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Outline

Supervised/Unsupervised learning of phase transitions 


A hybrid: the confusion scheme (with)


The self-learning scheme (without)


The self-learning snake for 2D parameter spaces (without)



Motivation



What can I help you with?

Motivation



Machine Learning Classification

Paradigm: given data, assign a class.



"Class" in Physics — Phase of Matter



"Class" in Physics — Phase of Matter
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Learning Phase Transitions

Model:  
Neural Network 
Training:  
Supervised
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FIG. 1. Machine learning the ferromagnetic Ising model. (A) The trained neural network learns

representations of the low- and high-temperature Ising states. The average output layer (B) and

accuracy (C) over the test sets vs. temperature. (D) Toy model of a neural network for the Ising

model. (E) The average output layer and accuracy of the toy model are displayed in (E) and

(F), respectively. The orange lines signal T
c

of the model in the thermodynamic limit, T
c

/J =

2/ ln
�
1 +

p
2
�
[11].
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Aim: Tune the weights, such that the NN 

reproduces known config.-phase pairs. 

Method: Reduce the cost function.

y : NN output for the input. 
y’: known result for the same input. 
Minimized when y=y’.

Training — Supervised

back-propagation

C(~y, ~y0) = � log ~y · ~y0 � log(1� ~y) · (1� ~y0)

Cross entropy loss:
�W = �↵@C/@W



Aim: Tune the weights, such that the NN 

reproduces known config.-phase pairs. 

Method: Reduce the cost function.

y : NN output for the input. 
y’: known result for the same input. 
Minimized when y=y’.

Only reproduces (and not perfectly) known facts?

Training — Supervised

back-propagation

C(~y, ~y0) = � log ~y · ~y0 � log(1� ~y) · (1� ~y0)

Cross entropy loss:
�W = �↵@C/@W



Trained on square lattice. 
Generalized to triangular lattice.

J. Carrasquilla and R. G. Melko, Nat. Phys. 13, 431 (2017)

Generalization（举⼀一反三）
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FIG. 2. Detecting the critical temperature of the triangular Ising model through the crossing of the

values of the output layer vs T . The orange line signals the triangular Ising model T
c

/J = 4/ ln 3,

while the blue dashed line represents our estimate T

c

/J = 3.63581.

shown in Figure 3. In a conventional condensed-matter approach, the ground states and the

high-temperature states are distinguished by their spin-spin correlation functions: power-

law decay in the Coulomb phase at T = 0, and exponential decay at high temperature.

Instead we use supervised learning, feeding raw Monte Carlo configurations to train a fully-

connected neural network (Figure 1(A)) to distinguish ground states from high-temperature

states. Figure 3(A) and Figure 3(B) display high- and low-temperature snapshots of the

configurations used in the training of the model. For a square ice system with N = 2 ⇥

16⇥ 16 spins, we find that a standard fully-connected neural network with 100 hidden units

successfully distinguishes the states with a 99% accuracy. The network does so solely based

on spin configurations, with no information about the underlying lattice – a feat di�cult for

the human eye, even if supplemented with a layout of the underlying Hamiltonian locality.

These results indicate that the learning capabilities of neural networks go beyond the

simple ability to encode order parameters, extending to the detection of subtle di↵erences

in higher-order correlations functions. As a final demonstration of this, we examine an Ising
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shown in Figure 3. In a conventional condensed-matter approach, the ground states and the

high-temperature states are distinguished by their spin-spin correlation functions: power-

law decay in the Coulomb phase at T = 0, and exponential decay at high temperature.

Instead we use supervised learning, feeding raw Monte Carlo configurations to train a fully-

connected neural network (Figure 1(A)) to distinguish ground states from high-temperature

states. Figure 3(A) and Figure 3(B) display high- and low-temperature snapshots of the

configurations used in the training of the model. For a square ice system with N = 2 ⇥

16⇥ 16 spins, we find that a standard fully-connected neural network with 100 hidden units

successfully distinguishes the states with a 99% accuracy. The network does so solely based

on spin configurations, with no information about the underlying lattice – a feat di�cult for

the human eye, even if supplemented with a layout of the underlying Hamiltonian locality.

These results indicate that the learning capabilities of neural networks go beyond the

simple ability to encode order parameters, extending to the detection of subtle di↵erences

in higher-order correlations functions. As a final demonstration of this, we examine an Ising
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Principal component analysis:
Find the important directions in the  
high-dimensional dataset space.

X: row vectors of data

For Ising data the first principal direction is (1,1,1…).

Lei Wang, Phys. Rev. B 94, 195105 (2016)

project data to the first two 
principal directions

2

Figure 1: The first few explained variance ratios obtained
from the raw Ising configurations. Inset shows the weights of
the first principle component on a N = 402 square lattice.

in the matrix denote �i = ±1. Such a matrix is the only

data we feed to the unsupervised learning algorithm.
Our goal is to discover possible phase transition of

model (1) without assuming its existence. This is differ-
ent from the supervised learning task, where exact knowl-
edge of Tc was used to train a learner [13]. Moreover, the
following analysis does not assume any prior knowledge
about the lattice geometry and the Hamiltonian. We
are going to use the unsupervised learning approach to
extract salient features in the data and then use these
information to cluster the samples into distinct phases.
Knowledge about temperature of each sample and the
critical temperature Tc of the Ising model is used to ver-
ify the clustering.

Interpreting each row of X as a coordinate of an N -
dimensional space, the M data points form a cloud cen-
tered around the origin of a hypercube [34]. Discovering
a phase transition amounts to find a hypersurface which
divides the data points into several groups, each repre-
senting a phase. The task is akin to the standard unsu-
pervised learning technique: cluster analysis [16], where
numerous algorithms are available, and they group the
data based on different criteria.

However, direct applying clustering algorithms to the
Ising configurations may not be very enlightening. The
reasons are twofold. First, even if one manages to sep-
arate the data into several groups, clusters in high di-
mensional space may not directly offer useful physical
insights. Second, many clustering algorithms rely on a
good measure of similarity between the data points. Its
definition is however ambiguous without supplying of do-
main knowledge such as the distance between two spin
configurations.

On the other hand, the raw spin configuration is a
highly redundant description of the system’s state be-

Figure 2: Projection of the samples onto the plane of the
leading two principle components. The color bar on the right
indicates the temperature T/J of the samples. The panels
(a-c) are for N = 202, 402 and 802 sites respectively.

cause there are correlation among the spins. Moreover,
as the temperature varies there is an overall tendency in
the raw spin configurations, such as lowering the total
magnetization. In the following we will try to first iden-
tity some crucial features in the raw data. They provide
an effective low dimensional representation of the origi-
nal data. And in terms of these features the meaning of
the distance between configurations becomes more trans-
parent. The separation of phases is also often clearly vis-
ible and comprehensible by human in the reduced space
spanned by these features. Therefore, feature extraction
does not only simplifies the subsequent clustering anal-
ysis but also provides effective means of visualizing and
offering physical insights. We denote the crucial features
extracted by the unsupervised learning as indicators of
the phase transition. In general they do not necessarily
need to be the same as the conventional order parame-
ters defined in condensed matter physics. This unsuper-
vised learning approach nevertheless provides an alterna-
tive view on phases and phase transitions.

Principle component analysis (PCA) [17] is a widely
used feature extraction technique. The principle compo-
nents are mutually orthogonal directions along which the
variances of the data decrease monotonically. PCA finds
the principle components through a linearly transforma-
tion of the original coordinates Y = XW . When applied
to the Ising configurations in Eq. (2), PCA finds the most
significant variations of the data changing with the tem-
perature. We interpret them as relevant features in the
data and use them as indicators of the phase transition,
if there is any.

We write the orthogonal transformation into column
vectors W = (w1, w2, . . . , wN ) and denote w` as weights
of the principle components in the configuration space.

diag(XTX)

Learning Phase Transitions — Unsupervised
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Confusion Scheme



Confusion scheme:  

Randomly guess the transition point. 

Train neutral network for this guess, get optimized performance. 

The right transition point: the guess with the least "confusion".

E. P. L. van Nieuwenburg, YHL, and S. D. Huber, Nat. Phys. 13, 435 (2017)

In Between, the Confusion Scheme
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Figure 1 | Learning the topological phase transition in the Kitaev chain. a, Evolution of the entanglement spectrum as a function of the chemical potential
µ. Here we plot the largest four eigenvalues of the reduced density matrix ⇢A. The degeneracy structure is clearly observable. b, Principal component
analysis of the entanglement spectrum. All data points are shown in the plane of the first two principal components y1 and y2. c, Supervised learning with
blanking. The shaded region is blanked out during the training phase, and the NN can still predict the correct transition point µ=�2t. d, P(µ0

c), evolution of
the accuracy of prediction, as a function of the proposed critical point µ0

c, which shows the universal W-shape. See text for more details. (Parameters for
training: batch size Nb = 100, learning rate ↵=0.075 and regularization l2 =0.001. See the Methods for an explanation of these terms.)

the generalizing power of the NN by blanking out the training1

data around the transition, and show that it can still predict2

the transition accurately. We then purposefully mislabel the data,3

thereby confusing the network, and introduce the characteristic4

shape of the networks’ performance function.5

The Kitaev chain model is defined through the following6

Hamiltonian:7

Ĥ =�t
LX

i=1

�
ĉ†
i+1ĉi + ĉi+1ĉi +h.c.

��µ

LX

i=1

ĉ†
i ĉi (1)8

where t > 0 controls the hopping and the pairing of spinless9

fermions alike andµ is a chemical potential. The ground state of this10

model has a quantum phase transition from a topologically trivial11

(|µ|>2t) to a non-trivial state (|µ|<2t) as the chemical potential12

µ is tuned across µ=±2t .13

We use the ES to compress the quantum-mechanical14

wavefunction. The ES is defined as follows. The whole system15

is first divided into two subsets A and B, after which the reduced16

density matrix of subset A is calculated by partially tracing out the17

degrees of freedom in B, that is, ⇢A = TrB| ih |. Denoting the18

eigenvalues of ⇢A as �i, the ES is then defined as the set of numbers19

� ln�i. It is important to remark that various types of bipartition of20

the whole system into subsets A and B exist, such as dividing the21

bulk into extensive disconnected parts26, divisions in momentum22

space27 or indeed even random partitioning28. In this work, we23

use the usual spatial bipartition into left and right halves of the24

whole system.25

As shown in Fig. 1a, the ES of the Kitaev chain is clearly26

distinguishable in the two phases, especially since the non-trivial27

phase has a degeneracy structure as do all symmetry-protected28

topological phases18. This feature is clear also for human eyes,29

and a machine-learning routine is overkill. We use this model for30

demonstration purposes and in the following, we will apply the31

introduced methodology to more complex models. The data for 32

machine learning are chosen to be the largest 10 eigenvalues �i, for 33

L= 20 with an equal partitioning LA = LB = 10, and for various 34

values of �4tµ0. 35

First we perform unsupervised learning, using an established 36

method for feature extraction. The entanglement spectra are 37

interpreted as points in a 10-dimensional space, andwe use principal 38

component analysis (PCA)29 to extract mutually orthogonal axes 39

along which most of the variance of the data can be observed. PCA 40

amounts to a linear transformation Y =XW , where X is an N ⇥10 41

matrix containing the entanglement spectra as rows (N =104 is the 42

number of samples). 43

The orthogonal matrixW has vectors representing the principal 44

components !` as its columns, which are determined through the 45

eigenvalue equation XTX!` = �`!`. The eigenvalues �` are the 46

singular values of the matrix X , and are hence non-negative real 47

numbers, and we normalize them Q.5such that
P
�` = 1. The result 48

of PCA is shown in Fig. 1b, and it is indeed possible to cluster the 49

spectra into three sets: µ<�2t , µ=�2t and µ>�2t . 50

We now turn to training a feedforward NN on the 51

10-dimensional inputs, and refer to the online Methods and 52

ref. 30 for more details. For completeness, we mention the essentials 53

of NNs in Fig. 2. 54

We train the network with 80 hidden sigmoid neurons in a single 55

hidden layer, and 2 output neurons. The first/second output neuron 56

predicts the (not necessarily normalized) probability for the data to 57

be in trivial/non-trivial phase, and the predicted phase is the phase 58

with the larger probability. We use stochastic gradient descent and 59

L2 Q.6regularization to try to minimize a cross-entropy cost function. 60

The network easily learns to distinguish the spectra and is able to 61

generalize to unseen data points. 62

Arguably the most important objective of machine learning in 63

general is that of generalization. After all, learning is demonstrated 64

by being able to perform well on examples that have not been 65
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Figure 1 | Learning the topological phase transition in the Kitaev chain. a, Evolution of the entanglement spectrum as a function of the chemical potential
µ. Here we plot the largest four eigenvalues of the reduced density matrix ⇢A. The degeneracy structure is clearly observable. b, Principal component
analysis of the entanglement spectrum. All data points are shown in the plane of the first two principal components y1 and y2. c, Supervised learning with
blanking. The shaded region is blanked out during the training phase, and the NN can still predict the correct transition point µ=�2t. d, P(µ0

c), evolution of
the accuracy of prediction, as a function of the proposed critical point µ0

c, which shows the universal W-shape. See text for more details. (Parameters for
training: batch size Nb = 100, learning rate ↵=0.075 and regularization l2 =0.001. See the Methods for an explanation of these terms.)

the generalizing power of the NN by blanking out the training1

data around the transition, and show that it can still predict2

the transition accurately. We then purposefully mislabel the data,3

thereby confusing the network, and introduce the characteristic4

shape of the networks’ performance function.5

The Kitaev chain model is defined through the following6

Hamiltonian:7

Ĥ =�t
LX

i=1
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ĉ†
i+1ĉi + ĉi+1ĉi +h.c.
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LX
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ĉ†
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where t > 0 controls the hopping and the pairing of spinless9

fermions alike andµ is a chemical potential. The ground state of this10

model has a quantum phase transition from a topologically trivial11

(|µ|>2t) to a non-trivial state (|µ|<2t) as the chemical potential12

µ is tuned across µ=±2t .13

We use the ES to compress the quantum-mechanical14

wavefunction. The ES is defined as follows. The whole system15

is first divided into two subsets A and B, after which the reduced16

density matrix of subset A is calculated by partially tracing out the17

degrees of freedom in B, that is, ⇢A = TrB| ih |. Denoting the18

eigenvalues of ⇢A as �i, the ES is then defined as the set of numbers19

� ln�i. It is important to remark that various types of bipartition of20

the whole system into subsets A and B exist, such as dividing the21

bulk into extensive disconnected parts26, divisions in momentum22

space27 or indeed even random partitioning28. In this work, we23

use the usual spatial bipartition into left and right halves of the24

whole system.25

As shown in Fig. 1a, the ES of the Kitaev chain is clearly26

distinguishable in the two phases, especially since the non-trivial27

phase has a degeneracy structure as do all symmetry-protected28

topological phases18. This feature is clear also for human eyes,29

and a machine-learning routine is overkill. We use this model for30

demonstration purposes and in the following, we will apply the31

introduced methodology to more complex models. The data for 32

machine learning are chosen to be the largest 10 eigenvalues �i, for 33

L= 20 with an equal partitioning LA = LB = 10, and for various 34

values of �4tµ0. 35

First we perform unsupervised learning, using an established 36

method for feature extraction. The entanglement spectra are 37

interpreted as points in a 10-dimensional space, andwe use principal 38

component analysis (PCA)29 to extract mutually orthogonal axes 39

along which most of the variance of the data can be observed. PCA 40

amounts to a linear transformation Y =XW , where X is an N ⇥10 41

matrix containing the entanglement spectra as rows (N =104 is the 42

number of samples). 43

The orthogonal matrixW has vectors representing the principal 44

components !` as its columns, which are determined through the 45

eigenvalue equation XTX!` = �`!`. The eigenvalues �` are the 46

singular values of the matrix X , and are hence non-negative real 47

numbers, and we normalize them Q.5such that
P
�` = 1. The result 48

of PCA is shown in Fig. 1b, and it is indeed possible to cluster the 49

spectra into three sets: µ<�2t , µ=�2t and µ>�2t . 50

We now turn to training a feedforward NN on the 51

10-dimensional inputs, and refer to the online Methods and 52

ref. 30 for more details. For completeness, we mention the essentials 53

of NNs in Fig. 2. 54

We train the network with 80 hidden sigmoid neurons in a single 55

hidden layer, and 2 output neurons. The first/second output neuron 56

predicts the (not necessarily normalized) probability for the data to 57

be in trivial/non-trivial phase, and the predicted phase is the phase 58

with the larger probability. We use stochastic gradient descent and 59

L2 Q.6regularization to try to minimize a cross-entropy cost function. 60

The network easily learns to distinguish the spectra and is able to 61

generalize to unseen data points. 62

Arguably the most important objective of machine learning in 63

general is that of generalization. After all, learning is demonstrated 64

by being able to perform well on examples that have not been 65
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The 1D Kitaev Chain ⇢A = trB(⇢AB),H = � log ⇢A
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Figure 1 | Learning the topological phase transition in the Kitaev chain. a, Evolution of the entanglement spectrum as a function of the chemical potential
µ. Here we plot the largest four eigenvalues of the reduced density matrix ⇢A. The degeneracy structure is clearly observable. b, Principal component
analysis of the entanglement spectrum. All data points are shown in the plane of the first two principal components y1 and y2. c, Supervised learning with
blanking. The shaded region is blanked out during the training phase, and the NN can still predict the correct transition point µ=�2t. d, P(µ0

c), evolution of
the accuracy of prediction, as a function of the proposed critical point µ0

c, which shows the universal W-shape. See text for more details. (Parameters for
training: batch size Nb = 100, learning rate ↵=0.075 and regularization l2 =0.001. See the Methods for an explanation of these terms.)

the generalizing power of the NN by blanking out the training1

data around the transition, and show that it can still predict2

the transition accurately. We then purposefully mislabel the data,3

thereby confusing the network, and introduce the characteristic4

shape of the networks’ performance function.5

The Kitaev chain model is defined through the following6
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where t > 0 controls the hopping and the pairing of spinless9

fermions alike andµ is a chemical potential. The ground state of this10

model has a quantum phase transition from a topologically trivial11

(|µ|>2t) to a non-trivial state (|µ|<2t) as the chemical potential12

µ is tuned across µ=±2t .13

We use the ES to compress the quantum-mechanical14

wavefunction. The ES is defined as follows. The whole system15

is first divided into two subsets A and B, after which the reduced16

density matrix of subset A is calculated by partially tracing out the17
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space27 or indeed even random partitioning28. In this work, we23

use the usual spatial bipartition into left and right halves of the24

whole system.25

As shown in Fig. 1a, the ES of the Kitaev chain is clearly26

distinguishable in the two phases, especially since the non-trivial27

phase has a degeneracy structure as do all symmetry-protected28

topological phases18. This feature is clear also for human eyes,29

and a machine-learning routine is overkill. We use this model for30

demonstration purposes and in the following, we will apply the31

introduced methodology to more complex models. The data for 32

machine learning are chosen to be the largest 10 eigenvalues �i, for 33

L= 20 with an equal partitioning LA = LB = 10, and for various 34

values of �4tµ0. 35

First we perform unsupervised learning, using an established 36

method for feature extraction. The entanglement spectra are 37

interpreted as points in a 10-dimensional space, andwe use principal 38

component analysis (PCA)29 to extract mutually orthogonal axes 39

along which most of the variance of the data can be observed. PCA 40

amounts to a linear transformation Y =XW , where X is an N ⇥10 41

matrix containing the entanglement spectra as rows (N =104 is the 42
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10-dimensional inputs, and refer to the online Methods and 52
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hidden layer, and 2 output neurons. The first/second output neuron 56

predicts the (not necessarily normalized) probability for the data to 57

be in trivial/non-trivial phase, and the predicted phase is the phase 58

with the larger probability. We use stochastic gradient descent and 59

L2 Q.6regularization to try to minimize a cross-entropy cost function. 60
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generalize to unseen data points. 62

Arguably the most important objective of machine learning in 63
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c), evolution of
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c, which shows the universal W-shape. See text for more details. (Parameters for
training: batch size Nb = 100, learning rate ↵=0.075 and regularization l2 =0.001. See the Methods for an explanation of these terms.)

the generalizing power of the NN by blanking out the training1

data around the transition, and show that it can still predict2

the transition accurately. We then purposefully mislabel the data,3

thereby confusing the network, and introduce the characteristic4

shape of the networks’ performance function.5

The Kitaev chain model is defined through the following6

Hamiltonian:7

Ĥ =�t
LX

i=1

�
ĉ†
i+1ĉi + ĉi+1ĉi +h.c.

��µ

LX

i=1

ĉ†
i ĉi (1)8

where t > 0 controls the hopping and the pairing of spinless9

fermions alike andµ is a chemical potential. The ground state of this10

model has a quantum phase transition from a topologically trivial11

(|µ|>2t) to a non-trivial state (|µ|<2t) as the chemical potential12

µ is tuned across µ=±2t .13

We use the ES to compress the quantum-mechanical14

wavefunction. The ES is defined as follows. The whole system15

is first divided into two subsets A and B, after which the reduced16

density matrix of subset A is calculated by partially tracing out the17

degrees of freedom in B, that is, ⇢A = TrB| ih |. Denoting the18

eigenvalues of ⇢A as �i, the ES is then defined as the set of numbers19

� ln�i. It is important to remark that various types of bipartition of20

the whole system into subsets A and B exist, such as dividing the21

bulk into extensive disconnected parts26, divisions in momentum22

space27 or indeed even random partitioning28. In this work, we23

use the usual spatial bipartition into left and right halves of the24

whole system.25

As shown in Fig. 1a, the ES of the Kitaev chain is clearly26

distinguishable in the two phases, especially since the non-trivial27

phase has a degeneracy structure as do all symmetry-protected28

topological phases18. This feature is clear also for human eyes,29

and a machine-learning routine is overkill. We use this model for30

demonstration purposes and in the following, we will apply the31

introduced methodology to more complex models. The data for 32

machine learning are chosen to be the largest 10 eigenvalues �i, for 33

L= 20 with an equal partitioning LA = LB = 10, and for various 34

values of �4tµ0. 35

First we perform unsupervised learning, using an established 36

method for feature extraction. The entanglement spectra are 37

interpreted as points in a 10-dimensional space, andwe use principal 38

component analysis (PCA)29 to extract mutually orthogonal axes 39

along which most of the variance of the data can be observed. PCA 40

amounts to a linear transformation Y =XW , where X is an N ⇥10 41

matrix containing the entanglement spectra as rows (N =104 is the 42

number of samples). 43

The orthogonal matrixW has vectors representing the principal 44

components !` as its columns, which are determined through the 45

eigenvalue equation XTX!` = �`!`. The eigenvalues �` are the 46

singular values of the matrix X , and are hence non-negative real 47

numbers, and we normalize them Q.5such that
P
�` = 1. The result 48

of PCA is shown in Fig. 1b, and it is indeed possible to cluster the 49

spectra into three sets: µ<�2t , µ=�2t and µ>�2t . 50

We now turn to training a feedforward NN on the 51

10-dimensional inputs, and refer to the online Methods and 52

ref. 30 for more details. For completeness, we mention the essentials 53

of NNs in Fig. 2. 54

We train the network with 80 hidden sigmoid neurons in a single 55

hidden layer, and 2 output neurons. The first/second output neuron 56

predicts the (not necessarily normalized) probability for the data to 57

be in trivial/non-trivial phase, and the predicted phase is the phase 58

with the larger probability. We use stochastic gradient descent and 59

L2 Q.6regularization to try to minimize a cross-entropy cost function. 60

The network easily learns to distinguish the spectra and is able to 61

generalize to unseen data points. 62

Arguably the most important objective of machine learning in 63

general is that of generalization. After all, learning is demonstrated 64

by being able to perform well on examples that have not been 65
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Figure 2 | Neural networks. a, A single artificial neuron, with n inputs
labelled x1 through xn and a single output y. The output of the neuron is
computed by applying the activation function f to the weighted input
a=Pn

i wixi =w ·x. b, A neural network, consisting of many artificial
neurons that have been arranged in layers. In this particular network
architecture, called a feedforward network, the neurons within each layer
are not connected. Apart from the first layer and the last layer we use one
hidden layer in between (a shallow network, as opposed to a deep network
with many layers). The neurons in the first layer have no inputs, but instead
their outputs are fixed to the values of the input data and hence they serve
as dummy neurons. The entire network can be considered as a highly
nonlinear function g(x;W) that takes the input data x and feeds them
forward to get the output. The goal of a neural network-based approach is
to optimize the choice of the weights such that the network approximates
the desired function.

encountered before. As another display of the generalizing power of1

the network, we blank out the data in a width w around µ=�2t2

and ask the network to

Q.7

interpolate and find the transition point.3

Figure 1c shows that the network has no di�culties doing so even4

for w=2t . We were able to go up to widths w=3t before training5

became unreliable.6

The PCA as an unsupervised learning technique may be applied7

without perfectly known information of the system, but it is a linear8

analysis and is hence incapable of extracting nonlinear relationships9

among the data. On the other hand, a NN is capable of fitting any10

nonlinear function11, but a training phase with correctly labelled11

input–output pairs is needed. In the following, we propose a scheme12

combining both supervised and unsupervisedmethods that we refer13

to as a confusion scheme. This scheme is themain result of thiswork.14

We suppose that the data depend on a parameter that lies in the15

range (a,b), and we assume that there exists a critical point a< c<b16

such that the data can be classified into two groups. However, we do17

not know the value of c. We propose a critical point c 0, and train a18

network that we callNc0 by labelling all data with parameters smaller19

than c 0 with label 0 and the others with label 1. Next, we evaluate20

the performance of Nc0 on the entire data set and refer to its total21

performance, with respect to the proposed critical point c 0, as P(c 0).22

We will show that the function P(c 0) has a universal W-shape, with23

the middle peak at the correct critical point c. Applying this to the24

Kitaev model, we can see from Fig. 1d that for �4t < µ < 0, the25

prediction performance from the confusion scheme has a W-shape26

with the middle peak at µ=�2t .27

The W-shape can be understood as follows. We assume that the28

data have two di�erent structures in the regimes below c and above29

c, and that the NN is able to find and distinguish them. We refer to30

these di�erent structures as features. When we set c 0 = a, the NN31

chooses to assign label 1 to both features and thus correctly predicts32

100% of the data. A similar analysis applies to c 0 = b, except that33

every data point is assigned the label 0. When c 0 = c is the correct34

labelling, the NN will choose to assign the right label to both sides35

of the critical point and again performs perfectly. When a< c 0 < c,36

in the training phase the NN sees data with the same feature in the37

ranges from a to c 0 and from c 0 to c, but having di�erent labels (hence38
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Figure 3 | Learning the Ising transition. The position of the middle peak in
the universal W-shape deviates from T0

c =Tc for L= 10 due to the
finite-size e�ect. Here kBTc ⇡2.27J is the exact transition temperature in
the thermodynamic limit. For L=20 the middle peak is located exactly at
T0

c =Tc. Error bars are obtained by averaging over ten di�erent and
independent Monte Carlo runs for obtaining the data. The errors are larger
for points that deviate from the expected W-shape. (Parameters for
training: batch size Nb = 100, learning rate ↵=0.02 and regularization
l2 =0.005. See the Methods for an explanation of these terms.)

the confusion). In this case it will choose to learn the label of the 39

majority data, and the performance will be 40

P(c 0)=1� min
�
c� c 0, c 0 �a

�

c�a
(2) 41

Similar analysis applies to c < c 0 < b. This gives the typical 42

W-shape seen in Fig. 1d.Note that if the point c is not exactly centred 43

between a and b, the W-shape will be slightly distorted. Its middle 44

peak always corresponds to the correct labelling, but the depth of 45

the minima will di�er between the left and right. 46

We test the confusion scheme on the thermal phase transition in 47

the two-dimensional classical Ising model, which has been studied 48

by both supervised learning6 and unsupervised learning5 methods. 49

Here we train a NN (with L2 neurons in the input and hidden 50

layers, and 2 neurons in the output layer) on the L⇥ L classical 51

configurations sampled fromMonte Carlo simulations. As shown in 52

Fig. 3, the W-shape again predicts the right transition temperature. 53

Note the confusion scheme works better when the underlying Q.854

feature in the data is shaper, that is, for the larger system size L=20. 55

We also remark that the error bars shown in the figure are large for 56

the points deviating from the expected W-shape. These error bars 57

were obtained by repeating the confusion procedure with Monte 58

Carlo data from independent runs. 59

To confirm that the confusion scheme indeed extracts non-trivial Q.960

features from the input data, we have checked the performance 61

curve from the confusion scheme, when the NN is trained on 62

unstructured random data. We use a fictive parameter as a tuning 63

parameter, but have completely unstructured (random) data as a 64

function of it. Hence, the network will not find structure in the 65

data, and a correct labelling does not exist. The middle peak of the 66

characteristic W-shape disappears, turning it into a V-shape. 67

We will now test our proposed scheme on an example where the 68

exact location of the transition point is not known.We study a case of 69

interest in recent literature, namely that of many-body localization. 70

We consider the following model: Q.1071

H = J
LX

i=1

Si ·Si+1 +
X

↵=x ,y ,z

LX

i=1

h↵

i S
↵

i (3) 72

where S denote spin-1/2 operators. The local fields h↵
i are drawn 73

from a uniform box distribution with zero mean and width h↵
max. 74
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Figure 4 | Learning the many-body-localization transition. a, Principal
component analysis of the random-field Heisenberg model. Unlike in the
Kitaev model or for the Ising data5, there is no clearly observable clustering.
b, The characteristic W-shape of the performance curve on the
many-body-localization data. The result shows that the network Nh0

c
for

h0
c ⇡3J performs best, indicating that this is the correct labelling. The

distinction between the thermalizing and non-thermalizing phase can
hence be put at hc ⇡3J, in agreement with ref. 24. (Parameters for training:
batch size Nb = 100, learning rate ↵= 10�8 and regularization l2 =0.01.
See the Methods for an explanation of these terms.) c, The performance of
network Nh0

c
, when evaluated at the point h0

c only, for various di�erent sets
of learning parameters (see legend). Clearly the performance of the
network is most independent of the exact training scheme at h0

c ⇡3J,
showing a robustness of this correct labelling against variations in training.

We set hx
max = hz

max = hmax and hy
max = 0. The disorder allows us to1

generatemany samples at a fixed set ofmodel parameters, in analogy2

to the di�erent configurations for a fixed

Q.11

temperature in the classical3

spin systems5,6.4

The model in equation (3) has a transition between thermalizing5

and non-thermalizing (that is, many-body localized) behaviour,6

driven by the disorder strength hmax. In particular, when varying7

hmax, both the energy level statistics as well as the statistics of8

the entanglement spectra change their nature24. For the case9

of the energy levels, the gaps (level spacings) follow either a10

Wigner–Dyson distribution for the thermalizing phase, or a Poisson11

distribution for the localized phase; while for the ES, the Wigner–12

Dyson distribution is replaced by a semi-Poisson distribution. Note13

that the change of ES can already be seen from the statistics in a14

single eigenstate24.15

Wenumerically obtain the ES for the ground state of themodel in16

equation (3), for disorder strengths between hmax = J and hmax =5J .17

The transition was shown to happen around hmax ⇡ 3J (ref. 24), 18

but we stress that our method does not rely on Q.12this knowledge. We 19

would simply have started from a larger width of points, and then 20

systematically narrow it down to the current range. At each value of 21

hmax we generate 105 disorder realizations for system size L=12 and 22

calculate the ES for LA =LB =6. These 26 =64 levels are used as the 23

input to the NN. 24

First, we try to use an unsupervised PCA to cluster the data. 25

This analysis shows that the first two principal components are 26

dominant, with the other components being of order 10�4 or less. 27

However, a scatterplot of the data when projected onto the first two 28

principal components (shown in Fig. 4a) does not reveal a clear 29

clustering of the spectra. 30

We therefore turn to train a shallow feedforward network on the 31

entanglement spectra to use the confusion scheme. Here we use a 32

network with 64 input neurons, 100 hidden neurons and 2 output 33

neurons. The results are shown in Fig. 4b. Also in this case, the 34

characteristic W-shape is obtained and we detect the transition at 35

hc ⇡3J . In addition to the previous cases, we also consider explicitly 36

the performance of the network Nh0c at h
0
c. We do this to confirm 37

that the labelling with h0
c at 3J is indeed correct. We expect that 38

the training of the network is most robust against changes in its 39

parameters for the correct labelling. In other words, we may also 40

look for the h0
c at which the training is most independent of chosen 41

conditions. As shown in Fig. 4c, this point is also at hc. 42

An interesting direction for future studies is the relaxation of 43

the assumption that there are only two phases to be distinguished. 44

If there are multiple phase transitions present in the data as a 45

function of the tuning parameter, the characteristicW-shape will be 46

modified, and its new shape (that is, the number of peaks) will signal 47

the correct number of di�erent labels. This is due to the fact that 48

data with multiple phases can always be bipartitioned into classes 49

‘belongs to phase A’ and ‘does not belong to phase A’, where A can be 50

any phase in the data. Additionally, it may be possible to formulate 51

this method in a self-consistent way, with an adaptive labelling and 52

having the algorithm determine the correct labels by itself. 53

Methods 54

Methods, including statements of data availability and any 55

associated accession codes and references, are available in the 56

online version of this paper. 57
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Figure 2 | Neural networks. a, A single artificial neuron, with n inputs
labelled x1 through xn and a single output y. The output of the neuron is
computed by applying the activation function f to the weighted input
a=Pn

i wixi =w ·x. b, A neural network, consisting of many artificial
neurons that have been arranged in layers. In this particular network
architecture, called a feedforward network, the neurons within each layer
are not connected. Apart from the first layer and the last layer we use one
hidden layer in between (a shallow network, as opposed to a deep network
with many layers). The neurons in the first layer have no inputs, but instead
their outputs are fixed to the values of the input data and hence they serve
as dummy neurons. The entire network can be considered as a highly
nonlinear function g(x;W) that takes the input data x and feeds them
forward to get the output. The goal of a neural network-based approach is
to optimize the choice of the weights such that the network approximates
the desired function.

encountered before. As another display of the generalizing power of1

the network, we blank out the data in a width w around µ=�2t2

and ask the network to

Q.7

interpolate and find the transition point.3

Figure 1c shows that the network has no di�culties doing so even4

for w=2t . We were able to go up to widths w=3t before training5

became unreliable.6

The PCA as an unsupervised learning technique may be applied7

without perfectly known information of the system, but it is a linear8

analysis and is hence incapable of extracting nonlinear relationships9

among the data. On the other hand, a NN is capable of fitting any10

nonlinear function11, but a training phase with correctly labelled11

input–output pairs is needed. In the following, we propose a scheme12

combining both supervised and unsupervisedmethods that we refer13

to as a confusion scheme. This scheme is themain result of thiswork.14

We suppose that the data depend on a parameter that lies in the15

range (a,b), and we assume that there exists a critical point a< c<b16

such that the data can be classified into two groups. However, we do17

not know the value of c. We propose a critical point c 0, and train a18

network that we callNc0 by labelling all data with parameters smaller19

than c 0 with label 0 and the others with label 1. Next, we evaluate20

the performance of Nc0 on the entire data set and refer to its total21

performance, with respect to the proposed critical point c 0, as P(c 0).22

We will show that the function P(c 0) has a universal W-shape, with23

the middle peak at the correct critical point c. Applying this to the24

Kitaev model, we can see from Fig. 1d that for �4t < µ < 0, the25

prediction performance from the confusion scheme has a W-shape26

with the middle peak at µ=�2t .27

The W-shape can be understood as follows. We assume that the28

data have two di�erent structures in the regimes below c and above29

c, and that the NN is able to find and distinguish them. We refer to30

these di�erent structures as features. When we set c 0 = a, the NN31

chooses to assign label 1 to both features and thus correctly predicts32

100% of the data. A similar analysis applies to c 0 = b, except that33

every data point is assigned the label 0. When c 0 = c is the correct34

labelling, the NN will choose to assign the right label to both sides35

of the critical point and again performs perfectly. When a< c 0 < c,36

in the training phase the NN sees data with the same feature in the37

ranges from a to c 0 and from c 0 to c, but having di�erent labels (hence38
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Figure 3 | Learning the Ising transition. The position of the middle peak in
the universal W-shape deviates from T0

c =Tc for L= 10 due to the
finite-size e�ect. Here kBTc ⇡2.27J is the exact transition temperature in
the thermodynamic limit. For L=20 the middle peak is located exactly at
T0

c =Tc. Error bars are obtained by averaging over ten di�erent and
independent Monte Carlo runs for obtaining the data. The errors are larger
for points that deviate from the expected W-shape. (Parameters for
training: batch size Nb = 100, learning rate ↵=0.02 and regularization
l2 =0.005. See the Methods for an explanation of these terms.)

the confusion). In this case it will choose to learn the label of the 39

majority data, and the performance will be 40

P(c 0)=1� min
�
c� c 0, c 0 �a

�

c�a
(2) 41

Similar analysis applies to c < c 0 < b. This gives the typical 42

W-shape seen in Fig. 1d.Note that if the point c is not exactly centred 43

between a and b, the W-shape will be slightly distorted. Its middle 44

peak always corresponds to the correct labelling, but the depth of 45

the minima will di�er between the left and right. 46

We test the confusion scheme on the thermal phase transition in 47

the two-dimensional classical Ising model, which has been studied 48

by both supervised learning6 and unsupervised learning5 methods. 49

Here we train a NN (with L2 neurons in the input and hidden 50

layers, and 2 neurons in the output layer) on the L⇥ L classical 51

configurations sampled fromMonte Carlo simulations. As shown in 52

Fig. 3, the W-shape again predicts the right transition temperature. 53

Note the confusion scheme works better when the underlying Q.854

feature in the data is shaper, that is, for the larger system size L=20. 55

We also remark that the error bars shown in the figure are large for 56

the points deviating from the expected W-shape. These error bars 57

were obtained by repeating the confusion procedure with Monte 58

Carlo data from independent runs. 59

To confirm that the confusion scheme indeed extracts non-trivial Q.960

features from the input data, we have checked the performance 61

curve from the confusion scheme, when the NN is trained on 62

unstructured random data. We use a fictive parameter as a tuning 63

parameter, but have completely unstructured (random) data as a 64

function of it. Hence, the network will not find structure in the 65

data, and a correct labelling does not exist. The middle peak of the 66

characteristic W-shape disappears, turning it into a V-shape. 67

We will now test our proposed scheme on an example where the 68

exact location of the transition point is not known.We study a case of 69

interest in recent literature, namely that of many-body localization. 70

We consider the following model: Q.1071

H = J
LX

i=1

Si ·Si+1 +
X

↵=x ,y ,z

LX

i=1

h↵

i S
↵

i (3) 72

where S denote spin-1/2 operators. The local fields h↵
i are drawn 73

from a uniform box distribution with zero mean and width h↵
max. 74

NATURE PHYSICS | ADVANCE ONLINE PUBLICATION | www.nature.com/naturephysics 3

H = �J
X

hi,ji

�z
i �

z
j

Other Kinds of Transitions

The brute-force sweep for the guess is expensive.
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Promote the human guess to a guesser agent.

Cooperative two-nets scheme:

Guesser Learner

Proposes the guess 
Wants to be a better teacher

Responds with learning performance 
Wants to be a better student

ML Search for Optimal Guess

YHL and E. P. L. van Nieuwenburg, arXiv:1706.08111



4T

phase	0

phase	1

(a) (b)

…
… …

guesserlearner

cross	entropy	loss
C (N,	G )	

x

N

N (d(x)) G (x)

G

d1

d2

dk

p

d
Black Box

Unsupervised learning 
Self-supervised learning 
Self-learning

Self-Learning Scheme

Better teacher 
Better student 
Better academy

p p

p



The Guesser

A logistic regression parametrized by: 
a guess g 
a sharpness T

parameter p

ac
tiv

at
io

n 
G

G0(p) =�(�(p� g)/T ),

G1(p) =�(+(p� g)/T ).



The Learning Equations

�g = �↵g
@C

@g
,�T = �↵T

@C

@T
,�WN = �↵WN

@C

@WN
.

Gradient descent:

Cross-entropy cost/loss function:

Chain rule:

p
p



The Learning Equations

�g = �↵g
@C

@g
,�T = �↵T

@C

@T
,�WN = �↵WN

@C

@WN
.

Gradient descent:

Cross-entropy cost/loss function:

Chain rule:

back-propagation

p
p



The Learning Equations

�g = �↵g
@C

@g
,�T = �↵T

@C

@T
,�WN = �↵WN

@C

@WN
.

Gradient descent:

Cross-entropy cost/loss function:

Chain rule:

back-propagation

p
p



Self-Learning the Ising transition 3

more elastic snake by preventing stretching and � a
more solid snake by preventing bending. The internal
forces �rvEinternal

are discretized by finite di↵erences,
which involve nearest neighbors for second-order deriva-
tives, and next-nearest neighbors for fourth-order deriva-
tives. Updating the snake is performed by a semi-implicit
method [35]. To regularize the density of snake nodes, at
each time step of motion, we move the snake nodes such
that successive nodes have equal distance, all the while
keeping the overall shape of the snake.

In computer vision, the external image force is local,
e.g. local color intensity for lines and local color gradi-
ent for edges. In our case, the external force experienced
by the snake will be derived from the machine-learning
gradient Eq. (1). However the self-learning scheme de-
pends on accessing data from both sides of the guessed
transition surface (current location of the snake), at the
same time. For this reason, we introduce a width of the
snake (generically di↵erent at each node), denoted by
the same parameter T as in the 1D case. The snake
will generate (sense) samples in its vicinity within this
length scale as shown in Fig. 1b. Specifically the sam-
ple points are drawn at each node perpendicularly to the
snake, with distances uniformly picked in [�2T, 2T ]. The
guesser function is the same as in the 1D case, evaluated
by each node in its perpendicular direction. This probing
of the data within a window, and asking whether or not
two distinct phases can be detected within it, is a very
powerful concept that is also successfully used in Ref. 10
to scan phase diagrams.

RESULTS

Ising model. We first test our scheme on a 1D parameter
space by studying the thermal phase transition of the 2D
Ising model:

H = �J
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where the tuning parameter is the temperature 1/�.
The training data are spin configurations drawn from

a Monte Carlo simulation on an L by L square lattice.
We select 100 temperatures uniformly from 0.1J to 5J
and prepare 100 samples at each temperature. Every
batch consists of N

b

= 100 random samples, one from
each temperature. The time is measured by the number
of batches passed in the training process.

As shown in Fig. 2, during training, the guesser moves
toward the correct transition point 1/�

c

⇠ 2.27J , and
decreases the width T such that the learning is sharper
and sharper. We found for this method to work, we
have to preprocess each configuration by flipping all its
spins when the net magnetization
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is negative, this
corresponds to a manual removal of the Z
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symmetry.

FIG. 2. Self-learning the Ising transition. (a) Starting from a
lower guess of the transition point, the gradient on the guesser
pushes it to move up. The red line marks the exact transition
point and the gray lines the temperatures (in the range of
the figure) for generating Monte Carlo samples. (b) During
training, the width T decreases, meaning the combined self-
learner could distinguish the two phases sharper. Training
on samples from larger lattices is faster and more accurate.
Parameters: batch size Nb = 100, number of input neurons
L

2, number of hidden neurons L2, number of output neurons
2; initial learning rates ↵N = 0.1,↵g = 0.025,↵T = 0.003,
decay rate 0.995; dropout keep probability 0.8, L2 = 0.0001.
We have set a lower bound for the width T > 0.01.

Bose-Hubbard model. As a first example for self-learning
phase transitions in 2D parameter spaces, we choose the
Bose-Hubbard model:
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Regarding U as the energy unit, for each chemical poten-
tial µ, the model has a quantum phase transition from
Mott insulating state to superfluid state when the hop-
ping J is increased. A useful indicator of this phase
transition, unknown to the initial snake, is the average
hopping hKi where K =
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reaches local maxima when the system is
at commensurate fillings, corresponding to half-integers
µ/U . A phase diagram of this system results in the series
of well-known Mott-lobes.
We use the mean-field theory developed in Ref. 37

to generate vector data F(J, µ), where F
n

with n =
0, 1, . . . , n

max

denotes the amplitude for having n bosons
per site. We choose a cuto↵ of n

max

= 79.
We target the third Mott lobe between µ/U = 2, 3,

and the snake successfully captures the phase boundary
as shown in Fig. 3. In this case the phase boundary
touches the boundary of the parameter space, so we

Larger system size: more accurate and sharper.
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2D Image-Feature Extraction with Snake

Snake: a very influential model in computer vision.
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Intelligent Snake Self-Generates Training Samples

Snake! Are you OK?  
Are you confused?

The snake senses its surroundings.
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transition surface (current location of the snake), at the
same time. For this reason, we introduce a width of the
snake (generically di↵erent at each node), denoted by
the same parameter T as in the 1D case. The snake
will generate (sense) samples in its vicinity within this
length scale as shown in Fig. 1b. Specifically the sam-
ple points are drawn at each node perpendicularly to the
snake, with distances uniformly picked in [�2T, 2T ]. The
guesser function is the same as in the 1D case, evaluated
by each node in its perpendicular direction. This probing
of the data within a window, and asking whether or not
two distinct phases can be detected within it, is a very
powerful concept that is also successfully used in Ref. 10
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We select 100 temperatures uniformly from 0.1J to 5J
and prepare 100 samples at each temperature. Every
batch consists of N
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each temperature. The time is measured by the number
of batches passed in the training process.
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FIG. 2. Self-learning the Ising transition. (a) Starting from a
lower guess of the transition point, the gradient on the guesser
pushes it to move up. The red line marks the exact transition
point and the gray lines the temperatures (in the range of
the figure) for generating Monte Carlo samples. (b) During
training, the width T decreases, meaning the combined self-
learner could distinguish the two phases sharper. Training
on samples from larger lattices is faster and more accurate.
Parameters: batch size Nb = 100, number of input neurons
L

2, number of hidden neurons L2, number of output neurons
2; initial learning rates ↵N = 0.1,↵g = 0.025,↵T = 0.003,
decay rate 0.995; dropout keep probability 0.8, L2 = 0.0001.
We have set a lower bound for the width T > 0.01.

Bose-Hubbard model. As a first example for self-learning
phase transitions in 2D parameter spaces, we choose the
Bose-Hubbard model:
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Regarding U as the energy unit, for each chemical poten-
tial µ, the model has a quantum phase transition from
Mott insulating state to superfluid state when the hop-
ping J is increased. A useful indicator of this phase
transition, unknown to the initial snake, is the average
hopping hKi where K =
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reaches local maxima when the system is
at commensurate fillings, corresponding to half-integers
µ/U . A phase diagram of this system results in the series
of well-known Mott-lobes.
We use the mean-field theory developed in Ref. 37

to generate vector data F(J, µ), where F
n

with n =
0, 1, . . . , n

max

denotes the amplitude for having n bosons
per site. We choose a cuto↵ of n

max

= 79.
We target the third Mott lobe between µ/U = 2, 3,

and the snake successfully captures the phase boundary
as shown in Fig. 3. In this case the phase boundary
touches the boundary of the parameter space, so we

Small hopping leads to localization. 

Integer filling leads to localization.
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point and the gray lines the temperatures (in the range of
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learner could distinguish the two phases sharper. Training
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2; initial learning rates ↵N = 0.1,↵g = 0.025,↵T = 0.003,
decay rate 0.995; dropout keep probability 0.8, L2 = 0.0001.
We have set a lower bound for the width T > 0.01.
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Regarding U as the energy unit, for each chemical poten-
tial µ, the model has a quantum phase transition from
Mott insulating state to superfluid state when the hop-
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at commensurate fillings, corresponding to half-integers
µ/U . A phase diagram of this system results in the series
of well-known Mott-lobes.
We use the mean-field theory developed in Ref. 37

to generate vector data F(J, µ), where F
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Bose Hubbard Model — Training Data

Mean-field theory:

Insulating state: 

An eigenstate of N.  

Superfluid state: 

There is phase coherence.



Bose Hubbard Model — Self-Learning

Initial large snake shrinks to the correct phase boundary. 
Background plot is the average hopping. 

But the snake is fed with f(n).
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FIG. 3. Self-learning the Mott insulator to superfluid transition in the Bose Hubbard model (left panels), and the topological
transition in the spin-1 antiferromagnetic Heisenberg chain with anisotropy and magnetic field (right panels). Color plots
(purple to yellow goes from zero to nonzero values) show the average hopping for the Bose Hubbard model, and the di↵erence
between the largest two eigenvalues of the reduced density matrix for half of the Heisenberg chain. For the Bose Hubbard
model we create a large open snake with head and tail fixed at integer chemical potentials µ/U = 2, 3. In this case the snake
shrinks and stops at the correct phase boundary. For the Heisenberg model, we create a large and o↵set closed snake, who
moves, rotates, shrinks, and finally stays at the Haldane pocket. Parameters for snakes: number of nodes 50; dynamic width
at each node is initialized to T = 0.06 (normalized by the ranges of parameters) and clipped to T 2 [0.03, 0.08] during motion;
regularizations ↵ = 0.002, � = 0.4, � = 0.25 (see Ref. 35 for details); batch size Nb = 1500. Parameters for the fully connected
neural networks: number of input neurons 80, number of hidden neurons 80, number of output neurons 2; initial learning rates
↵N = 0.01, ↵g = 0.0008, ↵T = 0.0002, decay rate 0.9999; dropout keep probability 0.8, L2 = 0.0001.

use open snakes with fixed head and tail at known
transition points. The snake’s motion is then restricted
to shrinking or expanding. It is important to emphasize
here that we have used knowledge of only two points in
this phase diagram along the J = 0 axis, and that the
underlying data is not the average hopping as shown in
the background, but the vector data F(J, µ) mentioned
above. Additionally, we have tested that the snake is
capable of finding the lobe from an initially circular
(periodic) configuration (cf. the next example on the
Heisenberg model).

Heisenberg model. We now move to a quantum phase
transition beyond mean-field theory. We choose the spin-
1 antiferromagnetic Heisenberg chain with anisotropy
and transverse magnetic field:
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In the 2D parameter space B/J and D/J , this model has
a pocket named the Haldane phase – a topologically non-
trivial phase – around zero magnetic field and anisotropy
[38]. This transition can be detected by a change in the
degeneracy structure of the entanglement spectrum, but
the initial snake is unaware of this.

For the training data, we simulate an infinite chain
with translational invariance using iTEBD [39] and
record the eigenvalues of the reduced density matrix up
to bond dimension m = 80 for the calculation. We also
include measurements of the (staggered) magnetization
at every point in the phase diagram.

The result of learning with the entanglement spectrum
data is shown in Fig. 3. In this model the phase bound-

ary is closed and located near the center of the parameter
space. For this reason we use a closed (periodic) snake
(such a snake is a good initial choice in all cases). Com-
pared with the previous example, the snake’s motion now
also contains translation and rotation.
If the snake is fed only magnetization data, the result-

ing phase boundary depends on the initial position of the
snake. In particular, if the snake is initialized near the
central Haldane pocket, the snake neatly wraps around
it as before. This is most likely due to the snake distin-
guishing the Haldane phase from other phases (i.e. those
with an antiferromagnetic order parameter). We remark
that the initial configuration of the snake needs to overlap
with (at least) two di↵erent phases, so that it is able to
probe a gradient. This is the largest drawback of snakes
(as it is also for their use in computer vision), but can be
overcome relatively easily by scaling/moving the snake.

DISCUSSION

In this paper we improved the previously introduced
confusion scheme to a level that allows it to self-
consistently find transition points. By training two net-
works (the guesser and learner) together, we have con-
structed an e↵ective self-learner capable of detecting
phase transitions automatically. This increase in e�-
ciency allows us to also explore parameter spaces beyond
1D, where we utilized the snake model from computer
vision to extract phase boundaries. Our method is in
spirit similar to the actor-critic scheme for reinforcement
learning [40] and the adversarial training scheme for gen-
erative models [41]. Although we have not presented

B=0 & D=0: Haldane phase. 

Haldane phase:  
A topologically nontrivial. 



Spin-1 Heisenberg chain — Training Data

iTEBD: Entanglement Spectrum 

Nontrivial phase: 

Degeneracy of largest eigenvalue. 

Trivial phase: 

Isolated largest eigenvalue.

ES = eig(trB⇢AB)

A B



Spin-1 Heisenberg chain — Self-Learning

Initial large snake moves, rotates, and deforms to the Haldane pocket. 
Background plot is ES gap. 

But the snake is fed with the full ES.
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