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&% Estimation for deformation in body
Collahoration with U. Yamamoto, M. Kaneko, T. Matsuda (Kyoto Univ.) submitted

» Inference from a limited range of data
Learning the rule of the dynamics
Observation 9 points * unobserved 295 points

Inference of the deformation by pulling 4cm
(average of RMSE 0.035mm!)
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@%% Detecting the phase transition
TN Collahoration with S. Arai (Tohoku Univ.) to appear soon

» Original work done by Tanaka and Tomiya (2017)
Learning from snapshots of the Ising model
Detection of the second-order phase transition from weights
» Extension of their work

Learning from snapshots of the XY/quantum Ising model
Detection of the Kosterlitz-Thouless transition
Detection of the second-order phase transition in guantum system

— = 0.0
s = 0.8
2 0.005
= o
= o 2 oo &
= =] 04 S oo ksl
= B By %
e 0 0(22)
W; o0 & g
=== = 7 O Data
-0005 ]
= —— Predicted function
—~ -0.4 o
= o o — Exact
— -001 - o 0% o ]
[©) @@(%or?O © @ /0 Predicted solution
= _ ‘o]
= | 0.8 OOCDOOCS) @0 o
= D & )
= -0015 . . .
0 r 2.0 mm

2017.07.03 Sparse modeling: how to solve the ill-posed problem



3@\\&&@?

.

From Purchase data, Customer service
AmQOzon




From web experience, user service
GoOgle




Recent advance
In news and media

Inverse problem

y = f(x)



Recent advance
In news and media

Inverse problem

y = f(x)



Ax




y = AX
Multiplication of inverse of A



y = Ax
In this case?




y = Ax
No inverse matrix
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Collaboration with Kyoto University Example of MRI



Collaboration with Kyoto University Low amount of data




Collaboration with Kyoto University Compressed sensing
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ALMA-SMTO-CARM-JCMT-IRAM-LMT, Dec=+12
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Fig. 5. Simulated UV coverage of M87 with six-station sub-mm VLBI
array of EHT. Here it is assumed that observations are conducted at an

elevation larger than 20° at each station.
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Y Astrophysics and Sparse modeling
K. Akiyama, et al. Astrophys. J. (2017)

ALMA-SMTO-CARM-JCMT-IRAM-LMT, Dec=+12
' ' Model (Convolved) CS-CLEAN
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Fig. 5. Simulated UV coverage of M87 with six-station sub-mm VLBI
array of EHT. Here it is assumed that observations are conducted at an

elevation larger than 20° at each station.
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%i”};% Astrophysics and Sparse modeling
K. Akivama, et al. Astrophys. ). (2017
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Fig. 5. Simulated UV coverage of M87 with six-station sub-mm VLBI
array of EHT. Here it is assumed that observations are conducted at an
elevation larger than 20° at each station.
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% Material and Sparse modeling
TORo Collahoration with C. Nakajima (Tohoku univ.)

» HAADF-STEM
Projection mapping
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% Material and Sparse modeling
TORo Collahoration with C. Nakajima (Tohoku univ.)

» HAADF-STEM
Projection mapping
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*‘5{3@ Analytical continuation in QMC
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""""""""" J. Otsuki, M. Ohzeki, H. Shinaoka, and K, Yoshimi: Phys. Rev. E 99, 061302(R] (2017)

+ Results for single-impurity Anderson model
Solving (§ — Kp by use of maxEnt? No!!
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Compressed sensing
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% Sparse signal inference
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» LO norm minimization
The following optimization problem

[mmnxuo S.t. y:Ax]
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{”ﬁ Sparse signal inference
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» LO norm minimization
The following optimization problem

[mmnxuo S.t. y:Ax]

LO norm = number of nhonzero elements
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» LO norm minimization
The following optimization problem

[mmnxuo S.t. y:Ax]

LO norm = number of nonzero elements
Sparse solution
Non-Convex optimization
Exponential computational cost (exp(N))
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% Sparse signal inference
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» LT norm minimization
Much easier optimization problem

[min x|, st. y=A4Ax ]

1x||; = |z1| + 22| + - + |2 N
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» LT norm minimization
Much easier optimization problem

~

\ L2 2[131 + X9 = 1

[min x|, st. y=A4Ax ]

O

1x||; = |z1| + 22| + - + |2 N
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» LT norm minimization
Much easier optimization problem

~

\ L2 2[131 + T9 = 1

[min x|, st. y=A4Ax ]

Sparse solution
Convex optimization
Not expensive computational cost (N*3)
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» L2 norm minimization
Much easier optimization problem

~

\ L2 2[131 + X9 = 1

[min x|, st. y=Ax ]

Non-Sparse solution
Convex optimization
Not expensive computational cost (N*2-3)

%/l = /a3 + a3+ + a3
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LT norm selects sparse solution
Correct or not?
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£% Example
» L2 norm

e of signals

iltud

ampl

2017.07.03 Sparse modeling:
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» LT norm

amplitude of signals

1 1 1 1 1 1
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index of x by L1 norm
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» Performance of L1 norm minimization
Prescription : A=Gauss random matrix. xO=Gauss random vector

min ||x||, st. y=A4x |
X e
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Mathematics or Statistical Physics P = K / N
[D. L. Dohono and J. Tanner: Proc. Nat. Acad. Sci. 102 (2005) 9452]
[Y. Kabashima, T. Wadayama, and T. Tanaka: J. Stat. Mech.: Theor. and Exp. 09 (2009) LO9003]
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Sparse modeling
Find x by sparsity



Sparse modeling
Find x by sparsity
Make x sparse



How?
Machine learning!

y = [(x)
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% Dictionary learning
1. Mairal, F. Bach, . Ponce, and 6. Sapiro: ICML [2009)

» Make x sparse A

[ Image y]<—< »<—[ X Sparse vec.}

o
- o
- aJTaj <1
4 )
. |1 2
min 3 o [ly — Ax|l; + Allx|);
- J
Find A making x sparse
For Given y
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Y Dictionary learning
). Mairal, F. Bach, . Ponce, and G. Sapiro: ICML (2009)
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Practical use of
Compressed sensing



%  What is the problem?
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» Solve the optimization problem
Original problem

min ||x||, s.t. y=A4x
X
Penalty method
. |1 2
min { L ly — x(3 + A x,

LASSO (Least Absolute Shrinkage and Selection Operators)
Absolute value ? = Not so difficult!

1 2
min x = v]3 + A
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% Single-variable problem
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» Soft-threshold function

1
min | o (2 - 0)? + Az

Optimal value can be given by
v—A (v>N\) AS\(v) L7
r* = S\(v) = 0 (—AZov<)) 2
v+ A (V< =A) a
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{.&3 ADMM [Alternating Direction of Multiplier method)
S. Boyd, et al. Foundation and Trends in Machine Learning, 3 (2010 1

» Change the problem by augmented Lagrange method
Combination of two cost function

min {£(x) + g(x)}

Ex) LASSO 1

f(x) = 5 ly — AXH% g(x) = Allx][
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\v\.:;‘i; ADMM [Alternating Direction of Multiplier method)
S. Boyd, et al. Foundation and Trends in Machine Learning, 3 (2010 1

» Change the problem by augmented Lagrange method
Combination of two cost function

min {£(x) + g(x)}

Ex) LASSO 4 ;
F) = 2 lly — Ax2 g(x) = Allx],
Splitting
min{f(x)+g(z)} st. x=2z
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\\:;‘i; ADMM [Alternating Direction of Multiplier method)
S. Boyd, et al. Foundation and Trends in Machine Learning, 3 (2010 1

» Change the problem by augmented Lagrange method
Combination of two cost function

min {£(x) + g(x)}

Ex) LASSO 1 )
) =5 Iy —Ax[l;  9(x) = Ax],
Splitting

I;llzn {f(x)+g(z)} st. x=1z

Augmented Lagranngian method (multiplier: h. penalty: o)

}EHZH}II {f(X) +g(z) +h'(x—2z) + g Ix — ZH;}
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\\:;‘i; ADMM [Alternating Direction of Multiplier method)
S. Boyd, et al. Foundation and Trends in Machine Learning, 3 (2010 1

» Change the problem by augmented Lagrange method
Combination of two cost function

min {f(x) + g(x)}

Ex) LASSO 1

X) = —
fx) = 3
Alternation of optimization problem

min {f(x) +h'(x—z)+ g Ix — zlli}
min {g(z) +h'(x—z)+ g Ix — ZH?}

Update the multiplier h=h+ p(x — z)

ly - Ax|l;  g(x) = Al
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\\\,{35; ADMM [Alternating Direction of Multiplier method)
S. Boyd, et al. Foundation and Trends in Machine Learning, 3 (2010 1

» Change the problem by augmented Lagrange method
Combination of two cost function

min {£(x) + 9(x)}
Ex) LASSO
F9 =5

Altern tilon of optimization problem
2 P 2
32 y — Ax|[; + hT(X —z)+ 9 |x — ZHQ}

ly - Ax|l;  g(x) = Al

min
X

min {\ 2]}, +h7(x - 2) + £ |x - 2|3 ]

Zz

Update the multiplier h=h+ p(x — z)
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@;‘ﬁ ADMM [Alternating Direction of Multiplier method]

"""""""" S. Boyd, et al. Foundation and Trends in Machine Learning, 3 (2010) 1

+ ADMM (given by matlab code in pdf text)
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» Era for Data-driven science

Deep learning
To identify approximate form of function
Renormalization group analysis

Sparse modeling
To identify most relevant elements from input
Extract important structure in nature

Application of two modern tools
To promote data-driven science
Compressed Sensing for recovery from small data
To search for new physics
Relevant elements from noisy quantum Monte-Carlo data

J. Otsuki, M. Ohzeki, H. Shinaoka, and K, Yoshimi: Phys. Rev. E 99, 061302(R] (2017)
Optimal orthogonal polynomial for analytical continuation

H. Shinaoka, J. Otsuki, M. Ohzeki, and K, Yoshimi: arxiv:1702.03054
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