liu, Xiao-Yan Xu, Yang Qi, Kai Sun and Zi-Yang Meng, to appear.

Fermion + boson model, new critical universality. Simulated at the critical point.

SLMC: L = 20→ 30.
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 L=24, β=8
 L=30, β=8
 aqln(|q|)+ln(cq )

aq=1.997 ± 0.028

ln(cq )= -2.159x10 -3± 0.0116
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