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@ Introduction to Markov Chain Monte Carlo



Monte Carlo simulation: an unbiased method

® A widely used numerical method in statistical physics and quantum many-body physics.
® Unbiased: reliable statistical error bar.

® Fast: error decreases as 1/vVN.
°

Universal: applies to any model without the sign program.



Introduction to MCMC

® Consider a statistical mechanics model:
Z=Y e M=% "w(c)
C c

The Markov-chain Monte Carlo (MCMC) is a way to do importance sampling.

® A Markov chain is constructed,
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Markov chain: p(C; — C;) only depends on C; (no memory).
Goal: distribution of C converges to the Boltzmann distribution W/(C).
Any observable can be measured from a Markov chain,

ZO(C)W
O ==Swie _NZO



Detailed balance

® Detailed balance:

® Detailed balance (and ergodicity) guarantees that IF the MC converges, it converges to
the desired distribution W(C).

® Metropolis-Hastings algorithm: propose — accept/reject.
p(C — D) = q(C — D)a(C — D).

{ W(D)q(D%C)}
“W(C)q(C=D) ]



Autocorrelation time

® Autocorrelation time measures the efficiency of the update algorithm.
® “time" sequence:

5 O(t—1) = O(t) = O(t+1) = .-+, O(t) = O[C(t)].

® Autocorrelation function

Ao(At) = (O(t)O(t + At)) — (O(t))? o e A7,

N~
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Complexity o< 7
1
(0) =+ Z 0(Cy).

Statistical error 5O ~ ﬁ only if O(i) are

independent. \4




@® The Importance of Update



Metropolis algorithm

O
® O O
o

® Local update: randomly select a site and flip the spin.
® g(C—D)=q(D—C)=4.

° a(C%D):min{ ,—g)}

® N trials are counted as one MC step.

® Very general: applies to any model.

® N Metropolis, A W Rosenbluth, M N Rosenbluth, A H Teller, and E Teller, J Chem Phys
21, 1087 (1953).
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Critical slowing down

® The real dynamical relaxation time diverges at the critical point: a critical system is slow
to equilibrate.

® The local update mimics the real relaxation process: also exhibits the critical slowing down
phenomena.

® 7 x L* z=2.125 for the 2D lIsing model.
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There's a way around this: MCMC simulation does not have to mimic the real dynamics...



Wolff algorithm: a cluster update
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A cluster is built one bond at a time.

Probability of activating a bond is cleverly designed, such that

q(Cc - D) W(D)

q(P—C) W(C)

Thus we have the ideal acceptance ratio o = 1.
Very efficient update: 7 ~ [0-35,
Only works with two-body interactions: H = — 3. Jjsis;.

U Wolff, PRL. 62, 361 (1989).
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Challenge

® Local update is too slow for many models: critical slowing down, glassy behavior,
separation of energy scales, etc.

® Global update is only available for certain models. Like Wolff algorithm for two-body
interactions.

® A good update algorithm for generic models?



A good update samples low-energy states

® A dilemma of local updates:

® Step is too small: high acceptance, small difference.



A good update samples low-energy states

® A dilemma of local updates:
® Step is too small: high acceptance, small difference.

® Step is too big: low acceptance, big difference.



A good update samples low-energy states

A dilemma of local updates:

[ ]
® Step is too small: high acceptance, small difference.
® Step is too big: low acceptance, big difference.

[ J

Global updates: explore the low-energy configurations.



Modeling the update process

® A stochastic function f : C — D.
® Parameterized: f = f(p1,p2,...,Pn).

® Analytically known g(C Ly D).
® Optimize p;, such that

® Choose the acceptance ratio

. - WD) gD e)|
(C— D)= {1’W(C)q(ci>p)}l'

® The approximation — o~ % does not introduce error in the MC simulation, as

long as we know q(C oy D) accurately.



(i) Trial simulation by local update _ (i) Learning
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© Example: Ising Model and Cluster Update



® The model:
=-A ZS,SJ — b Z SiSjSkS].
ijkiel]
@ The effective model:
Her = —Jfﬁz SiSj.
(if)

We consider J; =1, b =0.2.

An Ising transition at T, = 2.493.
Ising model without J>, has T, = 2.269.



The self-learning update

® The update: cluster is constructed using the effective model.

q(C — D) Weff(D)

q(D — C) Wefr(C) '

® The acceptance ratio:

i W(D) Wer(C)
a(C — D) = min {17 W©) We::(D)}

® The algorithm still satisfies the detailed balance exactly, although the effective model is
approximate.



Learning the effective model

1. Generate a sample using the local update.
2. Perform a linear regression,
Heff = Jlefrz 5,'5]' + Ep.
(if)
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Unsupervised machine learning

The linear regression we just did can be viewed as an unsupervised machine learning.
Unsupervised ML: learning the underlying distribution from a sample of configurations.
We pretend that we didn't know H, and learn a simpler model Hes.

The learned model describes the low-energy effective theory, where the high-energy
fluctuations are treated as noise in the sample.

® Can incorporate more advanced ML models and algorithms.



Learning the effective model

1. Generate a sample using the local update, at T =5 > T,.
2. Perform a linear regression,
Het = J5" > SiS; + Eo.
(i)
3. J5f = 1.0726.
4. Generate another sample using the self-learning update, at T = T,.
5. Jgff = 1.1064.
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SLMC works well at moderate sizes

=—a |ocal
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® The results look good at moderate sizes L = 20 — 80, but the scaling behavior is
exponential...

® Eventually, the self-learning update becomes slower than the local update.



Limiting the cluster size

® AH = H — Hgs scales with the perimeter of the cluster ~ L.
® 7 ~ el/lo pecause v ~ e FAH ~ =L/l

® A simple effective model is not accurate: need more accurate model, with a hierarchy of
energy scales.

® Quick fix: limit the cluster size during cluster growing. Still satisfies the detailed balance,
if « is corrected correspondingly.

A block update: same scaling as the local update, but with a smaller prefactor.



Restricted-cluster-size update
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We restrict the cluster size to r = 40.
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@ Example: Bosonic Model and Cumulative Update



Determinant Monte Carlo: computational cost

@ Fermion coupling to (auxiliary) bosonic field.

H=- Z t,-jcl-ch + Za,-c;rc,- + Hlo].
ij i

® Simulation: use bosonic field as configurations.
C={oi(t)},i=1,...N;0< t < f.

Weight of each configuration W/(C): integrate out the fermions.
Computational cost: BN3.

Fast update: BN3 for BN steps of local updates.

Generating two independent configurations: SN37,.



Cumulative update

® Idea: replace W(C) by W’(C), which is much faster to evaluate.
® Local updates guided by W/(C):

C=D:C—-C--—Ci—1—>Ci—Ciz1 - —Cy—D.

® Detailed balance:
p(Ci = Cita1) _ W(Cit1)

p(Ciy1 — Ci) wW(C;)

® For each path:

p(C = C1)---p(C; = Crvr)p(Cu — D) W/(C1) W'(C2)  W'(Cw) W/(D)  W/(D)

p(C1 = C)--p(Cis1 — C)p(D — Cy) ~ W/(C) W/(C1)  W'(Cw_1) W'(Cw)  W/(C)’

® Summing over all paths:

qC— D) p(C=D) > P(C—Ci) -p(Ci— Cit1)p(Cy — D)  W'(D)

qD=C)  p(D=C) 3¢ p(C—C)---p(Cis1 — C)P(D = Cu)  W/(C)’




Cumulative update

® Approximated weight:
W'(C) ~ W(C).

® Update scheme:
q9(C—D) W'(D)  W(D)
gD —C)  wi(c) w(E)

a(C — D) = min {1, W(D) W'(C) } ~1.

® Choose good W' and M > 7. 7¢cy ~ 1.
e Computational cost: SN31 — BNS.
e Again, W/(C) # W(C) does not introduce approximation.

® Acceptance ratio:




Constructing effective weights

1. Physical intuition: bosonic effective model of Weg[o] + Linear Regression.
Works best for gapped fermions.

H==) tichca+ Y oichoiscps + Hlo]
ij i

Weff[o'] = Z J,'J'U,'Uj.
i

2. Machine Learning models: Restricted Boltzmann Machine, Neural Networks, etc.



Self-Learning MC in action

® Zi-Hong Liu, Xiao-Yan Xu, Yang Qi, Kai Sun and Zi-Yang Meng, to appear.

® Fermion + boson model, new critical universality. Simulated at the critical point.
e SLMC: L =20 — 30.
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