Learning Phase Transitions with/without Confusion

Ye-Hua Liu ETH Zurich

Collaborators: E. P. L. van Nieuwenburg (Caltech) S. D. Huber (ETHZ)

> July 3rd, 2017 KITS, Beijing

- Supervised/Unsupervised learning of phase transitions
- A hybrid: the confusion scheme (with)
- The self-learning scheme (without)
- The self-learning snake for 2D parameter spaces (without)

Motivation

Motivation

What can I help you with?

Machine Learning Classification

Paradigm: given data, assign a class.

"Class" in Physics — Phase of Matter

"Class" in Physics — Phase of Matter

Learning Phase Transitions

J. Carrasquilla and R. G. Melko, Nat. Phys. 13, 431 (2017)

Learning Phase Transitions

J. Carrasquilla and R. G. Melko, Nat. Phys. 13, 431 (2017)

Learning Phase Transitions

J. Carrasquilla and R. G. Melko, Nat. Phys. 13, 431 (2017)

Training — Supervised

- Aim: Tune the weights, such that the NN reproduces known config.-phase pairs.
- Method: Reduce the cost function.

Cross entropy loss:

$$C(\vec{y}, \vec{y'}) = -\log \vec{y} \cdot \vec{y'} - \log(1 - \vec{y}) \cdot (1 - \vec{y'})$$

- y : NN output for the input.
- y': known result for the same input.
- Minimized when y=y'.

Training — Supervised

- Aim: Tune the weights, such that the NN reproduces known config.-phase pairs.
- Method: Reduce the cost function.

Cross entropy loss:

$$C(\vec{y}, \vec{y'}) = -\log \vec{y} \cdot \vec{y'} - \log(1 - \vec{y}) \cdot (1 - \vec{y'})$$

- y : NN output for the input.
- y': known result for the same input.
- Minimized when y=y'.

Only reproduces (and not perfectly) known facts?

Generalization (举一反三)

J. Carrasquilla and R. G. Melko, Nat. Phys. 13, 431 (2017)

Trained on square lattice. Generalized to triangular lattice.

Learning Phase Transitions — Unsupervised

Principal component analysis:

Find the important directions in the high-dimensional dataset space.

Lei Wang, Phys. Rev. B 94, 195105 (2016)

For Ising data the first principal direction is (1,1,1...).

Comparison of Two Training Methods

supervised

unsupervised (PCA)

pros expressive power

no knowledge needed

cons knowledge needed

linear OP

Comparison of Two Training Methods

cons knowledge needed

linear OP

Confusion Scheme

In Between, the Confusion Scheme

Confusion scheme:

- Randomly guess the transition point.
- Train neutral network for this guess, get optimized performance.
- The right transition point: the guess with the least "confusion".

E. P. L. van Nieuwenburg, YHL, and S. D. Huber, Nat. Phys. 13, 435 (2017)

The Characteristic W-Shape

Guess

The 1D Kitaev Chain
$$ho_A = \operatorname{tr}_B(
ho_{AB}), \mathcal{H} = -\log
ho_A$$

Topological phase transition (degeneracy structure of entanglement Hamiltonian)

Input data: entanglement spectrum

The 1D Kitaev Chain
$$ho_A = \operatorname{tr}_B(
ho_{AB}), \mathcal{H} = -\log
ho_A$$

Topological phase transition (degeneracy structure of entanglement Hamiltonian)

Input data: entanglement spectrum

Other Kinds of Transitions

$$H = -J \sum_{\langle i,j \rangle} \sigma_i^z \sigma_j^z$$

On Monte Carlo configuration for 2D Ising model On entanglement spectrum for random-field Heisenberg chain

Symmetry breaking (local order parameter)

Many-body localization (level statistics of entanglement Hamiltonian)

The brute-force sweep for the guess is expensive.

Recap

This is strange, no?

Principle of continuity:

Features are ordered by tuning parameters, and most of the time, the label does not change.

Phase-transition classification is very special, because the number of possible ways to assign phases is small.

Unordered data in feature space:

Ordered data in parameter space:

 $\vec{d_1} \ \vec{d_2} \ \vec{d_3} \ \dots \ \vec{d_N}$ p

N+1

Self-Learning Scheme

ML Search for Optimal Guess

Promote the human guess to a guesser agent.

YHL and E. P. L. van Nieuwenburg, arXiv:1706.08111

Cooperative two-nets scheme:

Proposes the guess Wants to be a better teacher

Responds with learning performance Wants to be a better student

Self-Learning Scheme

- Better teacher
- Better student
- Better academy

- Unsupervised learning
- Self-supervised learning
- Self-learning

The Guesser

 $\mathcal{G}_0(p) = \sigma(-(p-g)/T),$ $\mathcal{G}_1(p) = \sigma(+(p-g)/T).$

A logistic regression parametrized by:

- a guess g
- a sharpness T

The Learning Equations

Gradient descent:

$$\Delta g = -\alpha_g \frac{\partial C}{\partial g}, \Delta T = -\alpha_T \frac{\partial C}{\partial T}, \Delta W_{\mathcal{N}} = -\alpha_{W_{\mathcal{N}}} \frac{\partial C}{\partial W_{\mathcal{N}}}.$$

Cross-entropy cost/loss function:

$$C(\mathcal{N},\mathcal{G}) = -\log \mathcal{N} \cdot \mathcal{G} - \log(1-\mathcal{N}) \cdot (1-\mathcal{G})$$

Chain rule:

$$\begin{split} \frac{\partial C}{\partial \mathcal{G}} &= -\log \mathcal{N} + \log(1 - \mathcal{N}), \\ \frac{\partial \mathcal{G}_{0,1}}{\partial g} &= -\frac{s_{0,1}}{4T \cosh^2 \left[(p - g)/2T \right]}, \\ \frac{\partial \mathcal{G}}{\partial T} &= \frac{p - g}{T} \frac{\partial \mathcal{G}}{\partial g}, \end{split}$$

The Learning Equations

Gradient descent:

$$\Delta g = -\alpha_g \frac{\partial C}{\partial g}, \Delta T = -\alpha_T \frac{\partial C}{\partial T}, \Delta W_{\mathcal{N}} = -\alpha_{W_{\mathcal{N}}} \frac{\partial C}{\partial W_{\mathcal{N}}}.$$

Cross-entropy cost/loss function:

back-propagation

$$C(\mathcal{N},\mathcal{G}) = -\log \mathcal{N} \cdot \mathcal{G} - \log(1-\mathcal{N}) \cdot (1-\mathcal{G})$$

Chain rule:

$$\begin{split} \frac{\partial C}{\partial \mathcal{G}} &= -\log \mathcal{N} + \log(1 - \mathcal{N}), \\ \frac{\partial \mathcal{G}_{0,1}}{\partial g} &= -\frac{s_{0,1}}{4T \cosh^2 \left[(p - g)/2T \right]}, \\ \frac{\partial \mathcal{G}}{\partial T} &= \frac{p - g}{T} \frac{\partial \mathcal{G}}{\partial g}, \end{split}$$

The Learning Equations

Gradient descent:

$$\Delta g = -\alpha_g \frac{\partial C}{\partial g}, \Delta T = -\alpha_T \frac{\partial C}{\partial T}, \Delta W_{\mathcal{N}} = -\alpha_{W_{\mathcal{N}}} \frac{\partial C}{\partial W_{\mathcal{N}}}.$$

Cross-entropy cost/loss function:

back-propagation

$$C(\mathcal{N},\mathcal{G}) = -\log \mathcal{N} \cdot \mathcal{G} - \log(1-\mathcal{N}) \cdot (1-\mathcal{G})$$

Chain rule:

$$\begin{aligned} \frac{\partial C}{\partial \mathcal{G}} &= -\log \mathcal{N} + \log(1 - \mathcal{N}), \\ \frac{\partial \mathcal{G}_{0,1}}{\partial g} &= -\frac{s_{0,1}}{4T \cosh^2 \left[(p - g)/2T\right]}, \\ \frac{\partial \mathcal{G}}{\partial T} &= \frac{p - g}{T} \frac{\partial \mathcal{G}}{\partial g}, \end{aligned}$$

Self-Learning the Ising transition

Larger system size: more accurate and sharper.

What We Have Achieved

Confusion descent:

Eliminated the need for the "guess-sweep".

Higher efficiency:

Could apply to higher-D parameter spaces.

2D Parameter Space

- 2D is locally 1D.
- How to parametrize the guesser?

Self-Learning Snake

2D Image-Feature Extraction with Snake

Snakes: Active Contour Models

MICHAEL KASS, ANDREW WITKIN, and DEMETRI TERZOPOULOS Schlumberger Palo Alto Research, 3340 Hillview Ave., Palo Alto, CA 94304

> [PDF] Snakes: Active Contour Models - Cs.UCLA.Edu www.cs.ucla.edu/~dt/papers/ijcv88/ijcv88.pdf ▼ Diese Seite übersetzen von M KASS - 1988 - Zitiert von: 18416 - Ähnliche Artikel MICHAEL KASS, ANDREW WITKIN, and DEMETRI TERZOPOULOS ... Abstract. A snake is an energy-minimizing spline guided by external constraint forces and ...

Snake: a very influential model in computer vision.

Can Stock Photo

Snake Dynamics in an Image

Line Detector:
$$E_{\text{image}} = I(\vec{v}(s))$$

Edge Detector: $E_{\text{image}} = - |\nabla I(\vec{v}(s))|^2$

Intelligent Snake Self-Generates Training Samples

The snake senses its surroundings.

Snake! Are you OK? Are you confused?

Bose Hubbard Model – Physics

- Small hopping leads to localization.
- Integer filling leads to localization.

$$H = -J\sum_{\langle i,j\rangle} (b_i^{\dagger}b_j + b_j^{\dagger}b_i) + \sum_i \left[\frac{Un_i(n_i - 1)}{2} - \mu n_i\right]$$

Bose Hubbard Model – Physics

- Small hopping leads to localization.
- Integer filling leads to localization.

$$H = -J\sum_{\langle i,j\rangle} (b_i^{\dagger}b_j + b_j^{\dagger}b_i) + \sum_i \left[\frac{Un_i(n_i - 1)}{2} - \mu n_i\right]$$

Bose Hubbard Model – Training Data

Mean-field theory:

$$E = -\frac{dt}{\rho} \left[\sum_{n=0}^{\infty} \sqrt{n+1} f(n) f(n+1) \right]^2$$
$$+ \frac{U}{2\rho} \sum_{n=0}^{\infty} n(n-1) f^2(n) .$$

Insulating state:

An eigenstate of N.

Superfluid state:

There is phase coherence.

Bose Hubbard Model – Self-Learning

Initial large snake shrinks to the correct phase boundary. Background plot is the average hopping. But the snake is fed with f(n).

Spin-1 Heisenberg Chain – Physics

- B=0 & D=0: Haldane phase.
- Haldane phase:
 A topologically nontrivial.

$$H = J \sum_{i} \mathbf{S}_{i} \cdot \mathbf{S}_{i+1} + \sum_{i} \left[D(S_{i}^{z})^{2} - BS_{i}^{x} \right]$$

Spin-1 Heisenberg chain — Training Data

iTEBD: Entanglement Spectrum

 $\mathrm{ES} = \mathrm{eig}(\mathrm{tr}_{\mathrm{B}}\rho_{\mathrm{AB}})$

Nontrivial phase:

Degeneracy of largest eigenvalue.

Trivial phase:

Isolated largest eigenvalue.

Spin-1 Heisenberg chain — Self-Learning

Initial large snake moves, rotates, and deforms to the Haldane pocket. Background plot is ES gap. But the snake is fed with the full ES.

Summary

- A hybrid scheme for learning phase transitions: confusion scheme
- A guesser agent cooperates with the learner: self-learning scheme
- 2D parameter spaces: self-learning snake

E. P. L. van Nieuwenburg, YHL, and S. D. Huber, Nat. Phys. **13**, 435 (2017) YHL and E. P. L. van Nieuwenburg, arXiv:1706.08111

Summary

- A hybrid scheme for learning phase transitions: confusion scheme
- A guesser agent cooperates with the learner: self-learning scheme
- 2D parameter spaces: self-learning snake

E. P. L. van Nieuwenburg, YHL, and S. D. Huber, Nat. Phys. **13**, 435 (2017) YHL and E. P. L. van Nieuwenburg, arXiv:1706.08111

Thank you for your attention!