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Intro
Unsupervised learning

Almost every deep-learning product in commercial use today
uses supervised learning, meaning that the neural net is trained
with labeled data (like the images assembled by ImageNet).
With unsupervised learning, by contrast, a neural net is shown
unlabeled data and asked simply to look for recurring patterns.
Researchers would love to master unsupervised learning one
day because then machines could teach themselves about the
world from vast stores of data that are unusable today—making
sense of the world almost totally on their own, like infants.
—Geoffrey E. Hinton

o
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Intro
Unsupervised learning

If you think about it, scientists are doing unsupervised learning:
observing the world, coming up with explanatory models,
testing them by collecting more (targeted, though)
observations, and continuously trying to improve our causal

model of how the world around us works.
—Yoshua Bengio
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Intro
Key motivations

However, to understand deep learning as a whole is extremely
difficult and highly challenging.

@ How does learning improve with data size?
@ How many data are required to learn a feature?

@ What key factors determine the success of unsupervised
learning?
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Simple but non-trivial

JW Gibbs (1881)

One of the principal objects of theoretical research...is to find
the point of view from which the subject appears in its greatest
simplicity.
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model Bethe replica

One-bit Restricted Boltzmann Machine
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The posterior distribution of the feature vector:
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model Bethe replica

An intuitive example: data samples (10 by 10)
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model Bethe replica

An intuitive example: after showing 10N samples

only one bit is different!! J
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model Bethe replica
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model Bethe replica

Factor graph: Bethe approximation
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model Bethe replica

Central limit theorem

B .1 b
wsi(&)= S cosh (ﬁ£a> [1 Fole) ®
{ajlji€db\i} N jEAb\i ' j

1 by . =2 1 2
Gpi = N Yjconri 0 Mimby Zposi = 1 2jeannil1 — Miyp)- J

Huang & Toyoizumi., Phys Rev E (2015).
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model Bethe replica

Distributed message passing

Simplified Belief Propagation (sBP):

mj_,p = tanh ( Z Uaai) 5 (4a)

acdi\b
Uy = tanh™ (tanh(BGaﬁ,-)tanh(Ba;?/m)) . (4b)

One iteration requires O(MN) computations!
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model Bethe replica

Mean field estimator and entropy

The maximizer of the posterior marginals (MPM) estimator

¢ = argmax Pi(&) (5)

maximizing the overlap q = 1N Z,&}“‘e&-
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model Bethe replica

Mean field estimator and entropy

The maximizer of the posterior marginals (MPM) estimator

& = argmax P(¢) (5)
maximizing the overlap q = 1N Z,&}“‘e&-

s=xyINQ=—33, P(&)InP(§).

—the number of feature vectors consistent with the presented
data.
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model Bethe replica

Outline
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model Bethe replica

Replica theory

Typical behavior: averaged over random features (£™¢) and
corresponding data ({o?}).

In (Z")
—Bf= i
5 naOIrI\TILoo nN

(Z)=gn ¥ PloE™) S [Teosn (%2°).

{o2,grue} {¢7} an

; (6)
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model Bethe replica

Replica theory

Typical behavior: averaged over random features (£"'¢) and
corresponding data ({o?}).

In (Z")
—Bf= i
5 naOIrI\TILoo nN

(2= X PUoE™) ZHCOSh( il a) @)

; (6)

{oagme} {¢7} an
Free energy under permutation symmetry of replica matrix:
L P(r—1 2 s
—Blks = —qg + r(r2 )+a§ (1 —r)+/DzIn2003h(q+ \frz)
taeF/2 / Dy/ Dt cosh Btincosh 3(gt + \/r — G2y).

(8)

Huang, JSTAT (2017)
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phase trans

Entropy/overlap vs. data size
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continuous phase transition a; = 3% # azg in general!
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phase trans

Phase diagram
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phase trans

Phase diagram

Discontinuous ;/, Te:m

state space _»

overlap
structure

sBP is stable, related to Nishimori condition:

&' follows the posterior as well!! J

Nishimori, Journal of Physics C: Solid State Physics, 1980; W. Kauzmann, Chem. Rev. (1948).
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phase trans

Easy-hard-easy learning pattern
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Ndifficult as a linear peak learning time!!l.
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phase trans

Modeling handwriten digits
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N=28x28 p=1.
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phase trans

Entropy
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phase trans
How cold is a dataset?

Can we predict feature strength directly from the data? |

Haiping Huang unsupervised feature learning



Temperature of a dataset

The posterior probability of g given the data {aa}gg is given by

. Y P{o)[, B)PY(E. B)
PBlo®) =3 PGB8 = 155 pioatie, mRste. B
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temp

Temperature of a dataset

The posterior probability of 3 given the data {a2}¥__ is given by

. S PU{e e HPYE )
PBlo®) =3 PGB8 = 155 pioatie, mRste. B

1 —NMin( 2cosh(8/v/N) g a
= 2o 2° o) oo ()

a

&M% Z(8,{07)),

(9)
lterative equation for temperature prediction:
dInZ(B,{c?})
— =2 = Nag. 1
Nishimori condition (physics) vs. EM algorithm (statistics)! )
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temp

Test on synthetic data
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temp

Test on (0,1) handwriten digits
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zero synapses

Zero synapses: concept formation

HZero syhapses

O Hidden neuron
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zero synapses

Zero synapses: concept formation
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Huang, arXiv:1703.07943
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Summary

@ Data determines the weight uncertainty.

@ (dis)continuous phase transitions revealed.

@ Easy-hard-easy unsupervised learning pattern discovered.
@ A quantitative measure of how cold a dataset is provided.
@ Role of zero synapses revealed.
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