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PHASES, PHASE TRANSITIONS, AND THE ORDER PARAMETER

Ferromagnetic transition: order parameter3
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FIG. 1: Machine learning the Ising model. (A) The numerically trained fully connected neural

network learns representations of the low- and high-temperature phases of the Ising model. (B)

The magnetization M (dahsed blue line) as a function of temperature T for the ferromagnetic

Ising model on the square lattice. The training and test sets include 1000 states drawn from the

partition function of the Ising model at 40 di↵erent temperatures. (C) The average of the output

layer neurons over the test sets as a function of temperature. (D) The average accuracy of test

sets as a function of temperature. The vertical orange lines signal the critical temperature of the

Ising model T
c

= 2/ ln
�
1 +

p
2
�
.

system size is increased, as inferred from Figure 5(D), so that this training/testing paradigm

is capable of narrowing in on the true thermodynamic value of T
c

in a way analogous to the

direct measurement of the magnetization order parameter in a conventional Monte Carlo

simulation. In fact, due to the simplicity of the underlying order parameter (a bulk polar-

ization of Ising spins below T
c

), one can understand the training of the network through a
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WHAT IS SUPERVISED LEARNING?

➤ Supervised learning is the machine learning task of inferring a 
function from labeled training data.  

➤ In supervised learning, each example is a pair consisting of an 
input object (typically a high-d vector x) and a desired output 
value  y (also called the supervisory signal) 

➤ Simplest SL algorithm: linear regression

For a linear fit
f(a, b) = a+ bx

M (x,y) pairs
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FLUCTUATIONS HANDWRITTEN DIGITS (MNIST)

ML community has developed 
powerful supervised learning 
algorithms

Classification is the problem of identifying to which of a set of categories a new 
observation belongs, on the basis of a training set of data containing observations 
(or instances) whose category membership is known.

used by ATMs and post offices

f : Rn ! Rm

0 1 2 3 4 5 6 7 8 9
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ML community has developed 
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COLLECTING THE TRAINING/TESTING DATA: MC SAMPLING ISING MODEL AND LABELS
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FIG. 1: Machine learning the Ising model. (A) The numerically trained fully connected neural

network learns representations of the low- and high-temperature phases of the Ising model. (B)

The magnetization M (dahsed blue line) as a function of temperature T for the ferromagnetic

Ising model on the square lattice. The training and test sets include 1000 states drawn from the

partition function of the Ising model at 40 di↵erent temperatures. (C) The average of the output

layer neurons over the test sets as a function of temperature. (D) The average accuracy of test

sets as a function of temperature. The vertical orange lines signal the critical temperature of the
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system size is increased, as inferred from Figure 5(D), so that this training/testing paradigm

is capable of narrowing in on the true thermodynamic value of T
c

in a way analogous to the

direct measurement of the magnetization order parameter in a conventional Monte Carlo

simulation. In fact, due to the simplicity of the underlying order parameter (a bulk polar-

ization of Ising spins below T
c

), one can understand the training of the network through a
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FIG. 6. Two-dimensional t-SNE visualization of the training set used in the Ising model for L = 30

colored according to temperature. The orange line represents a hyperplane separating the low- from

high-temperatures states.

cool region (and vice versa), crossing over to a low value as the system is warmed through

the orange hyperplane. This allows the classification of a state in terms of the neuron values.

Appendix C: Details of the convolutional neural network of the Ising lattice gauge

theory

The exact architecture of the convolutional neural network (CNN) [4], schematically

described in Figure 4, is as follows. The input layer is a two-dimensional Ising spin config-

uration with N = 16 ⇥ 16 ⇥ 2 spins, where �
i

= ±1. The first hidden layer convolves 64

2⇥ 2 filters on each of the two sublattices of the model with a unit stride, no padding, with

periodic boundary conditions, followed by rectified linear unit (ReLu). The final hidden

layer is a fully-connected layer with 64 ReLu units, while the output is a softmax layer with

two outputs (correponding to T = 0 and T = 1 states). To prevent overfitting, we apply a

dropout regularization in the fully-connected layer [28]. Our model has been implemented
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system size is increased, as inferred from Figure 5(D), so that this training/testing paradigm

is capable of narrowing in on the true thermodynamic value of T
c

in a way analogous to the

direct measurement of the magnetization order parameter in a conventional Monte Carlo

simulation. In fact, due to the simplicity of the underlying order parameter (a bulk polar-

ization of Ising spins below T
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), one can understand the training of the network through a
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2D Ising model in 
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RESULTS: SQUARE LATTICE ISING MODEL (TEST SETS)
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FIG. 1: Machine learning the square-lattice ferromagnetic Ising model. (A) The trained neural

network learns representations of the low- and high-temperature Ising states. (B) The average

of the output layer neurons over the test sets vs. temperature. (C) The average accuracy over

a test set vs. temperature. (D) Toy model of a neural network for the Ising model. (E) The

average output layer and accuracy of the toy model are displayed in (E) and (F), respectively.

The orange lines signal the critical temperature of the Ising model in the thermodynamic limit,

Tc/J = 2/ ln
�
1 +

p
2
�
.
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ANALYTICAL UNDERSTANDING
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Investigating the argument of the hidden layer during the training

9

values of the low-temperature output neuron in our convolutional neural net for the Ising

lattice gauge theory can be further trained to represent the ground state of the toric code

Hamiltonian [1, 9]. We thus anticipate adoption to the field of quantum technology [25],

such as quantum error correction protocols and quantum state tomography [26]. The ability

of machine learning algorithms to generalize to situations beyond their original design an-

ticipates future applications such as the detection of phases and phase transitions in models

vexed with the Monte Carlo sign problem [3], as well as in experiments with single-site res-

olution capabilities such as the modern quantum gas microscopes [27, 28]. As in all other

areas of “big data”, we expect the rapid adoption of machine learning techniques as a basic

research tool in condensed matter and statistical physics in the near future.
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Appendix A: Details of the toy model

The analytical model encodes the low- and high-temperature phases of the Ising model

through their magnetization. The hidden layer contains 3 perceptrons (a neuron with a

Heaviside step nonlinearity); the first two perceptrons activate when the input states are

mostly polarized, while the third one activate if the states are polarized up or unpolarized.

Notice that the third neuron can also be choosen to activate if the states are polarized down

or unpolarized. The resulting outcomes are recombined in the output layer and produce the

desired classification of the state. The hidden layer is parametrized through a weight matrix

and bias vector given by

W =
1

N (1 + ✏)

0

BBB@

1 1 · · · 1

�1 �1 · · · �1

1 1 · · · 1

1

CCCA
, and b =

✏

(1 + ✏)

0

BBB@

�1

�1

1

1

CCCA
, (A1)

10

FIG. 5: Hidden layer arguments as a function of the magnetization of the Ising state m(x). (A)

displays the hidden layer arguments for our toy model, while (B) and (C) display the arguments

for a neural net with 3 sigmoid neurons before and after training, respectively.

where 0 < ✏ < 1 is the only free parameter of the model. The arguments of the three hidden

layer neurons, in terms of the weight matrix, bias vector, and a particular Ising configuration

x = [�1�2, ..., �N ]T, are given by

Wx + b =
1

(1 + ✏)

0

BBB@

m(x)� ✏

�m(x)� ✏

m(x) + ✏

1

CCCA
, (A2)

where m(x) = 1
N

NP
i=1

�i is the magnetization of the Ising configuration. In Figure 5(A) we

display the components of the Wx + b vector as a function of the magnetization of the

Ising state m(x). The first and second neuron activate when the state is predominantly

polarized, i.e., when m(x) > ✏ or m(x) < �✏. The third neuron activates if the state has

a magnetization m(x) > �✏, which means that, in the limit where 0 < ✏ ⌧ 1, it activates

when the state is either polarized or unpolarized. The parameter ✏ is thus a threshold value

of the magnetization that helps deciding whether the state is considered polarized or not.

The output layer is parametrized through a weight matrix and bias vector given by

W2 =

0

@ 2 1 �1

�2 �2 1

1

A , and b2 =

0

@0

0

1

A , (A3)

where these arbitrary choices ensure that the ordered, low-T output neuron OLow-T = 1

is active when either the spins polarize mostly " or #. On the other hand, when the " k 0

neuron is active but the " is not, then the high-temperature output neuron OHigh-T = 1,

symbolizing a high-temperature state.
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CAN WE DEAL WITH 
DISORDERED AND TOPOLOGICAL 

PHASES NOT DESCRIBED BY 
ORDER PARAMETERS?



PHASES OF MATTER WITHOUT AN ORDER PARAMETER AT T=0

➤ Topological phases of matter. Examples: Fractional quantum 
hall effect, quantum spin liquids, Ising gauge theory. Potential 
applications in topological quantum computing. Interestingly, 
these phases defy the Landau symmetry breaking 
classification.  

➤ Coulomb phases = Highly correlated “spin liquids” described 
by electrodynamics. Examples: Common water ice and spin 
ice materials (Ho2Ti2O7 and Dy2Ti2O7) 

ST Bramwell, MJP Gingras Science 294 (5546), 1495-1501



PHASES OF MATTER WITHOUT AN ORDER PARAMETER AT T=0,∞

5

networks lies in the ability of the learning algorithms to generalize to tasks beyond their

original design. For example, what if one was presented with a data set of Ising configurations

from an unknown Hamiltonian, where the lattice structure (and therefore its Tc) is not

known? We illustrate this scenario by taking our above feed-forward neural network, already

trained on configurations for the square-lattice ferromagnetic Ising model, and feed it a

test set produced by Monte Carlo simulations of the triangular lattice ferromagnetic Ising

Hamiltonian. The network has no information about the Hamiltonian, the lattice structure,

or even the general locality of interactions. In Figure 2 we present the output layer neurons

averaged over the test set as a function of temperature for L = 30. We estimate the critical

temperature based on the crossing point of the low- and high-temperature outputs to be

Tc/J = 3.63581, which is close to the exact thermodynamic Tc/J = 4/ ln 3 ⇡ 3.640957 [21]

– a discrepancy easily attributed to finite-size e↵ects. Further, the same strategy can be

repeated, using instead our toy neural network. Again, without any knowledge of the critical

temperatures on the square or triangular lattices, we estimate Tc/J = 3.63403, di↵ering from

the true thermodynamic critical Tc by less than 1%.

These results on simple symmetry-broken phases may not be entirely surprising given

the theoretical understanding of the neural network’s ability to learn and encode the mag-

netization in the hidden layer, gleaned from our simple toy network of Figure 1(D). Greater

interest would lie in the application of such techniques to problems of modern interest in

condensed matter, such as disordered or topological phases, where no conventional order pa-

rameter exists. Coulomb phases, for example, are states of frustrated lattice models where

local energetic constraints lead to extensively degenerate classical ground states, which are

highly-correlated “spin liquids” without a bulk magnetization or other local order parame-

ter. We consider a two-dimensional square ice Hamiltonian given by H = J
P

v Q2
v where the

charge at lattice vertex v is Qv =
P

i2v �z
i , and �z

i = ±1 are Ising variables located in the lat-

tice bonds as shown in Figure 3. In a conventional condensed-matter approach, the ground

states and the high-temperature states are distinguished by their spin-spin correlation func-

tions: critical power-law decay in the Coulomb phase at T = 0, and exponential decay at

high temperature. Instead we use supervised learning, feeding raw Monte Carlo configura-

tions to train a fully-connected neural net (Figure 1(A)) to distinguish ground states from

high-temperature states. Figure 3(A) and Figure 3(B) display high- and low-temperature

snapshots of the configurations used in the training of the model. For a square ice system
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or even the general locality of interactions. In Figure 2 we present the output layer neurons

averaged over the test set as a function of temperature for L = 30. We estimate the critical

temperature based on the crossing point of the low- and high-temperature outputs to be

Tc/J = 3.63581, which is close to the exact thermodynamic Tc/J = 4/ ln 3 ⇡ 3.640957 [21]

– a discrepancy easily attributed to finite-size e↵ects. Further, the same strategy can be

repeated, using instead our toy neural network. Again, without any knowledge of the critical

temperatures on the square or triangular lattices, we estimate Tc/J = 3.63403, di↵ering from

the true thermodynamic critical Tc by less than 1%.

These results on simple symmetry-broken phases may not be entirely surprising given

the theoretical understanding of the neural network’s ability to learn and encode the mag-

netization in the hidden layer, gleaned from our simple toy network of Figure 1(D). Greater

interest would lie in the application of such techniques to problems of modern interest in

condensed matter, such as disordered or topological phases, where no conventional order pa-

rameter exists. Coulomb phases, for example, are states of frustrated lattice models where

local energetic constraints lead to extensively degenerate classical ground states, which are

highly-correlated “spin liquids” without a bulk magnetization or other local order parame-

ter. We consider a two-dimensional square ice Hamiltonian given by H = J
P

v Q2
v where the

charge at lattice vertex v is Qv =
P

i2v �z
i , and �z

i = ±1 are Ising variables located in the lat-

tice bonds as shown in Figure 3. In a conventional condensed-matter approach, the ground

states and the high-temperature states are distinguished by their spin-spin correlation func-

tions: critical power-law decay in the Coulomb phase at T = 0, and exponential decay at

high temperature. Instead we use supervised learning, feeding raw Monte Carlo configura-

tions to train a fully-connected neural net (Figure 1(A)) to distinguish ground states from

high-temperature states. Figure 3(A) and Figure 3(B) display high- and low-temperature

snapshots of the configurations used in the training of the model. For a square ice system
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FIG. 2: Detecting the critical temperature of the triangular Ising model through the crossing of

the values of the output layer vs T . The neural net has been trained on data from the square

lattice model. The orange line signals the critical temperature of the Ising model Tc/J = 4/ ln 3,

while the blue dashed line represents our estimate Tc/J = 3.63581.

with N = 2 ⇥ 16 ⇥ 16 spins, we find that a standard fully-connected neural network with

only 100 hidden units successfully distinguishes the states with a 99% accuracy. The net-

work does so solely based on spin configurations, with no information about the underlying

lattice – a feat di�cult for the human eye, even if supplemented with a clear layout of the

underlying Hamiltonian locality.

These results indicate that the learning capabilities of neural networks go beyond the

simple ability to encode order parameters, extending to the detection of subtle di↵erences

in higher-order correlations functions. As a final demonstration of this, we examine an Ising

lattice gauge theory, one of the most prototypical examples of a topological phase of matter

[9, 22]. The Hamiltonian is given by H = �J
P

p

Q
i2p �z

i where the Ising spins live on

the bonds of a two-dimensional square lattice with plaquettes p, as shown in the inset of

Figure 3(C). The ground state is again a degenerate manifold [9, 23] (Figure 3(C)), with

exponentially-decaying spin-spin correlations that makes it much more di�cult to distinguish

Wegner’s Ising gauge theory:

(Kogut Rev. Mod. Phys. 51, 659 (1979))

T=0

Degenerate classical  
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topologically ordered phase 
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Castelnovo and Chamon Phys. Rev. B 76, 174416 (2007)
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F.J. Wegner, J. Math. Phys. 12 (1971) 2259
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FIG. 3: Square ice and Ising lattice gauge models and their typical configurations. (A) A portrays

a high-temperature state. (B) A ground state of the square ice Hamiltonian. (C) A ground state

configuration of the Ising lattice gauge theory Hamiltonian. The vertices and plaquettes defining

the square ice and Ising lattice gauge theory hamiltonians are schematically shown in the insets of

(B) and (C), respectively.

from the high temperature phase.

Just as in the square ice model, we have made an attempt to use the neural net in

Figure 1(A) to classify the high- and low- temperature states in the Ising lattice gauge theory.
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fraction of the local constraints in the Ising gauge theory, we conclude that the discriminative

power of the CNN relies on the detection of these satisfied local constraints induced by the
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networks lies in the ability of the learning algorithms to generalize to tasks beyond their

original design. For example, what if one was presented with a data set of Ising configurations

from an unknown Hamiltonian, where the lattice structure (and therefore its Tc) is not

known? We illustrate this scenario by taking our above feed-forward neural network, already

trained on configurations for the square-lattice ferromagnetic Ising model, and feed it a

test set produced by Monte Carlo simulations of the triangular lattice ferromagnetic Ising

Hamiltonian. The network has no information about the Hamiltonian, the lattice structure,

or even the general locality of interactions. In Figure 2 we present the output layer neurons

averaged over the test set as a function of temperature for L = 30. We estimate the critical

temperature based on the crossing point of the low- and high-temperature outputs to be

Tc/J = 3.63581, which is close to the exact thermodynamic Tc/J = 4/ ln 3 ⇡ 3.640957 [21]

– a discrepancy easily attributed to finite-size e↵ects. Further, the same strategy can be

repeated, using instead our toy neural network. Again, without any knowledge of the critical

temperatures on the square or triangular lattices, we estimate Tc/J = 3.63403, di↵ering from

the true thermodynamic critical Tc by less than 1%.

These results on simple symmetry-broken phases may not be entirely surprising given

the theoretical understanding of the neural network’s ability to learn and encode the mag-

netization in the hidden layer, gleaned from our simple toy network of Figure 1(D). Greater

interest would lie in the application of such techniques to problems of modern interest in

condensed matter, such as disordered or topological phases, where no conventional order pa-

rameter exists. Coulomb phases, for example, are states of frustrated lattice models where

local energetic constraints lead to extensively degenerate classical ground states, which are

highly-correlated “spin liquids” without a bulk magnetization or other local order parame-

ter. We consider a two-dimensional square ice Hamiltonian given by H = J
P

v Q2
v where the

charge at lattice vertex v is Qv =
P
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i , and �z

i = ±1 are Ising variables located in the lat-

tice bonds as shown in Figure 3. In a conventional condensed-matter approach, the ground

states and the high-temperature states are distinguished by their spin-spin correlation func-

tions: critical power-law decay in the Coulomb phase at T = 0, and exponential decay at

high temperature. Instead we use supervised learning, feeding raw Monte Carlo configura-

tions to train a fully-connected neural net (Figure 1(A)) to distinguish ground states from

high-temperature states. Figure 3(A) and Figure 3(B) display high- and low-temperature

snapshots of the configurations used in the training of the model. For a square ice system
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FIG. 2: Detecting the critical temperature of the triangular Ising model through the crossing of

the values of the output layer vs T . The neural net has been trained on data from the square

lattice model. The orange line signals the critical temperature of the Ising model Tc/J = 4/ ln 3,

while the blue dashed line represents our estimate Tc/J = 3.63581.

with N = 2 ⇥ 16 ⇥ 16 spins, we find that a standard fully-connected neural network with

only 100 hidden units successfully distinguishes the states with a 99% accuracy. The net-

work does so solely based on spin configurations, with no information about the underlying

lattice – a feat di�cult for the human eye, even if supplemented with a clear layout of the

underlying Hamiltonian locality.

These results indicate that the learning capabilities of neural networks go beyond the

simple ability to encode order parameters, extending to the detection of subtle di↵erences

in higher-order correlations functions. As a final demonstration of this, we examine an Ising

lattice gauge theory, one of the most prototypical examples of a topological phase of matter

[9, 22]. The Hamiltonian is given by H = �J
P

p

Q
i2p �z

i where the Ising spins live on

the bonds of a two-dimensional square lattice with plaquettes p, as shown in the inset of

Figure 3(C). The ground state is again a degenerate manifold [9, 23] (Figure 3(C)), with

exponentially-decaying spin-spin correlations that makes it much more di�cult to distinguish

Ising gauge theory

Loop update + spin flip MC Gauge update + spin flip MC

(Kogut Rev. Mod. Phys. 51, 659 (1979))
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FIG. 2: Detecting the critical temperature of the triangular Ising model through the crossing of

the values of the output layer vs T . The neural net has been trained on data from the square

lattice model. The orange line signals the critical temperature of the Ising model Tc/J = 4/ ln 3,

while the blue dashed line represents our estimate Tc/J = 3.63581.

with N = 2 ⇥ 16 ⇥ 16 spins, we find that a standard fully-connected neural network with

only 100 hidden units successfully distinguishes the states with a 99% accuracy. The net-

work does so solely based on spin configurations, with no information about the underlying

lattice – a feat di�cult for the human eye, even if supplemented with a clear layout of the

underlying Hamiltonian locality.

These results indicate that the learning capabilities of neural networks go beyond the

simple ability to encode order parameters, extending to the detection of subtle di↵erences

in higher-order correlations functions. As a final demonstration of this, we examine an Ising

lattice gauge theory, one of the most prototypical examples of a topological phase of matter

[9, 22]. The Hamiltonian is given by H = �J
P

p

Q
i2p �z

i where the Ising spins live on

the bonds of a two-dimensional square lattice with plaquettes p, as shown in the inset of

Figure 3(C). The ground state is again a degenerate manifold [9, 23] (Figure 3(C)), with

exponentially-decaying spin-spin correlations that makes it much more di�cult to distinguish

F.J. Wegner, J. Math. Phys. 12 (1971) 2259
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FIG. 4: Square ice and toric code models and their typical configurations. (A) The charge Qv in

the square ice Hamiltonian is defined as the sum over the spins on the bonds of a vertex v , while

the classical toric code Hamiltonian is defined as a sum over the product of spins on a plaquette

p. (B) and (C) portray ground state and high temperature spin configurations of the square ice

Hamiltonian, respectively. (D) A ground state configuration of the toric code Hamiltonian.
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FIG. 4. Illustrating the convolutional neural network. The first hidden layer convolves 64 2 ⇥ 2

filters with the spin configuration on each sublattice, followed by rectified linear units (ReLu). The

outcome is followed by fully-connected layer with 64 units and a softmax output layer. The green

line represents the sliding of the maps across the configuration.

late an extensive fraction of the local energetic constraints of the theory, we conclude that

the discriminative power of the CNN relies on the detection of these satisfied constraints.

Furthermore, test sets with defects that retain most local constraints but disrupt non-local

features, like the extended closed-loop gas picture or the associated topological degeneracy

[7], indicate that local constraints are the only features that the CNN relies on for classifica-

tion of the ground state. In view of these observations, we construct a simplified analytical

toy model of our original CNN designed to explicitly exploit local constraints in the clas-

sification task. Such a model discriminates high-temperature from ground states with an

accuracy of 100%. Details of the behavior of the CNN with various test sets, as well as the

details of the analytical model, are contained in the supplementary material.

We have shown that neural network technology, developed for engineering applications

such as computer vision and natural language processing, can be used to encode phases of

matter and discriminate phase transitions in correlated many-body systems. In particular,

we have argued that neural networks encode information about conventional ordered phases

by learning the order parameter of the phase, without knowledge of the energy or locality

conditions of Hamiltonian. Furthermore, we have shown that neural networks can encode

basic information about the ground states of unconventional disordered models, such as

square ice model and the Ising lattice gauge theory, where they learn local constraints satis-

The picture we draw for what the CNN is using to distinguish the phases is 

that of the detection of satisfied local constraints. Not optimal since it is 

not generic. Check Frank’s talk for a general solution
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FIG. 4: Square ice and toric code models and their typical configurations. (A) The charge Qv in

the square ice Hamiltonian is defined as the sum over the spins on the bonds of a vertex v , while

the classical toric code Hamiltonian is defined as a sum over the product of spins on a plaquette

p. (B) and (C) portray ground state and high temperature spin configurations of the square ice

Hamiltonian, respectively. (D) A ground state configuration of the toric code Hamiltonian.
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FIG. 4. Illustrating the convolutional neural network. The first hidden layer convolves 64 2 ⇥ 2

filters with the spin configuration on each sublattice, followed by rectified linear units (ReLu). The

outcome is followed by fully-connected layer with 64 units and a softmax output layer. The green

line represents the sliding of the maps across the configuration.

late an extensive fraction of the local energetic constraints of the theory, we conclude that

the discriminative power of the CNN relies on the detection of these satisfied constraints.

Furthermore, test sets with defects that retain most local constraints but disrupt non-local

features, like the extended closed-loop gas picture or the associated topological degeneracy

[7], indicate that local constraints are the only features that the CNN relies on for classifica-

tion of the ground state. In view of these observations, we construct a simplified analytical

toy model of our original CNN designed to explicitly exploit local constraints in the clas-

sification task. Such a model discriminates high-temperature from ground states with an

accuracy of 100%. Details of the behavior of the CNN with various test sets, as well as the

details of the analytical model, are contained in the supplementary material.

We have shown that neural network technology, developed for engineering applications

such as computer vision and natural language processing, can be used to encode phases of

matter and discriminate phase transitions in correlated many-body systems. In particular,

we have argued that neural networks encode information about conventional ordered phases

by learning the order parameter of the phase, without knowledge of the energy or locality

conditions of Hamiltonian. Furthermore, we have shown that neural networks can encode

basic information about the ground states of unconventional disordered models, such as

square ice model and the Ising lattice gauge theory, where they learn local constraints satis-

Inquire the NN: What do you think a 
ground state configuration should 
look like?
Maximize the readout layers with Metropolis MC 

It barely of knows that GS configurations should 
have low energy. The resulting model is lazy due to 
the training setup that we used
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FIG. 2: Detecting the critical temperature of the triangular Ising model through the crossing of

the values of the output layer vs T . The neural net has been trained on data from the square

lattice model. The orange line signals the critical temperature of the Ising model Tc/J = 4/ ln 3,

while the blue dashed line represents our estimate Tc/J = 3.63581.

with N = 2 ⇥ 16 ⇥ 16 spins, we find that a standard fully-connected neural network with

only 100 hidden units successfully distinguishes the states with a 99% accuracy. The net-

work does so solely based on spin configurations, with no information about the underlying

lattice – a feat di�cult for the human eye, even if supplemented with a clear layout of the

underlying Hamiltonian locality.

These results indicate that the learning capabilities of neural networks go beyond the

simple ability to encode order parameters, extending to the detection of subtle di↵erences

in higher-order correlations functions. As a final demonstration of this, we examine an Ising

lattice gauge theory, one of the most prototypical examples of a topological phase of matter

[9, 22]. The Hamiltonian is given by H = �J
P

p

Q
i2p �z

i where the Ising spins live on

the bonds of a two-dimensional square lattice with plaquettes p, as shown in the inset of

Figure 3(C). The ground state is again a degenerate manifold [9, 23] (Figure 3(C)), with

exponentially-decaying spin-spin correlations that makes it much more di�cult to distinguish
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FIG. 4: Square ice and toric code models and their typical configurations. (A) The charge Qv in

the square ice Hamiltonian is defined as the sum over the spins on the bonds of a vertex v , while

the classical toric code Hamiltonian is defined as a sum over the product of spins on a plaquette

p. (B) and (C) portray ground state and high temperature spin configurations of the square ice

Hamiltonian, respectively. (D) A ground state configuration of the toric code Hamiltonian.
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FIG. 4. Illustrating the convolutional neural network. The first hidden layer convolves 64 2 ⇥ 2

filters with the spin configuration on each sublattice, followed by rectified linear units (ReLu). The

outcome is followed by fully-connected layer with 64 units and a softmax output layer. The green

line represents the sliding of the maps across the configuration.

late an extensive fraction of the local energetic constraints of the theory, we conclude that

the discriminative power of the CNN relies on the detection of these satisfied constraints.

Furthermore, test sets with defects that retain most local constraints but disrupt non-local

features, like the extended closed-loop gas picture or the associated topological degeneracy

[7], indicate that local constraints are the only features that the CNN relies on for classifica-

tion of the ground state. In view of these observations, we construct a simplified analytical

toy model of our original CNN designed to explicitly exploit local constraints in the clas-

sification task. Such a model discriminates high-temperature from ground states with an

accuracy of 100%. Details of the behavior of the CNN with various test sets, as well as the

details of the analytical model, are contained in the supplementary material.

We have shown that neural network technology, developed for engineering applications

such as computer vision and natural language processing, can be used to encode phases of

matter and discriminate phase transitions in correlated many-body systems. In particular,

we have argued that neural networks encode information about conventional ordered phases

by learning the order parameter of the phase, without knowledge of the energy or locality

conditions of Hamiltonian. Furthermore, we have shown that neural networks can encode

basic information about the ground states of unconventional disordered models, such as

square ice model and the Ising lattice gauge theory, where they learn local constraints satis-
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Let’s construct an analytical model that does that



ANALYTICAL UNDERSTANDING: WHAT DOES THE CNN USE TO MAKE PREDICTIONS?

➤ The convolutional neural net relies on the detection of 
satisfied local constraints to make accurate predictions of 
whether a state is drawn at low or infinite temperature.  

➤ Based on this observation we derived the weights of a 
streamlined convolutional network analytically designed to 
work pretty well on our test sets.  
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FIG. 4: Square ice and toric code models and their typical configurations. (A) The charge Qv in

the square ice Hamiltonian is defined as the sum over the spins on the bonds of a vertex v , while

the classical toric code Hamiltonian is defined as a sum over the product of spins on a plaquette

p. (B) and (C) portray ground state and high temperature spin configurations of the square ice

Hamiltonian, respectively. (D) A ground state configuration of the toric code Hamiltonian.
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ANALYTICAL UNDERSTANDING: WHAT DOES THE CNN USE TO MAKE PREDICTIONS?

➤ CNN checks every plaquette whether constrains are satisfied 
or not  (basically checks the energy of each plaquette) 

➤ Fully connected layer counts defects (or computes the total 
energy) and the last perceptron decides if the configuration is 
ground state or not.
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the square ice Hamiltonian is defined as the sum over the spins on the bonds of a vertex v , while

the classical toric code Hamiltonian is defined as a sum over the product of spins on a plaquette

p. (B) and (C) portray ground state and high temperature spin configurations of the square ice

Hamiltonian, respectively. (D) A ground state configuration of the toric code Hamiltonian.
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ANALYTICAL UNDERSTANDING: WHAT DOES THE CNN USE TO MAKE PREDICTIONS?

➤ Adequate output neutron behavior.  

➤ It turns out that the cold neutron behaves as the Boltzmann 
weight of the model at zero temperature   
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FIG. 4: Square ice and toric code models and their typical configurations. (A) The charge Qv in

the square ice Hamiltonian is defined as the sum over the spins on the bonds of a vertex v , while

the classical toric code Hamiltonian is defined as a sum over the product of spins on a plaquette

p. (B) and (C) portray ground state and high temperature spin configurations of the square ice

Hamiltonian, respectively. (D) A ground state configuration of the toric code Hamiltonian.
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IMPLEMENTING  LOCAL CONSTRAINTS WITH A CNN
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These choices ensure that whenever an unsatisfied plaquette is encountered by the convolutional

layer, the zero-temperature neuron is O0 = 0 and the high-temperature O1 = 1, while only if all

energetic constraints are satisfied O0 = 1 and O1 = 0, thus allowing the classification of the states.

When used on our test sets, the model performs the classification task with a 100% accuracy, which

means that all the high temperature states in the test set contain least one unsatisfied plaquette. Note

that the classification error for this task is expected to be exponentially small in the volume of the

system, since at infinte temperature the ground states appear with exponentially small probability.

Having distilled the model’s basic ingredients, we proceed to train an analogue model numerically

starting from random weights and biases W
yxsf

, Wo, bc, and bo. Further, we replace the perceptron

nonlinearities by ReLu units and a softmax output layer to enable a reliable numerical training.

After the training, the model performs the classification task with a 100% accuracy on the test sets,

as expected.

As a consequence of the classification scheme provided by the analytical toy model, we ob-

serve that the values of the zero-temperature neuron O0 behave exactly like the amplitudes of one

of the ground states of the toric code written in the �
z

basis 33. The ground state described by O0

is a linear combination of all 4 ground states with well defined parity on the torus. More precisely,

such a state can be written as | torici =
P

�z1,...,�zN
O0(�z1...�zN)|�z1...�zNi, where the spin con-

figurations �
zi

= ±1, and O0(�z1...�zN) corresponds to the value of O0 after a feed-forward pass

of the neural network for a given a input configuration �
z 1, ..., �z N . Our model bears resemblance

with the construction of the ground state of the toric code in terms of projected entangled pair

states in that local tensors project out states containing plaquettes with odd parity 34. These ob-

servations suggest that convolutional neural networks have the potential to represent ground states
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such a state can be written as | torici =
P

�z1,...,�zN
O0(�z1...�zN)|�z1...�zNi, where the spin con-

figurations �
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LOGARITHMIC CROSSOVER OF THE ISING GAUGE THEORY

system size, and as shown in the inset in Fig.3, a clear logarithmic crossover is apparent. This

result showcases the ability of the CNN to detect not only phase transitions, but also nontrivial

crossovers between topological phases and their high-temperature counterparts.

A final implementation of our approach to a system of noninteracting spinless fermions sub-

ject to a quasi-periodic potential 24 demonstrates that neural networks can distinguish metallic from

Anderson localized phases, and can be used to study the localization transition between them (see

the supplementary Figure S3 and S4).
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Figure 3 Detecting the logarithmic crossover temperatures in the Ising gauge theory.

Output neurons for different system sizes averaged over test sets vs �J . Linear sys-

tem sizes L = 4, 8, 12, 16, 20, 24, and 28 are represented by crosses, up triangles, circles,

diamonds, squares, stars, and hexagons. The inset displays �⇤J (octagons) vs L in a

semilog scale. The error bars represent the one standard deviation statistical uncertainty.
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Figure 2(c)). The ground state is again a degenerate manifold8, 21 with exponentially-decaying spin-

spin correlations. As in the square ice model, we attempt to use the neural network in Figure 1(a) to

classify the high- and low- temperature states, but find that the training fails to classify the test sets

to an accuracy of over 50% – equivalent to simply guessing. Instead, we employ a convolutional

neural network (CNN)3, 22 which readily takes advantage of the two-dimensional structure as well

as the translational invariance of the model. We optimize the CNN in Figure 2(d) using Monte

Carlo configurations from the Ising gauge theory at T = 0 and T = 1. The CNN discriminates

high-temperature from ground states with an accuracy of 100% in spite of the lack of an order

parameter or qualitative differences in the spin-spin correlations. We find that the discriminative

power of the CNN relies on the detection of satisfied local energetic constraints of the theory,

namely whether
Q

i2p �z
i is either +1 (satisfied) or -1 (unsatisfied) on each plaquette of the system

(see the supplementary Figures S5). We construct an analytical model to explicitly exploit the

presence of local constraints in the classification task, which discriminates our test sets with an

accuracy of 100% (see supplementary Figure S6).

Notice that, because there is no finite-temperature phase transition in the Ising gauge theory,

we have restricted our analysis to temperatures T = 0 and T = 1, only. However, in finite

systems, violations of the local constraints are strongly suppressed, and the system is expected to

slowly cross over to the high-temperature phase. The cross-over temperature T ⇤ happens as the

number of thermally excited defects ⇠ N exp(�2J�) is of the order of one, implying T ⇤/J ⇠

1/ ln
p

N .23 As the presence of local defects is the mechanism through which the CNN decides

whether a system is in its ground state or not, we expect that it will be able to detect the crossover

temperature in a test set at small but finite temperatures. In Fig.3 we present the results of the

output neurons of our analytical model for different system sizes averaged over test sets at different

temperatures. We estimate the inverse crossover temperature �⇤J based on the crossing point of

the low- and high-temperature output neurons. As expected theoretically, this depends on the

7
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GROUND STATE OF THE TORIC CODE IS THE RK WAVE FUNCTION OF THE  ISING GAUGE THEORY

| RKi =
1p
Z(�)

X

C
e��/2EC |CiTable 1

Correspondences between the SMF representation of the quantum Hamiltonian ĤSMF
from Eq. (15) and the classical system with stochastic dynamics in time captured by the
transition matrix (WCC′) from Eq. (19).

Quantum system admitting an SMF decomposition Classical system

Hilbert space with basis B labeled by S Configuration space S

Ground state wavefunction Boltzmann distribution

Quantum phase transitions Classical phase transitions

Hamiltonian matrix:
(
⟨C|ĤSMF |C

′⟩
)

Transition matrix:
(
WCC′

)

Positive-semidefinite
decomposition conditions

Integrability conditions

⎫
⎪⎪⎬

⎪⎪⎭

⎧
⎪⎪⎨

⎪⎪⎩

Positive transition rates

Conservation of probabilities

Energy eigenvalues Relaxation rates

Eigenfunctions Right/Left eigenfunctions

the excitation spectrum above the GS wavefunction. Remarkably, the excitation
spectrum can be manipulated by fine-tuning the wC,C′ without affecting the nature
of the GS wavefunction! This corresponds, in the associated classical system, to
being able to change the stochastic dynamics without affecting the equilibrium par-
tition function. We will also establish that representations of quantum Hamiltoni-
ans, in some preferred basis B = {|C⟩, C ∈ S}, that are SMF decomposable are in
one-to-one correspondence with discrete classical systems with configuration space
S endowed with stochastic dynamics described by a Master equation of the matrix
type. The dictionary between the quantum and classical systems is summarized in
Table 1.

So far, our generalization of the known quantum Hamiltonians that are fine-tuned
to their RK points is predicated on choosing a preferred basis first, i.e., given a
special choice of basis, we have investigated under what conditions a quantum
Hamiltonian is SMF decomposable. This is so for historical reasons. One can of
course ask the reverse question, namely is there a basis in which some given quan-
tum Hamiltonian is SMF decomposable? We shall give an affirmative answer to
this question for any quantum Hamiltonian defined on a finite dimensional Hilbert
space as long as it has not too many degenerate eigenvalues, up to some trivial shift
of the energy spectrum. In fact, there are continuously many bases in which such
a quantum Hamiltonian admits distinct representations that are SMF decompos-
able. The correspondence between a quantum Hamiltonian, when understood as an
abstract operator acting on some Hilbert space, and stochastic classical systems is
thus one-to-(continuously) many.
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FIG. 4: Square ice and toric code models and their typical configurations. (A) The charge Qv in

the square ice Hamiltonian is defined as the sum over the spins on the bonds of a vertex v , while

the classical toric code Hamiltonian is defined as a sum over the product of spins on a plaquette

p. (B) and (C) portray ground state and high temperature spin configurations of the square ice

Hamiltonian, respectively. (D) A ground state configuration of the toric code Hamiltonian.
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FIG. 4. Illustrating the convolutional neural network. The first hidden layer convolves 64 2 ⇥ 2

filters with the spin configuration on each sublattice, followed by rectified linear units (ReLu). The

outcome is followed by fully-connected layer with 64 units and a softmax output layer. The green

line represents the sliding of the maps across the configuration.

late an extensive fraction of the local energetic constraints of the theory, we conclude that

the discriminative power of the CNN relies on the detection of these satisfied constraints.

Furthermore, test sets with defects that retain most local constraints but disrupt non-local

features, like the extended closed-loop gas picture or the associated topological degeneracy

[7], indicate that local constraints are the only features that the CNN relies on for classifica-

tion of the ground state. In view of these observations, we construct a simplified analytical

toy model of our original CNN designed to explicitly exploit local constraints in the clas-

sification task. Such a model discriminates high-temperature from ground states with an

accuracy of 100%. Details of the behavior of the CNN with various test sets, as well as the

details of the analytical model, are contained in the supplementary material.

We have shown that neural network technology, developed for engineering applications

such as computer vision and natural language processing, can be used to encode phases of

matter and discriminate phase transitions in correlated many-body systems. In particular,

we have argued that neural networks encode information about conventional ordered phases

by learning the order parameter of the phase, without knowledge of the energy or locality

conditions of Hamiltonian. Furthermore, we have shown that neural networks can encode

basic information about the ground states of unconventional disordered models, such as

square ice model and the Ising lattice gauge theory, where they learn local constraints satis-

3-layer CNN

 Tensorflow 



CONCLUSION

➤ We encode and discriminate phases and phase transitions, both 
conventional and topological, using neural network technology.  

➤ We have a solid understanding of what the neural nets do in those 
cases through controlled analytical models.

OUTLOOK
➤ We expect a rapid adoption of ML techniques as a tool in 

condensed matter physics. 

➤ Variational interpretation of CNNs and their optimization for 
ground state. 2

tem, which can be generically written in terms of a classi-
cal statistical mechanics problem defined on a phase space
with configurations C in d + 1 dimensions. The partition
function of the quantum system can thereby be expressed
as a sum of statistical weights over classical configurations,
i.e. Z =

P
C WC . Unlike classical systems, for quantum

Hamiltonians the weights WC can be both positive and neg-
ative (or even complex), which invalidates the usual Monte
Carlo interpretation of WC/Z as a probability distribution. In
principle, a stochastic interpretation can be salvaged by con-
sidering a modified statistical ensemble with probability dis-
tribution PC / |WC | and concomitantly moving the sign of
WC to the observable

hOi =

P
C O(C) · WCP

C WC
=

P
C O(C) · sign(WC) · |WC |P

C sign(WC) · |WC |

=

hsign · Oi|W |

hsigni|W |
. (1)

This procedure, although formally exact, introduces the QMC
sign problem as a manifestation of the “small numbers prob-
lem”, where the numerator and denominator in the last expres-
sion both approach zero exponentially in system size N and
inverse temperature � [1, 2], e.g. we have

hsigni|W | = exp(��N�f) , (2)

where �f is the difference in the free energy densities of the
original fermionic system and the one with absolute weights.
Thus resolving the ratio in Eq. (1) within the statistical noise
inherent to all Monte Carlo simulations becomes exponen-
tially hard. The advantage of importance sampling, which
often translates into polynomial scaling, is lost.

In this work, instead of attempting to obtain exact expec-
tation values of physical observables, or attempting to find a
basis C where WC is always non-negative or that ameliorates
the calculation of hsigni|W |, we introduce a basis-dependent
“state function” F (C) whose goal is to associate configura-
tions C with the most likely phase of matter they belong to
for a given Hamiltonian. More precisely, we assume that there
exists a function F (C) such that its expectation value in the
modified ensemble of absolute weights

hF i|W | =

P
C F (C) · |WC |P

C |WC |
(3)

is 1 when the system is deep in phase A and 0 when the
system is deep in the neighboring phase B. Around the
critical point separating phase A from B, hF i|W | crosses
over from one to zero. The value hF i|W | = 1/2 indicates
that the function can not make a distinction between phases A
and B, and therefore assigns equal probability to both phases.
We therefore interpret this value as locating the position of
the transition separating the two phases in parameter space
[16]. In practice, we use a deep CNN to approximate the
state function F , which is trained on configurations sampled
from the modified ensemble |WC |/

P
C |WC | in the two

conv pool conv pool full dropout full

Figure 1. (Color online) Schematic illustration of the neural network
used in this work. A combination of convolutional (conv) and max
pooling layers (pool) is first used to study the image, before the data
is further analyzed by two fully connected neural networks separated
by a dropout layer. The convolutional and the first fully connected
layer are activated using rectified linear functions, while the final
layer is activated by a softmax function.

different phases A and B. If such a function F can indeed be
crafted, then the above procedure leads to a sign-problem free
discrimination of the two phases and their phase transitions
through the evaluation of hF i|W |.

Convolutional Neural Networks

Artificial neural networks have long been identified to be the
key ingredient of powerful pattern recognition and machine
learning algorithms [17, 18]. More recently, neural networks
and other machine learning algorithms have been brought to
the realm of statistical physics. On a conceptual level, par-
allels between deep learning and renormalization group tech-
niques have been explored [19, 20], while on a more practical
level machine learning algorithms have been applied to model
potential energy surfaces [21], relaxation in glassy liquids [22]
or the identification of phase transitions in classical many-
body systems [14, 15]. Boltzmann machines, as well as their
quantum extensions [23], have been applied to statistical me-
chanics models [24] and quantum systems [25]. On the other
hand, new supervised learning algorithms inspired by tensor-
network representations of quantum states have been recently
proposed [26]. In machine learning, the goal of artificial neu-
ral networks is to learn to recognize patterns in a (typically
high dimensional) data set. CNNs, in particular, are nonlinear
functions which are optimized (in an initial “training” step)
such that the resulting function F allows for the extraction
of patterns present in the data under consideration. Here we
take this approach to construct a function F , represented as
a deep CNN, that allows the classification of many-fermion
phases as outlined in the previous section. Our choice of em-
ploying a deep CNN layout is rooted in the observation that
the configurations generated from the quantum Monte Carlo
algorithms can be often interpreted as “images” as we explain
below in more detail, and our analysis can be regarded as an
image classification problem – an extremely successful appli-
cation of CNNs.

The architecture of the CNN we use is depicted schemati-
cally in Fig. 1 with a more detailed technical discussion of the
individual components presented in the Methods section. We
feed the CNN with Monte Carlo configurations (illustrated
on the left), which, processed through the network, provide a
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