Machine learning with quantum circuits

Maria Schuld Mark Fingerhuth, Francesco Petruccione

University of KwaZulu-Natal, Durban, South Africa

Beijing, 4th July 2017

OUTLINE

- 1. MOTIVATION Why should you care?
- 2. OVERVIEW Where are we in quantum machine learning?
- 3. DEMONSTRATION An interference circuit as a binary classifier

QUANTUM COMPUTING TIMELINE

MOTIVATION

COMBINING QC AND ML

Aimeur, Brassard and Gambs (2006)

MOTIVATION

RELEVANCE

MOTIVATION

(ㅁ) 《圖》 《필》 《필》 _ 릴 _ '이익()?

Pitch for the open session on Thursday:

Are there problems for which feeding the wave function into a machine learning model could be of advantage?

MOTIVATION

ㅁ 돈 좀 떼 돈 좀 듣는 것 좀 좋는 것 옷 야

IMPORTANT ASPECTS OF QML

- 1. Are quantum methods better?
- 2. Data encoding and readout
- 3. Prediction Implementing the model
- 4. Training Solving the optimisation problem

OVERVIEW

ㅁ > < 웹 > < 홈 > < 홈 > _ 홈 _ 의 < 이 < 이

(Thanks to Vedran Dunjko)

OVERVIEW

ㅁ > 《卣 > 《문 > 《문 > 》 문 _ ^ ? 오()

"[F]or any learning problem, if there is a quantum learning algorithm which uses polynomially many [samples] then there must also exist a classical learning algorithm which uses polynomially many [samples]." Servedio & Gortler 2004

OVERVIEW

· ㅁ 돈 《 템 돈 《 폰 돈 《 폰 돈 》 》 Q (

OVERVIEW

- ㅁ > 《웹 > 《문 > 《문 > _ 문 _ ^ ? ? ?

OVERVIEW

- ㅁ > 《템 > 《 분 > 《 분 > 분 ^) 익 ()

2. DATA ENCODING AND READOUT

MS, Sinayskiy, Petruccione Encyclopaedia of ML (2016)

OVERVIEW

모 * 《 면* 》 * 분 * 《 분 * 》 약 (?)

2. DATA ENCODING AND READOUT

index	prob.	amplitude	state
0	$ a_0 ^2$	a_0	$ 000\rangle$
1	$ a_1 ^2$	a_1	$ 001\rangle$
2	$ a_2 ^2$	a_2	$ 010\rangle$
3	$ a_3 ^2$	a_3	$ 011\rangle$
4	$ a_4 ^2$	a_4	$ 100\rangle$
5	$ a_5 ^2$	a_5	$ 101\rangle$
6	$ a_6 ^2$	a_6	$ 110\rangle$
7	$ a_7 ^2$	a_7	$ 111\rangle$

OVERVIEW

2. DATA ENCODING AND READOUT

Dynamic encoding of a Hermitian matrix

amplitude encoding of unit-length complex vector $(a_0, a_1, a_2, a_3)^T$

OVERVIEW

ロト 《聞》 《王》 《王》 王 《) 9, 9 10/25

How to implement $f(\mathbf{x}; \theta), f(\mathbf{x}; D), p(\mathbf{x}, y), p(y|\mathbf{x})...?$

OVERVIEW

How to implement $f(\mathbf{x}; \theta), f(\mathbf{x}; D), p(\mathbf{x}, y), p(y|\mathbf{x})...?$

Feed-forward neural network:

 $f(\mathbf{x}; \mathbf{W}_1, \mathbf{W}_2, \ldots) = \ldots \boldsymbol{\varphi}_2(\mathbf{W}_2 \boldsymbol{\varphi}_1(\mathbf{W}_1 \mathbf{x})) \ldots$

MS, Sinayskiy, Petruccione Quant. Inf. Proc. (2014), Phys. Lett. A (2015), and many others...

OVERVIEW

How to implement $f(\mathbf{x}; \theta), f(\mathbf{x}; \mathcal{D}), p(\mathbf{x}, y), p(y|\mathbf{x})...?$

Feed-forward neural network:

$$f(\mathbf{x};\mathbf{W}_1,\mathbf{W}_2,...)=...oldsymbol{arphi}_2(\mathbf{W}_2oldsymbol{arphi}_1(\mathbf{W}_1\mathbf{x}))...$$

RBM:

$$p(\mathbf{x}; \mathbf{W}) = \frac{1}{Z} \sum_{h} e^{-E(x,h;\mathbf{W})}$$

Wiebe, Svore, Kapoor ArXiv1412.3489 (2014)

OVERVIEW

How to implement $f(\mathbf{x}; \theta), f(\mathbf{x}; \mathcal{D}), p(\mathbf{x}, y), p(y|\mathbf{x})...?$

Feed-forward neural network:

$$f(\mathbf{x};\mathbf{W}_1,\mathbf{W}_2,...)=...oldsymbol{arphi}_2(\mathbf{W}_2oldsymbol{arphi}_1(\mathbf{W}_1\mathbf{x}))...$$

RBM:

$$p(\mathbf{x}; \mathbf{W}) = \frac{1}{Z} \sum_{h} e^{-E(x,h;\mathbf{W})}$$

Linear model:

$$f(\mathbf{x}; \mathbf{w}) = \mathbf{w}^T \mathbf{x}$$

Rebentrost, Mohseni, Lloyd PRL (2014)

OVERVIEW

4. TRAINING

Problems	QIP tools	Applied to
Simulating linear algebra ca	alculus with qubits	
matrix inversion, inner products, eigenvalue de- composition, singular value decomposition	quantum phase estimation, postselective amplitude update, Hamiltonian simulation, density matrix exponentiation	support vector machines, Gaussian processes, linear regression, discrim- inant analysis, recommendation sys- tems, principal component analysis
Optimisation with Grover se	arch	
finding closest neighbours, Markov chains	amplitude amplification, quan- tum walks	k-nearest neighbour, page ranking, clustering, associative memory, per- ceptrons, active learning agents, nat- ural language processing
Sampling from quantum sta	ates	
sampling from model dis- tribution	quantum annealing, quantum rejection sampling	Boltzmann machines, Bayesian nets, Bayesian inference
Optimisation with ground st	ates of Hamiltonians	
combinatorial optimisation	adiabatic quantum computing, quantum annealing, quantum simulation	associative memory, boosting, de- bugging, variational Bayes inference, Bayesian networks, perceptron, EM algorithm, clustering

(ロ > < 聞 > < 豆 > | < 豆 > | 三 | - りへの

4. TRAINING

What about gradient descent?

OVERVIEW

이오(아 토 · 신토 · 신탄 · 신데 · 시미·

A TOY DEMONSTRATION

Goal:

Show how a simple interference circuit can realise a distance-based binary classifier.

MS, Fingerhuth, Petruccione (2017) ArXiv1703.10793

DEMONSTRATION

14/25 14/25

DEMONSTRATION

probability	amplitude	$ q_1,q_2 angle$
$ a_0 ^2$	a_0	$ 00\rangle$
$ a_1 ^2$	a_1	$ 01\rangle$
$ a_2 ^2$	a_2	$ 10\rangle$
$ a_3 ^2$	a_3	$ 11\rangle$

DEMONSTRATION

이((* 프 / 프 / 프 / 프 / NG) 15 / 05

probability	amplitude	$ q_1,q_2\rangle$
$\frac{1}{2} a_0+a_2 ^2$	$\frac{1}{\sqrt{2}}(a_0 + a_2)$	$ 00\rangle$
$\frac{1}{2} a_1+a_3 ^2$	$\frac{1}{\sqrt{2}}(a_1+a_3)$	$ 01\rangle$
$\frac{1}{2} a_0 - a_2 ^2$	$\frac{1}{\sqrt{2}}(a_0 - a_2)$	$ 10\rangle$
$\frac{1}{2} a_1 - a_3 ^2$	$\frac{1}{\sqrt{2}}(a_1 - a_3)$	$ 11\rangle$

DEMONSTRATION

다 (111) (11

DEMONSTRATION

□ > 《 @ > 《 든 > 〈 든 > 〈 든 > 〈 든 > 〉 옷 () 15 / 25

CLASSIFICATION WITH A SIMPLE INTERFERENCE CIRCUIT

State preparation +

- $1 \times single qubit Hadamard$
- 1 x single qubit postselective measurement
- $1 \times single qubit measurement$

DEMONSTRATION

) 가(* 코 * 15 * 로 * 4 년 * 4 년 * 4 16 / 05

DATA PREPROCESSING

DEMONSTRATION

DATA PREPROCESSING

DEMONSTRATION

1 > 《國 > 《문 > 《된 > _ 된 _ 이익은 17/05

STATE PREPARATION

$$|\psi_{\mathcal{D}}\rangle = \frac{1}{\sqrt{2M}} \sum_{m=0}^{M-1} |m\rangle \Big(|0\rangle |\tilde{\mathbf{x}}\rangle + |1\rangle |\mathbf{x}^{m}\rangle \Big) |y^{m}\rangle$$

amplitude	m angle	ancilla	$ i\rangle$	target
$\frac{1}{2} \cdot -0.948$	$ 0\rangle$	$ 0\rangle$	$ 0\rangle$	$ 0\rangle$
0	$ 0\rangle$	$ 0\rangle$	$ 0\rangle$	$ 1\rangle$
$\frac{1}{2} \cdot 0.318$	$ 0\rangle$	$ 0\rangle$	$ 1\rangle$	$ 0\rangle$
0	$ 0\rangle$	$ 0\rangle$	$ 1\rangle$	$ 1\rangle$
0	$ 0\rangle$	$ 1\rangle$	$ 0\rangle$	$ 0\rangle$
0	$ 0\rangle$	$ 1\rangle$	$ 0\rangle$	$ 1\rangle$
$\frac{1}{2} \cdot -1.000$	$ 0\rangle$	$ 1\rangle$	$ 1\rangle$	$ 0\rangle$
0	$ 0\rangle$	$ 1\rangle$	$ 1\rangle$	$ 1\rangle$
0	$ 1\rangle$	$ 0\rangle$	$ 0\rangle$	$ 0\rangle$
$\frac{1}{2} \cdot -0.948$	$ 1\rangle$	$ 0\rangle$	$ 0\rangle$	$ 1\rangle$
0	$ 1\rangle$	$ 0\rangle$	$ 1\rangle$	$ 0\rangle$
$\frac{1}{2} \cdot 0.318$	$ 1\rangle$	$ 0\rangle$	$ 1\rangle$	$ 1\rangle$
0	$ 1\rangle$	$ 1\rangle$	$ 0\rangle$	$ 0\rangle$
$\frac{1}{2} \cdot -0.789$	$ 1\rangle$	$ 1\rangle$	$ 0\rangle$	$ 1\rangle$
0	$ 1\rangle$	$ 1\rangle$	$ 1\rangle$	$ 0\rangle$
$\frac{1}{2} \cdot -0.615$	$ 1\rangle$	$ 1\rangle$	$ 1\rangle$	$ 1\rangle$

DEMONSTRATION

- < 中 > < 回 > < E > < E > 、 E 、 のへの

HADAMARD GATE

 $\frac{1}{2\sqrt{M}}\sum_{m=0}^{M-1}|m\rangle\Big(|0\rangle\big[|\tilde{\mathbf{x}}\rangle+|\mathbf{x}^m\rangle\big]+|1\rangle\big[|\tilde{\mathbf{x}}\rangle-|\mathbf{x}^m\rangle\big]\Big)|y^m\rangle$

amplitude	m angle	ancilla	$ i\rangle$	target
$\frac{1}{2\sqrt{2}}(0.948 + 0)$	$ 0\rangle$	$ 0\rangle$	$ 0\rangle$	$ 0\rangle$
0	$ 0\rangle$	$ 0\rangle$	$ 0\rangle$	$ 1\rangle$
$\frac{1}{2\sqrt{2}}(0.318 + 1.000)$	$ 0\rangle$	$ 0\rangle$	$ 1\rangle$	$ 0\rangle$
0	$ 0\rangle$	$ 0\rangle$	$ 1\rangle$	$ 1\rangle$
$\frac{1}{2\sqrt{2}}(0.948 - 0)$	$ 0\rangle$	$ 1\rangle$	$ 0\rangle$	$ 0\rangle$
- · - 0	$ 0\rangle$	$ 1\rangle$	$ 0\rangle$	$ 1\rangle$
$\frac{1}{2\sqrt{2}}(0.318 - 1.000)$	$ 0\rangle$	$ 1\rangle$	$ 1\rangle$	$ 0\rangle$
0	$ 0\rangle$	$ 1\rangle$	$ 1\rangle$	$ 1\rangle$
0	$ 1\rangle$	$ 0\rangle$	$ 0\rangle$	$ 0\rangle$
$\frac{1}{2\sqrt{2}}(0.948 + 0.789)$	$ 1\rangle$	$ 0\rangle$	$ 0\rangle$	$ 1\rangle$
0	$ 1\rangle$	$ 0\rangle$	$ 1\rangle$	$ 0\rangle$
$\frac{1}{2\sqrt{2}}(0.615 + 0.318)$	$ 1\rangle$	$ 0\rangle$	$ 1\rangle$	$ 1\rangle$
0	$ 1\rangle$	$ 1\rangle$	$ 0\rangle$	$ 0\rangle$
$\frac{1}{2\sqrt{2}}(0.948 - 0.789)$	$ 1\rangle$	$ 1\rangle$	$ 0\rangle$	
0	$ 1\rangle$	$ 1\rangle$	$ 1\rangle$	0>
$\frac{1}{2\sqrt{2}}(0.615 - 0.318)$	$ 1\rangle$	$ 1\rangle$	$ 1\rangle$	

DEMONSTRATION

- イロ・ イヨ・ イヨ・ イヨ・ ヨー わえの

POSTSELECTIVE MEASUREMENT

$$\frac{1}{2\sqrt{Mp}}\sum_{m=1}^{M}|m\rangle\sum_{i=0}^{N-1}\left(\tilde{x}_{i}+x_{i}^{m}\right)|i\rangle|y^{m}\rangle$$

ر معمولین معمولین	· · · · · · · ·
$\tilde{\mathbf{x}}^0$	
\mathbf{x}^1	\mathbf{x}^0
in the second	

amplitude	m angle	ancilla	$ i\rangle$	target
$\frac{1}{2\sqrt{2n}}(0.948 + 0)$	$ 0\rangle$	$ 0\rangle$	$ 0\rangle$	$ 0\rangle$
0	$ 0\rangle$	$ 0\rangle$	$ 0\rangle$	$ 1\rangle$
$\frac{1}{2\sqrt{2n}}(0.318 + 1.000)$	$ 0\rangle$	$ 0\rangle$	$ 1\rangle$	$ 0\rangle$
0	$ 0\rangle$	$ 0\rangle$	$ 1\rangle$	$ 1\rangle$
0	$ 0\rangle$	$ 1\rangle$	$ 0\rangle$	$ 0\rangle$
0	$ 0\rangle$	$ 1\rangle$	$ 0\rangle$	$ 1\rangle$
0	$ 0\rangle$	$ 1\rangle$	$ 1\rangle$	$ 0\rangle$
0	$ 0\rangle$	$ 1\rangle$	$ 1\rangle$	$ 1\rangle$
0	$ 1\rangle$	$ 0\rangle$	$ 0\rangle$	$ 0\rangle$
$\frac{1}{2\sqrt{2n}}(0.948 + 0.789)$	$ 1\rangle$	$ 0\rangle$	$ 0\rangle$	$ 1\rangle$
0	$ 1\rangle$	$ 0\rangle$	$ 1\rangle$	$ 0\rangle$
$\frac{1}{2\sqrt{2n}}(0.615 + 0.318)$	$ 1\rangle$	$ 0\rangle$	$ 1\rangle$	$ 1\rangle$
0	$ 1\rangle$	$ 1\rangle$	$ 0\rangle$	$ 0\rangle$
0	$ 1\rangle$	$ 1\rangle$	$ 0\rangle$	
0	$ 1\rangle$	$ 1\rangle$	$ 1\rangle$	
0	$ 1\rangle$	$ 1\rangle$	$ 1\rangle$	1 UNIVERSITY OF

DEMONSTRATION

- イロ・ イヨ・ イヨ・ - ヨー - わえの

POSTSELECTIVE MEASUREMENT

$$\sum_{m=1}^{M} |m\rangle \sum_{i=0}^{N-1} \sqrt{1 - \frac{1}{4Mp} \left(\tilde{x}_i - x_i^m\right)^2} |i\rangle |y^m\rangle$$

amplitude	m angle	ancilla	$ i\rangle$	target
$\frac{1}{2\sqrt{2p}}(0.948+0)$	$ 0\rangle$	$ 0\rangle$	$ 0\rangle$	$ 0\rangle$
0	$ 0\rangle$	$ 0\rangle$	$ 0\rangle$	$ 1\rangle$
$\frac{1}{2\sqrt{2n}}(0.318 + 1.000)$	$ 0\rangle$	$ 0\rangle$	$ 1\rangle$	$ 0\rangle$
0	$ 0\rangle$	$ 0\rangle$	$ 1\rangle$	$ 1\rangle$
0	$ 0\rangle$	$ 1\rangle$	$ 0\rangle$	$ 0\rangle$
0	$ 0\rangle$	$ 1\rangle$	$ 0\rangle$	$ 1\rangle$
0	$ 0\rangle$	$ 1\rangle$	$ 1\rangle$	$ 0\rangle$
0	$ 0\rangle$	$ 1\rangle$	$ 1\rangle$	$ 1\rangle$
0	$ 1\rangle$	$ 0\rangle$	$ 0\rangle$	$ 0\rangle$
$\frac{1}{2\sqrt{2p}}(0.948 + 0.789)$	$ 1\rangle$	$ 0\rangle$	$ 0\rangle$	$ 1\rangle$
0	$ 1\rangle$	$ 0\rangle$	$ 1\rangle$	$ 0\rangle$
$\frac{1}{2\sqrt{2n}}(0.615 + 0.318)$	$ 1\rangle$	$ 0\rangle$	$ 1\rangle$	$ 1\rangle$
0	$ 1\rangle$	$ 1\rangle$	$ 0\rangle$	$ 0\rangle$
0	$ 1\rangle$	$ 1\rangle$	$ 0\rangle$	$ 1\rangle$
0	$ 1\rangle$	$ 1\rangle$	$ 1\rangle$	0> 📢
0	$ 1\rangle$	$ 1\rangle$	$ 1\rangle$	

DEMONSTRATION

THE CLASSIFIER

DEMONSTRATION

□ ▶ 《 @ ▶ 《 분 ▶ 《 분 ▶ 《 분 ▶ 《 문 21 / 25

SIMULATIONS

Dataset	test error	variance	p _{acc}
Iris class 1&2	0.00	0.000	0.50
Iris class 1&3	0.00	0.000	0.50
Iris class 2&3	0.07	0.003	0.50
Circles	0.62	0.006	0.50

DEMONSTRATION

SIMULATIONS

Dataset	test error	variance	$\mathbf{p}_{\mathrm{acc}}$
Iris class 1&2	0.00	0.000	0.50
Iris class 1&3	0.00	0.000	0.50
Iris class 2&3	0.07	0.003	0.50
Circles	0.62	0.006	0.50

DEMONSTRATION

|▶ 《@|▶ 《토》 《토》 · 토 《○ Q.C 22/25

KERNEL TRICK

Use $|\mathbf{x}\rangle \rightarrow |\mathbf{x}\rangle \otimes |\mathbf{x}\rangle$

original data feature map

DEMONSTRATION

KERNEL TRICK

Dataset	test error	variance	$\mathbf{p}_{\mathrm{acc}}$
Iris class 1&2	0.00	0.000	0.50
lris class 1&3	0.00	0.000	0.50
Iris class 2&3	0.07	0.003	0.50
Iris class 2&3, feat map	0.00	0.000	0.50
Circles	0.62	0.006	0.50
Circles, feat map	0.00	0.000	0.55

DEMONSTRATION

- Quantum machine learning wants to use quantum computers for learning tasks
- A lot of proposals show how to use quantum routines to make training computationally faster (BUT READ THE FINE PRINT :)
- We should start asking which kind of new models quantum computing can genuinely realise
- Quantum classifier for quantum data?

