

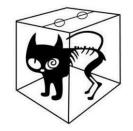
On the Equivalence of Restricted Boltzmann Machines and Tensor Network States

Jing Chen (陈靖)

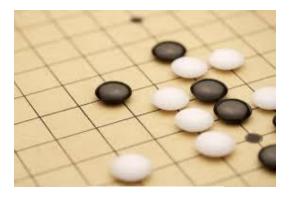
IOP, CAS

chenjing@iphy.ac.cn

arXiv:1701.04831



Machine learning



Driverless Car

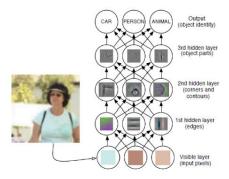
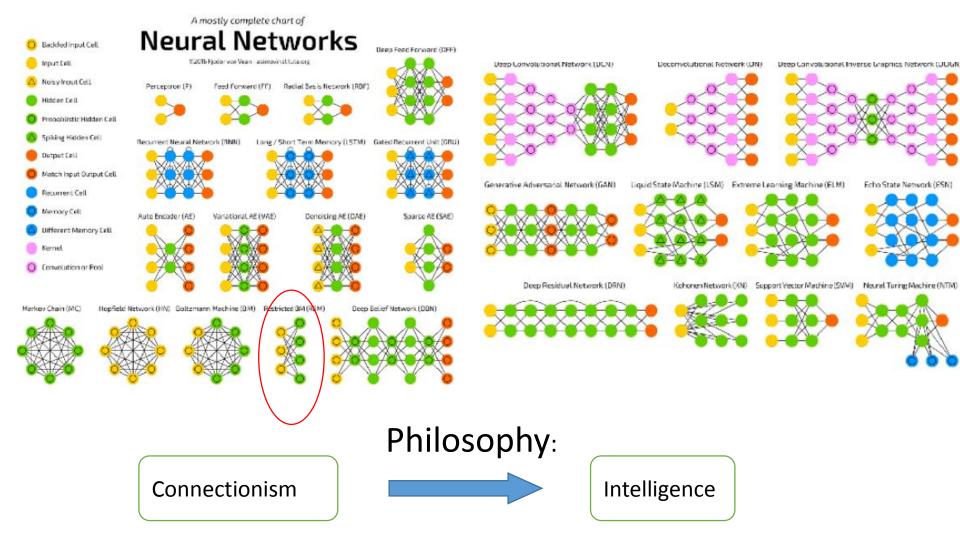


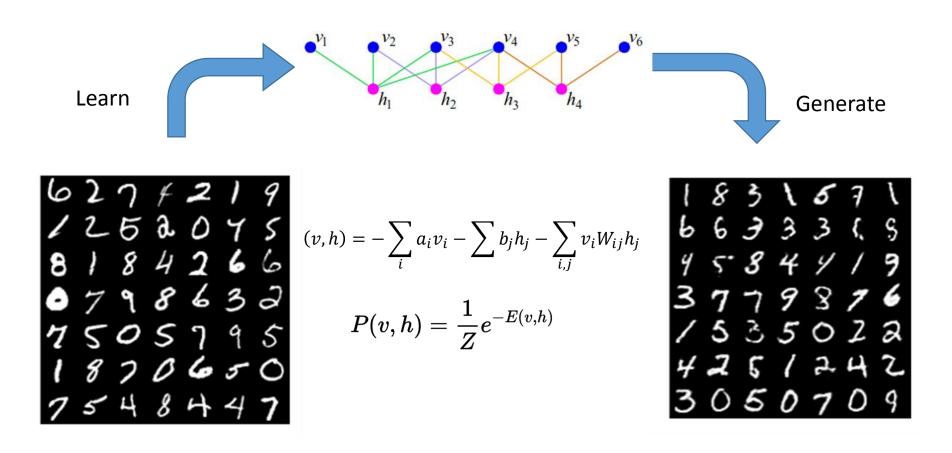
Image Recognition

Amazon recommender

Zoo of Neural Network



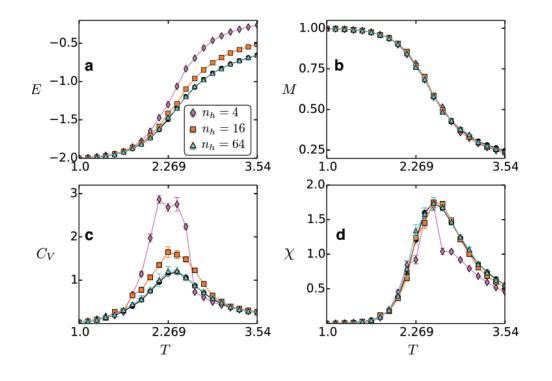
Restricted Boltzmann Machine (RBM)

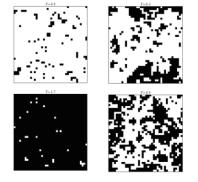


Theano deep learning tutorial

http://www.deeplearning.net/tutorial/rbm.html#rbm

Learning Classical Statistic Distribution by RBM





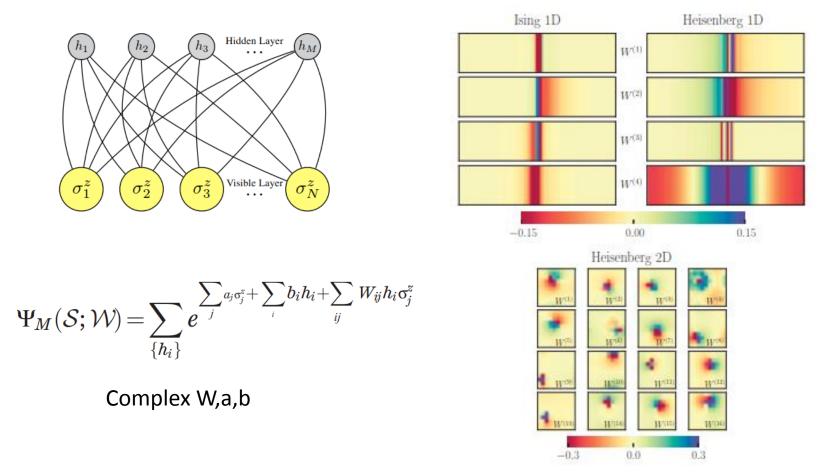
The result is not very good at Tc

Can RBM represent the distribution well at criticality?

"Learning Thermodynamics with Boltzmann Machines" G. Torlai, R. G. Melko Phys. Rev. B 94, 165134 (2016)

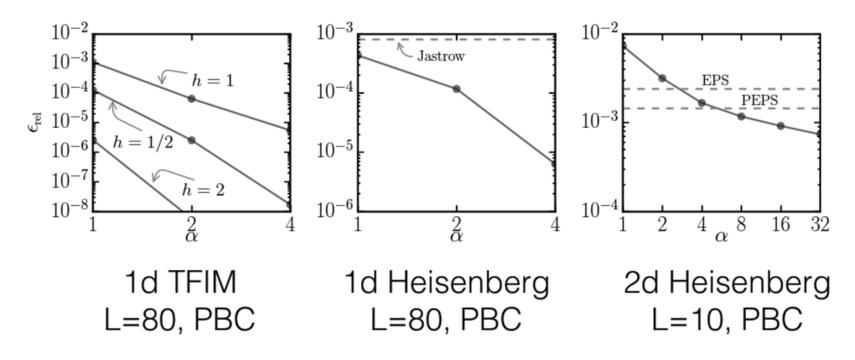
Accelerated Monte Carlo simulations with restricted Boltzmann machines L Huang, L Wang Phys. Rev. B 95, 035105

Quantum: RBM as wave function ansatz



"Solving the quantum many-body problem with artificial neural networks" by G. Carleo and M. Troyer, Science **355**, 602 (2017).

RBM as wave function ansatz



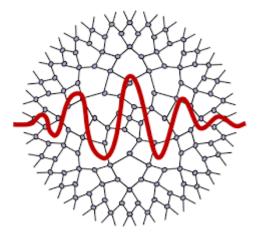
"Solving the quantum many-body problem with artificial neural networks" by G. Carleo and M. Troyer, Science **355**, 602 (2017).

A Neural Decoder for Topological Codes, Giacomo Torlai, Roger G. Melko, arxiv:1610.04238

Many-body quantum state tomography with neural networks, Giacomo Torlai, Guglielmo Mazzola, Juan Carrasquilla, Matthias Troyer, Roger Melko, Giuseppe Carleo, arxiv:1703.05334

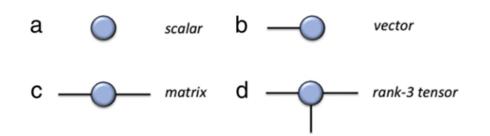
- How is the expressive power of RBM ?
- Does RBM satisfy the area law ?
- Can RBM represent critical possibility distribution ?
- Why is RBM wave function successful ?

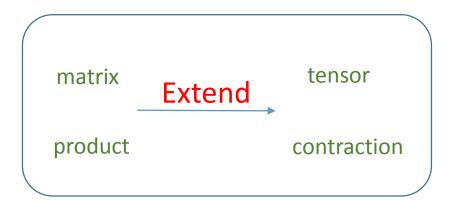


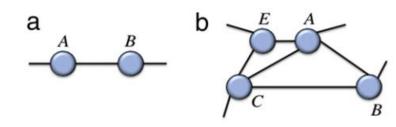


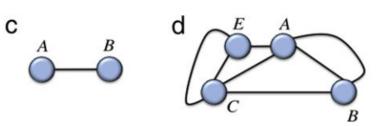
arXiv:1701.04831

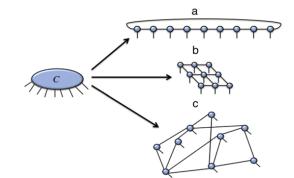
Tensor Network





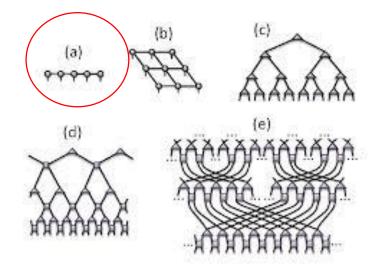


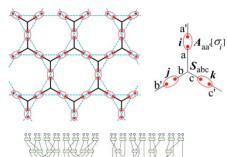


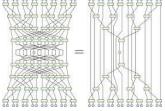


Represent wave functions

Zoo of Tensor Network State

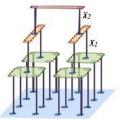


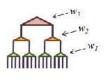


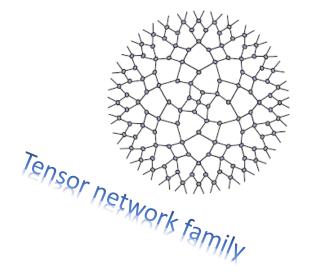


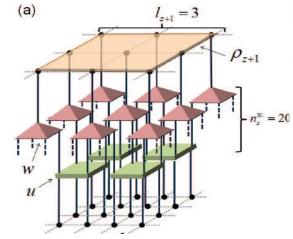
2 × 2 Lattice

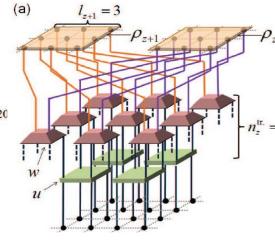
4 × 4 Lattice



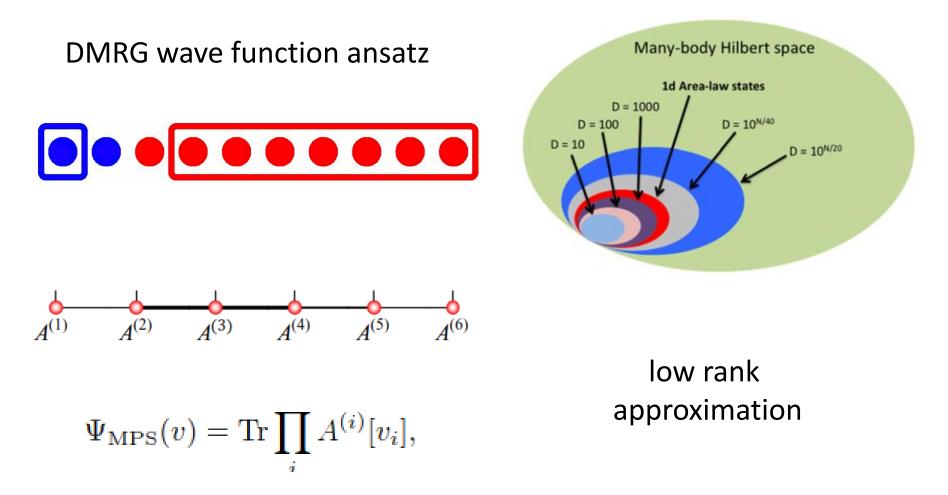






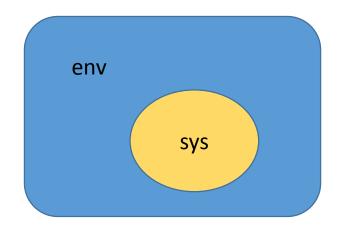


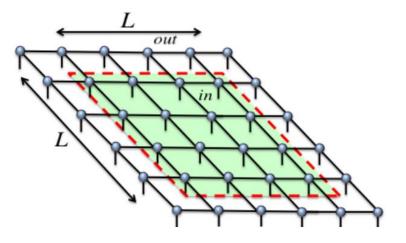
Matrix Product State (MPS)



Very successful in 1D

Entanglement (Area Law)





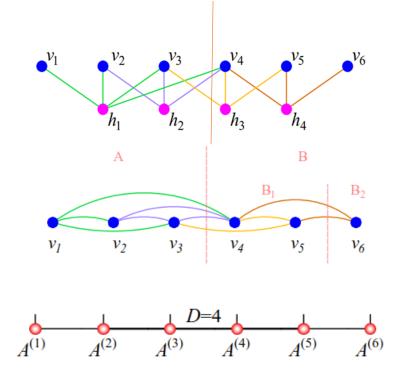
gapped systems ground state

 $S \leq n \ln D$

$$S = -Tr_e \left(\rho_{es} \log \rho_{es}\right)$$

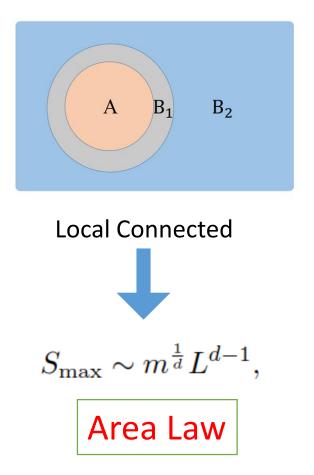
J Eisert, M Cramer, MB Plenio Reviews of Modern Physics, 2010

The entanglement entropy of RBM



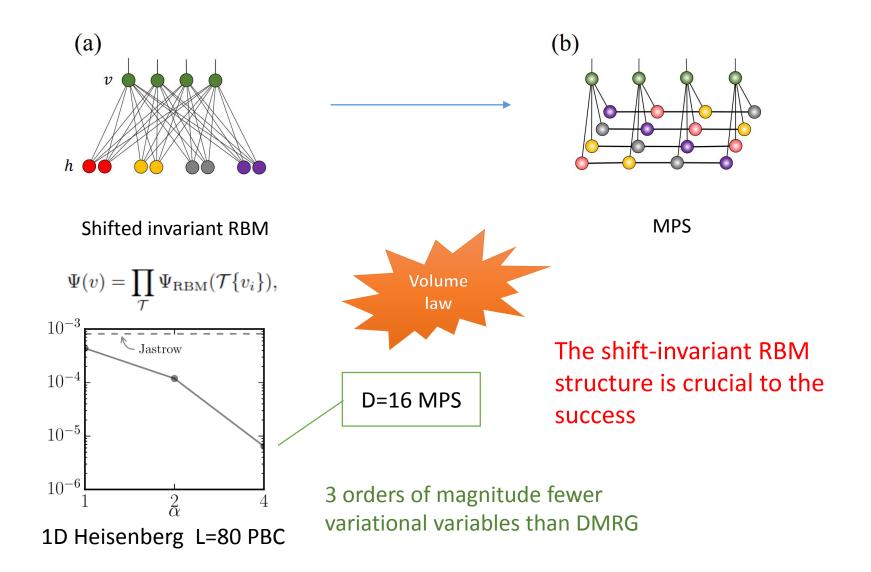
The entanglement depends on the size of B_1

Code: <u>https://github.com/yzcj105/rbm2mps</u>

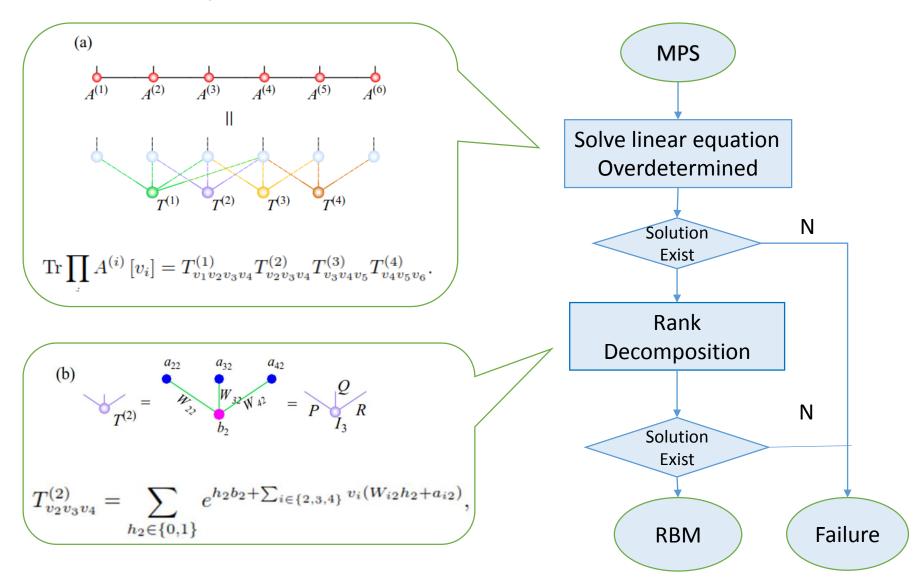


Good news: Much fewer Variables

Entanglement of shift-invariant RBM



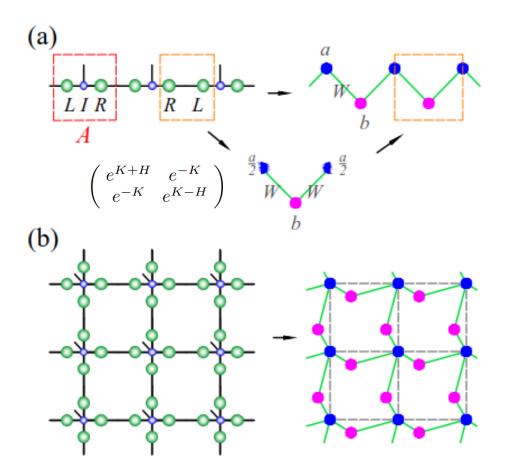
RBM representation of a MPS



Example:2D System	PEPS	RBM
Long term interactions	Passed by the sites between , increass D	Connected directly
N-body interactions	tensor with D ^N elements	N weights
Sampling of the physical freedom	Contraction of a 2D TN	Just a summation in the exponent
Philosophy	Contraction	Product

Local RBM is a subset of TN theoretically but different practically

Explicit RBM of Ising Model



$$Z = \sum_{\{s_i\}} \exp\left(K \sum_{\langle i,j \rangle} s_i s_j + H \sum_i s_i\right)$$

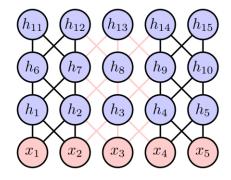
$$W = \ln(4e^{4K} - 2)$$

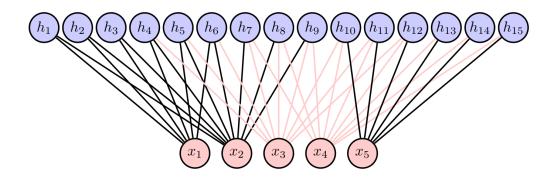
$$a = -8K - 2H - 4\ln 2$$

$$b = -\ln(e^{4K} - 1) - 2\ln 2$$

The RBM can represent Ising model at criticaliy!

Deep or shallow, is a question.





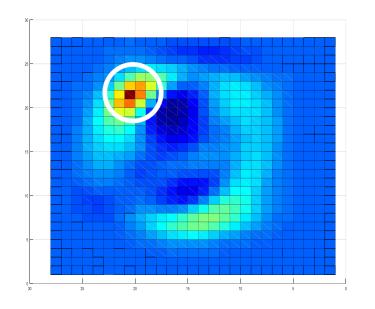
D=16

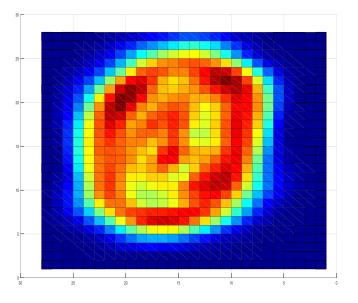
D=4

Same number of units and connections.

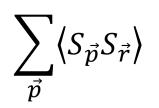
Deep BM allows more entanglement.

Entanglement and correlation of MNIST datasets





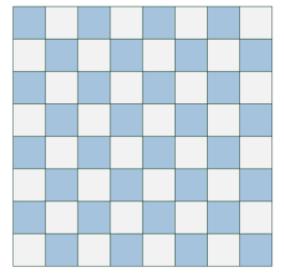
 $\langle S_0 S_{\vec{r}} \rangle$



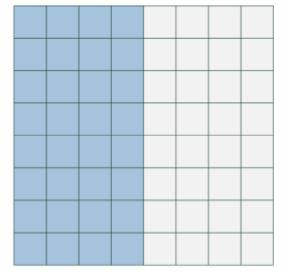
For images, the correlation is local and anisotropic

Introduced to computer science

a) Interleaved partition

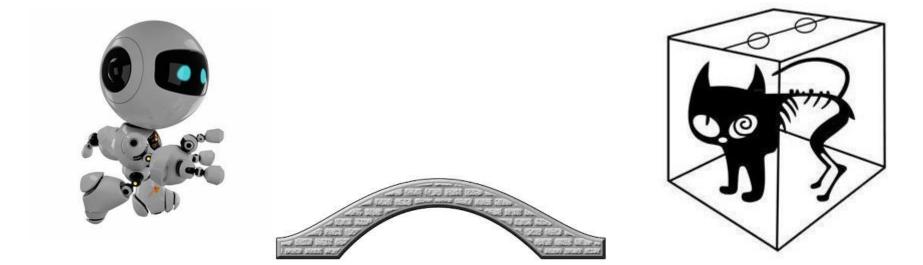


b) Left-right partition



Deep Learning and Quantum Entanglement: Fundamental Connections with Implications to Network Design by Y. Levine, D. Yakira, etc. arxiv:1704.01552

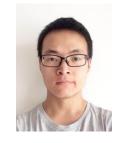
Summary



Machine Learning

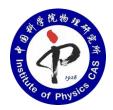
Quantum Physics

Collaborators



Song Cheng 程嵩

Haidong Xie 谢海东



Tao Xiang 向涛

Acknowledgement:

Giuseppe Carleo Dongling Deng邓东灵 Xiaopeng Li 李晓鹏 **Chen Fang**方辰 Xun Gao 部勋 E. Miles Stoudenmire Hong-Hao Tu 涂鸿浩 Yi-feng Yang 杨义峰 Ivan Glasser

ETH Zurich University of Maryland **Fudan University Institute of Physics Tsinghua University UC** Irvine Ludwig-Maximilians University Munich **IOP,CAS MPIQO**

Reference

- J. Chen, S. Cheng, H. Xie, L. Wang, and T. Xiang, arXiv:1701.04831
- D.-L. Deng, X. Li, and S. D. Sarma, Phys. Rev. X 7, 021021 (2017)
- X. Gao and L.-M. Duan, arXiv:1701.05039
- Y. Huang and J. E. Moore, arXiv:1701.06246
- G. Carleo and M. Troyer, Science 355, 602 (2017).