Machine Learning Phases of Strongly-Correlated Fermions

Ehsan Khatami San Jose State University

Machine Learning and Many-Body Physics KITS Beijing, July 3, 2017 K. Ch'ng, J. Carrasquilla, R. G. Melko, EK, arxiv 1609.02552

Ehsan Khatami, SJSU

Ehsan Khatami, SJSU

ML and Many-Body Physics

Ising configurations at decreasing temperatures

Ehsan Khatami, SJSU

2D Ising Model

Take the sum stochastically using the Metropolis algorithm:

- Start with a random configuration
- propose a spin flip
- Accept the change if $e^{-\beta\Delta H} > r$ 0 < r(random #) < 1
- Average the property of interest over configurations

2D Ising Model

Ehsan Khatami, SJSU

Detecting Topological Order

Y. Zhang, E. Kim, Phys. Rev. Lett. 118, 216401 (2017)Y. Zhang, R. G. Melko, E. Kim, arXiv:1705.01947

Ehsan Khatami, SJSU

Unsupervised Learning

J. Carrasquilla and R. G. Melko, Nature Physics **13**, 431–434 (2017)

PCA/AE

W. Hu, R. R.P. Singh, R. T. Scalettar, Phys. Rev. E **95**, 062122 (2017)

Can we do this for quantum systems?

Ehsan Khatami, SJSU

The Fermi-Hubbard Model

Enrico Fermi

John Hubbard

 $H = t \sum c_{i\sigma}^{\dagger} c_{j\sigma} + U \sum n_{i\uparrow} n_{i\downarrow}$ $\langle ij \rangle \sigma$

- Simple form
- Difficult to solve
- Rich physics:

. . .

- Can tune U/t
- Or vary the density
- Quantum magnetism
- Believed to have superconductivity

Average of one electron per site

Temperature Decreasing

3D Hubbard model at half filling

Finite-temperature magnetic phase transition in 3D.

Ehsan Khatami, SJSU

2D Hubbard model

No long-range magnetic order at finite temperatures!

EK, M. Rigol (2011) EK, R. Scalettar, and R. R. P. Singh (2014)

Ehsan Khatami, SJSU

Quantum Monte Carlo

$$Z = \operatorname{Tr} e^{-\beta \hat{H}} = \operatorname{Tr} (e^{-\Delta \tau \hat{H}})^L \sim \operatorname{Tr} (e^{-\Delta \tau \hat{K}} e^{-\Delta \tau \hat{P}})^L \qquad \Delta \tau = \frac{\beta}{L}$$

$$e^{\Delta \tau U n_{i\uparrow} n_{i\downarrow}} = \frac{1}{2} \sum_{s_i = \pm 1} e^{2\lambda s_i (n_{i\uparrow} - n_{i\downarrow}) - \frac{\Delta \tau U}{2} (n_{i\uparrow} + n_{i\downarrow})}$$

Integrating out Fermionic degrees of freedom:

$$Z = \sum_{\{s_{i\tau}\}} \det M_{\uparrow}(\{s_{i\tau}\}) \det M_{\downarrow}(\{s_{i\tau}\})$$

Sum taken stochastically over auxiliary variables that look like spins in d+1 dimensions!

Blankenbecler, R., Scalapino, D. J. & Sugar, R. L. Simil Phys. Rev. D **24**, 2278 (1981)

Ehsan Khatami, SJSU

Sign Problem

$$Z = \sum_{\{s_{i\tau}\}} \det M_{\uparrow}(\{s_{i\tau}\}) \ \det M_{\downarrow}(\{s_{i\tau}\})$$

At half filling, both determinant have the same sign.

Away from half filling, our probability can become negative: —-> "sign problem"

Can still estimate properties:

$$\langle O \rangle_p = \frac{\sum OP}{\sum P} = \frac{\sum OS|P|}{\sum S|P|} = \frac{\sum OS|P|/\sum |P|}{\sum S|P|/\sum |P|} = \frac{\langle \langle SO \rangle \rangle_{|P|}}{\langle \langle S \rangle \rangle_{|P|}}$$

Dividing two very small #s

Ehsan Khatami, SJSU

A Convolutional Neural Network

 $\mathcal{L} = 200$ # of time slices (color channels)

K. Ch'ng, J. Carrasquilla, R. G. Melko, EK, arXiv:1609.02552

Ehsan Khatami, SJSU

ML and Many-Body Physics, Beijing 2017

TensorFlow

Convolutions

Training

Use labeled auxiliary spin configuration over a range of temperatures at half filling for a fixed U

- 1 Load 85 % of data for training and 15 % for unbiased testing.
- Small batch of data is used for computing gradient through backbackpagation of error.
- 3 w and b are adjusted.

Predicting The Neel Temperature

K. Ch'ng, J. Carrasquilla, R. G. Melko, EK, arXiv:1609.02552

Ehsan Khatami, SJSU

Away From Half Filling

K. Ch'ng, J. Carrasquilla, R. G. Melko, EK, arXiv:1609.02552

Ehsan Khatami, SJSU

What Has the Machine Learned?

Ehsan Khatami, SJSU

What About Unsupervised ML?

Conv. Autoencoder: 3D Ising Model

Conv. Autoencoder: 3D Hubbard Model

t_SNE: Hubbard Models

Ehsan Khatami, SJSU

Summary

- Using a 3D CNN, we are able to predict magnetic critical temperature of the Fermi-Hubbard model as the interaction is varied.
- Unsupervised ML techniques can be used for quantum systems, however, it is hard to extract meaningful indicators for critical behavior similar to classical models.

