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FIG. 1. Schematic illustration of our machine learning algo-
rithm consisting of QLT and a neural network architecture.
QLT for each site j consists of 4 loops of length d = 1. One
loop of length d = 3 is also shown for illustration. QLT of
length d ≤ dc form a D(dc)-dimensional vector for each site
j, e.g., D(1) = 4 on a square lattice.

from a given Hamiltonian or many-body wave function
that contains minimal but sufficient amount of non-local
information guided by relevant response functions. The
response function that characterizes the phase of interest
determines the geometry of the loop objects that enter
QLT. But instead of brute force evaluation of the re-
sponse functions, we use QLT obtained from instances of
Monte Carlo steps to train a network deep in the phases.
For Chern insulators of interest here, the relevant re-

sponse function is the Hall conductivity. Interestingly
Kitaev [35] pointed out that

σxy =
e2

h
·
1

N

∑

4πiPjkPklPljS△jkl (1)

for free fermion systems[36], where Pij ≡ ⟨c†i cj⟩ is the
equal-time two-point correlation functions between site i
and site j, S△jkl is the signed area of the triangle jkl,
and N is the total number of sites. Taking hints from
Eq. (1) we use triangular loops to define QLT for Chern
insulators. But instead of the full expectation value for
two-point correlation functions in Eq. (1) which are costly
to evaluate (requiring many instances of Monte Carlo
walking down the Markov chain), we evaluate the bilin-
ear operator with a single Monte Carlo sample defining

P̃jk|α ≡
〈

c†jck
〉

α
for a particular Monte Carlo sample α.

Further we note that smaller triangles will dominantly
contribute in a gapped system and keep the loops of lin-
ear dimension less than a cut-off dc.
Now we define QLT to be a quasi-two-dimensional

“image” of D(dc)-dimensional vector of complex num-
bers assigned to each lattice site j, where dc is the cut-
off length and D(dc) is the total number of triangles of
length d ≤ dc with one vertex at site j (see Fig. 1). Each
entry of this vector is associated with a distinct triangle
cornered at site j which defines a chained product

P̃jk|αP̃kl|βP̃lj |γ (2)

where k and l are two other sites of the particular triangle
and P̃ ’s are evaluated at three independent Monte Carlo
steps without averaging over Markov chain. This way,
QLT can be systematically expanded to include longer
ranged correlations involving site j by increasing cut-off
length scale dc. When the outcome converges for small
dc, QLT is quasi-two-dimensional.
By construction QLT is quite versatile. Firstly, QLT

can be obtained for different lattice geometry to form a
diverse input data as different lattice geometry only en-
ter through different dimension D(dc) for given dc. Sec-
ondly, the entire procedure takes place in real space with-
out any need for diagonalization or flux insertion and
the procedure does not depend on translational invari-
ance. Hence QLT should be able to naturally accom-
modate heterogeneity, disorder and interaction by con-
struction. Finally, it is clear that the strategy under-
neath QLT construction for fermionic topological phases
we have laid out here can be generalized for detection
of other novel phases such as Z2 topological order or
superconductivity[37]. In the rest of this paper we use
Variational Monte Carlo(VMC), without loss of gener-
ality, to build QLT by sampling the many-body ground
state of interest at randomly selected Monte Carlo steps
(see Supplemental Material).
Once QLT is obtained for a given model, we feed it to

a neural network(Fig. 1). For this, we designed a feed-
forward fully-connected neural network with only one
hidden layer consisting of n = 10 sigmoid neurons. The
network takes QLT as an input x and each neurons pro-
cesses the input through independent weights and biases
w · x+ b. After the sigmoid function, the outcome is fed
forward to be processed by the output neuron. The final
output y corresponds to the neural network’s judgement
whether the input QLT is topological. We use cross en-
tropy as the cost function with L2 regularization to avoid
over-training and a mini-batch size of 10[1]. For the rest
of this paper, we use randomly-mixed 20000 data sam-
ples within the VMC Metropolis of the topological and
trivial phases as the training group. We reserve a sep-
arate group of 4000 data samples (also half trivial and
half topological) for validation purposes including learn-
ing speed control and termination[1]. Once the neural
network is successfully trained, the trained network can
rapidly process QLT’s from different parts of the phase
space to yield a phase diagram. In order to establish
level of confidence on the trained network’s assessment of
whether the system is topological or not, we process 2000
QLT’s at each point and take the ratio p of ‘topological’
output, i.e., y > 0.5. When p is close to 1 for topological
phase and 0 for trivial phase, it indicates even a single
QLT can reliably land a trustworthy detection.
Topological quantum phase transition in a free fermion

model– We first apply the QLT-based machine learning
to the topological quantum phase transition between a
trivial insulator and a Chern insulator. Consider the fol-
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FIG. 2. Model illustration of Eq. 3. The unit cell consists of
two sublattice sites A and B. Hopping strengths are different
for horizontal and vertical bonds and staggered. The diagonal
hopping is iκ (−iκ) along (against) the arrow. The red arrows
denotes a triangle that defines the operators of our QLT.

lowing tight-binding model on a square lattice:

H(κ) =
∑

r⃗

(−1)yc†r⃗+x̂cr⃗ + [1 + (−1)y(1− κ)]c†r⃗+ŷcr⃗

+ (−1)y
iκ

2

[

c†r⃗+x̂+ŷcr⃗ + c†r⃗+x̂−ŷcr⃗
]

+ h.c. (3)

where r⃗ = (x, y) (see Fig. 2) and κ is a tuning parameter
with 0 ≤ κ ≤ 1. The κ = 1 limit is the π-flux square
lattice model for a Chern insulator with a Chern number
C = 1 [31], while the κ = 0 limit amounts to decoupled
two-leg ladders. H(κ) interpolates between a Chern insu-
lator and a trivial insulator with a topological quantum
phase transition at κ = 0.5. To observe the quantum
phase transition, one should assume translational invari-
ance and Fourier transform the Hamiltonian Eq. (3) to
detect the change in the integral of the Berry curvature
of the band structure

H (κ) =
∑

k

[2 cosky + 2i sinky (1− κ+ κ sinkx)] c
†
k,Ack,B

+2 coskx(c
†
k,Ack,A − c†k,Bck,B) + h.c. (4)

where A and B label the two sublattices. For this sim-
ple two-band model with two Dirac points at (π/2,π/2)
and (−π/2,π/2) the topological quantum phase transi-
tion can be predicted by simply noting the change of the
sign of the Dirac masses across κ = 0.5.
Our complete knowledge of its topological phase dia-

gram makes the model in Eq. 3 an ideal testing ground
for our algorithm. Hence we implement supervised ma-
chine learning on the models using two extreme points of
κ = 1.0 (Chern insulator) and κ = 0.1 (trivial insulator)
for training[38]. The system size is 12× 12 lattice spac-
ings unless noted otherwise. First we establish that in-
deed a single point based input of the fermion occupation
configurations n(r⃗) = c†r⃗cr⃗ fails to transmit the topolog-
ical information to the neural network, as we expected.

FIG. 3. The ratio p of ‘topological’ response from the neural
network on the model in Eq. 3 over the parameter region κ ∈

[0.1, 1, 0]. The neural network is trained with κ = 0.1 for y = 0
and κ = 1 for y = 1. The green square symbols represent the
results using fermion occupation configurations as an input
data. Red dashed line marks the expected topological phase
transition at κ = 0.5. The inset: an enlarged view over the
critical region 0.4 ≤ κ ≤ 0.6. dc = 2 for all.

With n(r⃗) as an input, the learning is inefficient and the
neural network has difficulty picking up a clear structure
even after a long period of training. Such struggle is sig-
naled by high yields in the cost function[1]. Moreover,
as shown in Fig. 3, the neural network keeps incorrectly
judging the system to be a trivial insulator for all values
of κ, except for κ = 1.0 where the result returns > 80%
‘nontrivial’. This indicates that the neural network un-
fortunately does not pick up the universal features about
the topological phase, but rather memorizes the more de-
tailed information of the specific model at κ = 1.0 itself.

The contrast in the results based on QLT input is strik-
ing. Fig. 3 shows that the trained network’s assessment
achieves > 99.9% accuracy deep in either the topological
phase or trivial phase even with dc = 2. Moreover even
though we have provided the training group with only
large-gap models in both the topological and the trivial
phases focusing on identifying phases[39], we find a non-
analytical behavior in p as a function of κ at the critical
point [see Fig. 3 inset]. Note the symmetric departure
from p ≈ 0.5 on both sides of κ = 0.5 reflects the symme-
try in gap closing and reopening in the model of Eq. (3)
which is not generic.

Generalizations– Next we consider a fractional Chern
insulator (FCI) as an example of strongly-correlated
topological phase. Here the ν = 1/3 FCI is repre-
sented by a VMC wave function that is the free fermion
wave function of the model in Eq. 3 raised to the third
power[40]. Surprisingly the neural network trained on
non-interacting parent Chern insulator already serves as
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analysis is then performed. In this work the nonlinearity
is induced by a radial basis functions kernel.

Traditional neural network-based autoencoders consist
of two artificial neural networks stacked on top of each
other. The encoder network is responsible for encoding
the input data into some latent variables. The decoder
network is used to decode these parameters in order to
return an accurate recreation of the input data, shown in
Fig. 1. The parameters of this algorithm are trained by
performing gradient descent updates in order to minimize
the reconstruction loss (reconstruction error) between in-
put data and output data.

Variational autoencoders are a modern version of au-
toencoders which impose additional constraints on the
encoded representations, see latent variables in Fig. 1.
These constraints transform the autoencoder to an al-
gorithm that learns a latent variable model for its input
data. Whereas the neural networks of traditional autoen-
coders learn an arbitrary function to encode and decode
the input data, variational autoencoders learn the pa-
rameters of a probability distribution modeling the data.
After learning the probability distribution, one can sam-
ple parameters from it and then let the encoder network
generate samples closely resembling the training data.

To achieve this, variational autoencoders employ the
assumption that one can sample the input data from
a unit Gaussian distribution of latent parameters. The
weights of the model are trained by simultaneously opti-
mizing two loss functions, a reconstruction loss and the
Kullback-Leibler divergence between the learned latent
distribution and a prior unit Gaussian.

In this work we use autoencoders and variational au-
toencoders [37] with one fully connected hidden layer in
the encoder as well as one fully connected hidden layer in
the decoder, each consisting of 256 neurons. The num-
ber of latent variables is chosen to match the model from
which we sample the input data. The activation func-
tions of the intermediate layers are rectified linear units.
The activation function of the final layer is a sigmoid in
order to predict probabilities of spin ↑ or ↓ in the Ising
model, or tanh for predicting continuous values of spin
components in the XY model. We do not employ any
L1, L2 or Dropout regularization. However, we tune the
relative weight of the two loss functions of the variational
autoencoder to fit the problem at hand. The Kullback-
Leibler divergence of the variational autoencoder can be
regarded as reguarization of the traditional autoencoder.
In our autoencoder the reconstruction loss is the cross-
entropy loss between the input and output probability
of discrete spins, as in the Ising model. The reconstruc-
tion loss is the mean-squared-error between the input and
the output data of continuous spin variables in the XY
model.

To understand why a variational autoencoder can be a
suitable choice for the task of classifying phases, we recall
what happens during training. The weights of the au-
toencoder learn two things: on the one hand, they learn
to encode the similarities of all samples to allow for an

e�cient reconstruction. On the other hand, they learn
a latent distribution of the parameters which encode the
most information possible to distinguish between di↵er-
ent input samples.
Let us translate these considerations to the physics

of phase transitions. If all the training samples are in
the unordered phase, the autoencoder learns the com-
mon structure of all samples. The autoencoder fails to
learn any random entropy fluctuations, which are aver-
aged out over all data points. However, in the ordered
phase there exists a common order in samples belonging
into the same phase. This common order translates to
a nonzero latent parameter, which encodes correlations
on each input sample. It turns out that in our cases this
parameter is the order parameter corresponding to the
broken symmetry. It is not necessary to find a perfect
linear transformation between the order parameter and
the latent parameter as it is the case in Fig. 3. A one-to-
one correspondence is su�cient, such that one is able to
define a function that maps these parameters onto each
other and captures all discontinuities of the derivatives
of the order parameter.
We point out similarities between principal component

analysis and autoencoders. Although both methods seem
very di↵erent, they both share common characteristics.
Principal component analysis is a dimensionality reduc-
tion method which finds the linear projections of the
data that maximizes the variance. Reconstructing the
input data from its principal components minimizes the
mean squared reconstruction error. Although the prin-
cipal components do not need to follow a Gaussian dis-
tribution, principal components have the highest mutual
agreement with the data if it emerges from a Gaussian
prior. Moreover, a single layer autoencoder with linear
activation functions closely resembles principal compo-
nent analysis [29]. principal component analysis is much
easier to apply and in general uses less parameters than
autoencoders. However, it scales very badly to a large
dataset. Autoencoders based on convolutional layers can
reduce the number of parameters. In extreme cases this
number can be even less than the parameters of princi-
pal component analysis. Furthermore, such autoencoders
can promote locality of features in the data.

Input Encoder Latent
Variables Decoder Output

FIG. 1: Neural network architecture
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FIG. 2: Ferromagnetic Ising model. Left: correlation between latent parameter and magnetization for each spin sample. Red
dots indicate points in the unordered phase, while yellow dots indicate points in the ordered phase. Middle: histogram of
occurrences of latent parameters. Red bars correspond to data of the unordered phase, yellow bars correspond to the ordered
phase. Right: for each absolute value of magnetization, absolute value of latent parameter and cross-entropy reconstruction
loss: average at fixed temperature. The reconstruction loss is mapped on the T = 0 and T = 5 value of the magnetization, the
latent parameter is rescaled to the magnetization at T = 0.

FIG. 3: Ferromagnetic Ising Model. Principal components
and latent representations versus magnetization for di↵erent
algorithms. PCA - principal component analysis, Kernel PCA
- kernel principal component analysis, AE - autoencoder, VAE
- variational autoencoder.

IV. RESULTS

A. Ising Model

The four di↵erent algorithms can be applied to the Ising
model to determine the role of the first principal compo-
nents or the latent parameters. Fig. 3 shows a clear corre-
lation between these parameters and the magnetization
for all four methods. However, the traditional autoen-
coder is inaccurate; this fact leads us to enhancing tra-
ditional autoencoders to variational autoencoders. The
principal component methods show the most accurate
results, slightly better than the variational autoencoder.
This is to be expected, since the former are modeled by
fewer parameters.
In the following results section, we concentrate on the

variational autoencoder as the most advanced algorithm
for unsupervised learning.
To begin with, we choose the number of latent param-

eters in the variational autoencoder to be one. After
training for 50 epochs and a saturation of the training
loss, we visualize the results in Fig. 2. On the left, we see
a close linear correlation between the latent parameter
and the magnetization. In the middle we see a histogram
of encoded spin configurations into their latent parame-
ter. The model learned to classify the configurations into
three clusters. Having identified the latent parameter to
be a close approximation to the magnetization M(S) al-
lows us to interpret the properties of the clusters. The
right and left clusters in the middle image correspond to
an average magnetization of M(S) ≈ ±1, while the mid-
dle cluster corresponds to the magnetization M(S) ≈ 0.
Employing a di↵erent viewpoint, from Fig. 2 we conclude
that the parameter which holds the most information on
how to distinguish Ising spin samples is the order pa-

W. Hu, R. R.P. Singh, R. T. Scalettar,  
Phys. Rev. E 95, 062122 (2017) 
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FIG. 6. Two-dimensional t-SNE visualization of the training set used in the Ising model for L = 30

colored according to temperature. The orange line represents a hyperplane separating the low- from

high-temperatures states.

cool region (and vice versa), crossing over to a low value as the system is warmed through

the orange hyperplane. This allows the classification of a state in terms of the neuron values.

Appendix C: Details of the convolutional neural network of the Ising lattice gauge

theory

The exact architecture of the convolutional neural network (CNN) [4], schematically

described in Figure 4, is as follows. The input layer is a two-dimensional Ising spin config-

uration with N = 16 ⇥ 16 ⇥ 2 spins, where �
i

= ±1. The first hidden layer convolves 64

2⇥ 2 filters on each of the two sublattices of the model with a unit stride, no padding, with

periodic boundary conditions, followed by rectified linear unit (ReLu). The final hidden

layer is a fully-connected layer with 64 ReLu units, while the output is a softmax layer with

two outputs (correponding to T = 0 and T = 1 states). To prevent overfitting, we apply a

dropout regularization in the fully-connected layer [28]. Our model has been implemented
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FIG. 3: PCA results for the 2D square lattice Ising
model. (a) Relative variances �̃

n

obtained from the raw
Ising configurations, with the horizontal axis indicating
corresponding component labels. (b) Projection of the raw
Ising configurations onto the plane of the two leading principal
components. The color bar on the right indicates the
temperature in units of J . (c) The normalized quantified
first leading component as a function of temperature. (d)
The quantified second leading component as a function of
temperature.

at the critical temperature Tc can be related to known
critical exponents for this 2D Ising system. This is also
not a surprise given that this principal component is just
the order parameter of the system.

Similarly, the weight vector corresponding to the
second leading component is shown in Fig. 4 (b). To
understand the physical meaning of this weight vector,
we compare it in Fig. 4 (c) with

w

0
2 =

1

L
[cos(r1k1), . . . , cos(rNk1)]

+
1

L
[cos(r1k2), . . . , cos(rNk2)] (10)

where ri are the lattice sites and k1 = (0, 2⇡
L ) and

k2 = ( 2⇡L , 0), are the two Fourier wave vectors closest to
the origin k0 = (0, 0). There is clear similarity between
panels (b,c).

We conclude that, for the ferromagnetic Ising model,
PCA is building up weight vectors corresponding to the
Fourier modes of the spin configuration. In its ordered
phase, the physics of the Ising model is dominated by
the single point k0 = (0, 0), and hence PCA reveals a
single dominant eigenvalue. Subleading eigenvalues are
associated with the next most ordered arrangements,
i.e. with a single horizontal or vertical domain wall.
When supplied with configurations of the ferromagnetic
Ising model in the zero magnetization ensemble,
PCA generates four large eigenvalues corresponding to
horizontal or vertical domain walls[16].

Finally, Fig. 4 (d), shows the peaks (T ⇤) returned

FIG. 4: (a) Visualization of the weight vector corresponding
to the first leading component. (b) Visualization of the weight
vector corresponding to the second leading component. (c)
The vector w0

2 defined by Eq. 10. In (a-c) the lattice size
L = 50. (d) Peaks (T ⇤) returned from the quantified second
leading component as a function of the inverse of the lattice
dimension (1/L). The extrapolation was performed using a
linear least-squares fit.

from the quantified second leading component, versus the
inverse of the lattice dimension (1/L). A linear finite size
scaling fit to these peaks yields Tc ⇠ 2.278±0.015, which
agrees reasonably well with the exact result Tc/J ⇡
2.269.

B. PCA results of the Blume-Capel model

Following the same procedure, we feed a set of raw
Blume-Capel spin configurations {Si} into the PCA to
generate the results shown in Figs. 5, 6. For both
plots, we choose t = 40 values of � and n = 10, 000
uncorrelated spin configurations for each �. As noted
earlier, the phase diagram of the BCM di↵ers from that
of the Ising model in one important respect. It possesses
both first and second order transitions, separated by
a tricritical point at (T/J,�/J) = (0.609(4), 1.965(5)).
In Fig. 5, the PCA was supplied with a set of spin
configurations in a sweep of � in the range 0.5 < � < 2.5
at fixed T = 1.0, thus crossing the phase boundary in a
second order transition. Similarly, in Fig. 6 the sweep
covers the range 1.0 < � < 3.0 at fixed T = 0.4, and
crosses the phase boundary in a first order transition.

The panels of Fig. 5 are very similar to that of the Ising
model, Fig. 3. Using the peaks returned from Fig. 5 (d)

DISCOVERING PHASE TRANSITIONS WITH . . . PHYSICAL REVIEW B 94, 195105 (2016)

FIG. 2. Projection of the samples onto the plane of the two
leading principal components. The color bar on the right indicates
the temperature T/J of the samples. (a)–(c) are for N = 202, 402,
and 802 sites, respectively. In (c) we perform k-means clustering to
split the data into several phases. The white crosses denote the cluster
centroids. Background colors indicate different predicted phases.

color of each sample indicates its temperature. The projected
coordinates are given by the matrix-vector product

yℓ = Xwℓ. (4)

The variation of the data along the first principal axis y1 is
indeed much stronger than that along the second principal axis
y2. Most importantly, one clearly observes that as the system
size enlarges, the samples tend to split into three clusters.
The high-temperature samples lie around the origin while
the low-temperature samples lie symmetrically at finite y1.
The samples at the critical temperature (light yellow dots)
have a broad spread because of large critical fluctuations.
We note that Ref. [13] presents a different low-dimensional
visualization of the Ising configurations using the stochastic
neighbor embedding technique.

When folding the horizontal axis of Fig. 2 into
∑

i |σi | or
(
∑

i σi)
2, the two clusters associated with the low-temperature

phase merge together. With such a linearly separable low-
dimensional representation of the original data, a cluster
analysis algorithm such as k-means4 can easily identify clus-
ters corresponding to different phases. The vertical decision
boundaries in Fig. 2(c) show that only y1 affects the division.
The clustering analysis also provides an estimate of the
critical temperature Tc/J ≈ 2.3. Notice that the unsupervised
learning analysis not only discovers the phase transition and
estimates the critical temperature but also offers insight into
the difference between phases.

Having established the baseline of applying unsupervised
learning techniques in a prototypical Ising model, we now
turn to a more challenging case where the learner can make
nontrivial findings. For this, we consider the same Ising model
Eq. (1) with a conserved order parameter (COP)

∑
i σi ≡ 0.

This model describes classical lattice gases [20], where the

4http://scikit-learn.org/stable/modules/clustering.html#k-means

FIG. 3. Typical configurations of the COP Ising model (a), (b)
below and (c) above the critical temperature. Red and blue pixels
indicate up and down spins. Exactly half of the pixels are red/blue
due to the constraint

∑
i σi ≡ 0.

occupation of each lattice site can be either one or zero and the
particles interact via a short-range attraction. The conserved
total magnetization corresponds to the constraint of a half-
filled lattice.

On a square lattice with periodic boundary conditions, the
spins tend to form two domains at low temperatures, shown
in Figs. 3(a) and 3(b). The two domain walls wrap around the
lattice either horizontally or vertically to minimize the domain
wall energy [20]. Besides, the domains can also shift in space
due to translational invariance. As the temperature increases,
these domain walls melt and the system restores both the trans-
lational and rotational symmetries in the high-temperature
phase shown in Fig. 3(c). At zero total magnetization, the
critical temperature of such a solid-gas phase transition is the
same as the Ising transition Tc/J ≈ 2.269 [21]. However, since
the total magnetization is conserved, simply summing up the
spins as the ordinary Ising model cannot be used as an indicator
to distinguish the two phases.

We perform the same PCA to the COP Ising configurations
sampled with Kawasaki spin exchange Monte Carlo up-
dates [20,22]. Figure 4 shows the first few explained variance
ratios. Notably, there are four leading principal components
instead of one. Their weights, plotted in the insets of Fig. 4,
show a notable nonuniformity over the lattice sites. This

FIG. 4. Explained variance ratios of the COP Ising model. The
insets show the weights corresponding to the four leading principal
components.

195105-3
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FIG. 2. Position of the middle peak in the universal W-shape
deviates from T 0

c = Tc for L = 10 due to the finite-size e↵ect.
Here kBTc ⇡ 2.27J is the exact transition temperature in
the thermodynamic limit. For L = 20 the middle peak is
located exactly at T 0

c = Tc. (Parameters for training: batch
size Nb = 100, learning rate ↵ = 0.02 and regularization
l2 = 0.005.)

model [33], which has been studied by both supervised
learning [3] and unsupervised learning [2] methods. Here
we train a NN (with L2 neurons in the input and hid-
den layers, and 2 neurons in the output layer) on the
L⇥L classical configurations sampled from Monte Carlo
simulation. As shown in Fig. 2, the W-shape again pre-
dicts the right transition temperature. Note the confu-
sion scheme works better when the underlying feature in
the data is shaper, i.e. for the larger system size L = 20.

To confirm that the confusion scheme indeed extracts
nontrivial features from the input data. We have checked
the performance curve from confusion scheme, when the
NN is trained on unstructured random data. We use a
fictive parameter as a tuning parameter, but have com-
pletely unstructured (random) data as a function of it.
Hence, the network will not find structure in the data,
and a correct labelling does not exist. The middle peak
of the characteristic W-shape disappears, turning it into
a V-shape.

We notice that the choice of the learning rate (↵) and
regularization (l

2

) is essential for a successful training.
The use of regularization is expected to reduce overfit-
ting and make the network less sensitive to small vari-
ations of the data, hence forcing it to rather learn its
structure [32]. However, the confusion scheme depends
solely on the ability of finding the majority label for the
underlying structure in the data. In this sense, over-
fitting is not necessarily bad. Indeed we have observed
that training with a negative l

2

may lead to an equally
good performance. We speculate that this is because a
negative l

2

tries to quickly increase the weights, mak-
ing it harder for the network to change its opinion about
data samples in later stages. If the initial training data
is uniformly sampled, meaning the majority data is in-
deed represented by a majority, the network will rapidly

FIG. 3. (a) Principal component analysis of the random-
field Heisenberg model. Unlike in the Kitaev model or for
the Ising data [2], there is no clearly observable clustering.
(b) The characteristic W-shape of the performance curve on
the MBL data. The result shows that the network Nh0

c
for

h0
c ⇡ 3J performs best, indicating that this is the correct

labelling. The distinction between the thermalizing and non-
thermalizing phase can hence be put at hc ⇡ 3J , in agreement
with Ref. [25]. (Parameters for training: batch size Nb = 100,
learning rate ↵ = 10�8 and regularization l2 = 0.01.) (c) The
performance of network Nh0

c
, when evaluated at the point h0

c

only instead of on the full data, for various di↵erent sets of
learning parameters (see legend). Clearly the performance of
the network is most independent of the exact training scheme
at h0

c ⇡ 3J , showing a robustness of this correct labelling
against variations in training.

adjust its weights to this majority. Lastly, we mention
that trainings are performed in epochs. In each epoch
all training data is passed once in batches of size N

b

in
a random order. The training is stopped when a clear
W-shape is formed.

D. Random-field Heisenberg chain

We will now test our proposed scheme on an example
where we the exact location of the transition point is

Nieuwenburg, Liu, and  
Huber, Nat. Phys. (2017)
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3D Hubbard model at half filling
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FIG. 5. Antiferromagnetic structure factor with U = 9 as a
function of density at several temperatures. As the temperature is
lowered, the structure factor develops a sharp peak around half filling.
Inset: Inverse of the structure factor vs temperature at three different
densities.

TN ∼ 0.35 for U = 9, which is consistent with current best
estimates [16,32,33,49]. It is also evident that TN will be
smaller for the other two values of U in the inset. The critical
temperature as a function of U and its different estimates
within the NLCE will be discussed below.

Similarly to the nearest-neighbor correlations, the structure
factor as a function of U , plotted in Fig. 4, exhibits a peak
at U = 9, which develops faster than that for the former
as the temperature is lowered. This is an indication of the
fast growing long-range correlations in the system as one
approaches the critical temperature. The dashed line in Fig. 4
is a fit proportional to J (∝ 1/U ) using the structure factor
for the largest three U values at T = 0.44. It makes clear
the asymptotic behavior of the magnetic correlations in the
strong-coupling regime.

So far, we showed results for the structure factor only at half
filling. But, what happens to the divergent AF correlations in
a system with a n ̸= 1? To answer this question, we plot in
Fig. 5 SAF as a function of density for U = 9 at different
temperatures. A very sharp peak develops at n = 1.00 as the
temperature is lowered, indicating that the correlations in the
system remain large only in the close proximity of half filling.
These results are of special importance for the simulation of
the model using ultracold fermionic atoms in optical lattices
as a range of densities are present simultaneously at different
radii from the center of the trap [25].

The system can in principle make a transition to the long-
range Néel phase even away from half filling. To explore this
possibility, we plot 1/SAF as a function of temperature for
different n in the inset of Fig. 5. The structure factor at n =
0.95 shows strong indication of a nonzero critical temperature
that is nonetheless smaller than that for the half-filled system.
At a smaller density of n = 0.90, we do not have enough
low-temperature data from the NLCE to draw any conclusion
about the critical temperature. We point out that despite the
divergent behavior of SAF close to half filing, an instability to
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FIG. 6. (a) Estimated Néel transition temperature vs the inter-
action strength. Filled squares are obtained from extrapolations of
the NLCE SAF to low temperatures, and empty circles are obtained
from fits to SAF as a function of the NLCE order (see text). Filled
triangles and diamonds are data from the DCA [13] and DQMC
[26], respectively. The dotted line is a guide to the eye. The dashed
line is the theoretical asymptotic function. (b) The bare AF structure
factor for U = 12 vs the NLCE order at different temperatures (with
a uniform grid) above and below the expected transition temperature
(TN ∼ 0.30). Dashed lines represent fits of results in the even orders
to a 2nd-degree polynomial. (c) Inverse of SAF as a function of
temperature for the 3D Heisenberg model with J = 1 [which sets the
unit of energy in (c) and (d)]. The last two orders of the bare sums
and results after Wynn resummations with 6 cycles of improvement
are shown. The latter points to a divergence at TN ∼ 0.96. (d) The
staggered structure factor for the Heisenberg model as a function of
the NLCE order at different temperatures (in a uniform grid) around
TN . Here, dashed lines are 2nd-degree polynomial fits of data in all
orders.

a different type of order may be dominant in this region. We
have not studied such a scenario here.

As we saw in Fig. 3, the critical temperatures can be
estimated from the extrapolations of the structure factor in
the intermediate- to strong-coupling regime, where enough
information at low temperatures are available. In Fig. 6(a),
we plot the Néel temperatures deduced in this way as a
function of U as filled circles. We also plot TN for U ! 12
from the dynamical cluster approximation (DCA) [13,50] and
DQMC, which match our results within the error bars. The
NLCE results are in very good agreement with the theoretical
prediction for the large-U Heisenberg limit for U > 12 as well
[35,51].

In the ordered phase, we expect the maximum SAF to
scale linearly with the cluster size, N , for finite clusters since
the correlations extend to all sites. On the other hand, in the
disordered phase above TN,SAF increases with N linearly so
long as the linear size of the cluster is smaller in order than
the correlation length. For larger systems, SAF as a function
of N saturates to a temperature-dependent value. Within our
NLCE, the order refers to the size of the largest clusters in
the expansion. Thus, the order of the expansion does not
exactly represent N as in a finite-size calculation due to the
existence of a large number of smaller clusters in the series.
However, the role of the latter is to eliminate boundary effects
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TN ∼ 0.35 for U = 9, which is consistent with current best
estimates [16,32,33,49]. It is also evident that TN will be
smaller for the other two values of U in the inset. The critical
temperature as a function of U and its different estimates
within the NLCE will be discussed below.

Similarly to the nearest-neighbor correlations, the structure
factor as a function of U , plotted in Fig. 4, exhibits a peak
at U = 9, which develops faster than that for the former
as the temperature is lowered. This is an indication of the
fast growing long-range correlations in the system as one
approaches the critical temperature. The dashed line in Fig. 4
is a fit proportional to J (∝ 1/U ) using the structure factor
for the largest three U values at T = 0.44. It makes clear
the asymptotic behavior of the magnetic correlations in the
strong-coupling regime.

So far, we showed results for the structure factor only at half
filling. But, what happens to the divergent AF correlations in
a system with a n ̸= 1? To answer this question, we plot in
Fig. 5 SAF as a function of density for U = 9 at different
temperatures. A very sharp peak develops at n = 1.00 as the
temperature is lowered, indicating that the correlations in the
system remain large only in the close proximity of half filling.
These results are of special importance for the simulation of
the model using ultracold fermionic atoms in optical lattices
as a range of densities are present simultaneously at different
radii from the center of the trap [25].

The system can in principle make a transition to the long-
range Néel phase even away from half filling. To explore this
possibility, we plot 1/SAF as a function of temperature for
different n in the inset of Fig. 5. The structure factor at n =
0.95 shows strong indication of a nonzero critical temperature
that is nonetheless smaller than that for the half-filled system.
At a smaller density of n = 0.90, we do not have enough
low-temperature data from the NLCE to draw any conclusion
about the critical temperature. We point out that despite the
divergent behavior of SAF close to half filing, an instability to
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action strength. Filled squares are obtained from extrapolations of
the NLCE SAF to low temperatures, and empty circles are obtained
from fits to SAF as a function of the NLCE order (see text). Filled
triangles and diamonds are data from the DCA [13] and DQMC
[26], respectively. The dotted line is a guide to the eye. The dashed
line is the theoretical asymptotic function. (b) The bare AF structure
factor for U = 12 vs the NLCE order at different temperatures (with
a uniform grid) above and below the expected transition temperature
(TN ∼ 0.30). Dashed lines represent fits of results in the even orders
to a 2nd-degree polynomial. (c) Inverse of SAF as a function of
temperature for the 3D Heisenberg model with J = 1 [which sets the
unit of energy in (c) and (d)]. The last two orders of the bare sums
and results after Wynn resummations with 6 cycles of improvement
are shown. The latter points to a divergence at TN ∼ 0.96. (d) The
staggered structure factor for the Heisenberg model as a function of
the NLCE order at different temperatures (in a uniform grid) around
TN . Here, dashed lines are 2nd-degree polynomial fits of data in all
orders.

a different type of order may be dominant in this region. We
have not studied such a scenario here.

As we saw in Fig. 3, the critical temperatures can be
estimated from the extrapolations of the structure factor in
the intermediate- to strong-coupling regime, where enough
information at low temperatures are available. In Fig. 6(a),
we plot the Néel temperatures deduced in this way as a
function of U as filled circles. We also plot TN for U ! 12
from the dynamical cluster approximation (DCA) [13,50] and
DQMC, which match our results within the error bars. The
NLCE results are in very good agreement with the theoretical
prediction for the large-U Heisenberg limit for U > 12 as well
[35,51].

In the ordered phase, we expect the maximum SAF to
scale linearly with the cluster size, N , for finite clusters since
the correlations extend to all sites. On the other hand, in the
disordered phase above TN,SAF increases with N linearly so
long as the linear size of the cluster is smaller in order than
the correlation length. For larger systems, SAF as a function
of N saturates to a temperature-dependent value. Within our
NLCE, the order refers to the size of the largest clusters in
the expansion. Thus, the order of the expansion does not
exactly represent N as in a finite-size calculation due to the
existence of a large number of smaller clusters in the series.
However, the role of the latter is to eliminate boundary effects
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Quantum Monte Carlo
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A Convolutional Neural Network
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L = 200 # of time slices (color channels)
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Predicting The Neel Temperature
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What Has the Machine Learned?
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9

FIG. 7. (a)-(d) Typical auxiliary field patterns above and below TN used as input to the CNN for the N = 43 system. In each
panel, the four rows correspond to the four layers in the z direction. We show the field only in the first 10 imaginary time
slices (left to right) for each case. (e), (f) Normalized count of the 256 patterns within 2 × 2 × 2 cubes as detected in the raw
configurations for U = 16 below and above TN . The two largest peaks in (f) correspond to the two AFM patterns.
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stop the training once we detect overfitting. The criterion
is that the training accuracy and testing accuracy should
not deviate from each other for more then 10 successive
training evaluation.

We save the best model so far every time (i)
the di↵erence between training accuracy and testing
accuracy is less than 2.5%, (ii) the training accuracy is
greater than testing accuracy, and (iii) the current testing
accuracy is better than the last recorded testing accuracy.
The location of last saved models (weights and biases) are
shown as green circles for each case in Fig. 6.

APPENDIX D: WHAT DOES THE MACHINE
LEARN?

One may wonder what the features learned by the
CNN, as encoded in the weights and biases, are. Before
addressing this questions, we make one observation.
Unlike in cases of image or sound recognition, the
input information to our machine (auxiliary spin
configurations) are simply binary numbers, namely, each
input neuron takes 1 or -1 as the value. Therefore, the
“features” extracted by the 8-site receptive cube, will be
no more than 28 = 256 distinct patterns of 1’s and -1’s
on a 2 × 2 × 2 cube. In Figs. 7(a)-7(d) we show a typical
auxiliary field for the first 10 time slices from DQMC
simulations of the system with U = 5 and U = 16 both
below and above TN . One can see that, due to quantum
fluctuations, a clear AFM pattern that can be discerned
does not emerge in the 2D images. However, plotting the
histogram of all 256 patterns in a sample set for U = 16
in Figs. 7(e) and 7(f) reveals that the AFM pattern is in
fact the dominant one at T < TN .

We focus on the first feature extraction layer
immediately after the input layer. What has been

encoded in the weights and biases in that layer should be
a good indication of what the CNN is looking for in all the
feature extraction layers. Specifically, we would like to

know to what extent the savedw

(2)
lm correlate with each of

the 256 ordering patterns. To find out, we convolve each

of the ordering patterns with each w

(2)
lm . We introduce

the following overlap function

� =�
lm

�w(2)lmx� (8)

where each x is a 2 × 2 × 2 tensor with 1’s and -1’s
as elements corresponding to one of the 256 ordering
patterns on the 8-site cube. We have safely ignored
the biases as they introduce a uniform shift and do
not pertain to local correlations. We take the absolute
value of the tensor product before performing the sums
since we expect the spin inversion symmetry to have
been encoded in the CNN to a good extent during the

training, i.e., ∑lmw

(2)
lmx is orders of magnitude smaller

than � for any of the ordering patterns, something we
confirm with our network. The dominant features, as
seen by the CNN, are those with the largest �. � plays
a role analogous to the order parameter for each of the
ordering patterns. For example, w x

AFM, where x

AFM

corresponds to the perfect AFM pattern, would be the
staggered “magnetization” of w.
In Fig. 8 we show histograms of � for the 256

possibilities for x at U = 5 and U = 16, respectively.
The ones in the large-� tail of the distribution are the
dominant patterns. The red vertical line denotes the
magnitude of the convolution (overlap) with the two
degenerate AFM patterns. We find that for both a CNN
trained by the U = 5 data, or one trained by the U = 16
data, the AFM pattern is clearly the dominant pattern
learned by the network.
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Conv. Autoencoder: 3D Hubbard Model

One input cube per time slice:

Sharpest rise of the indicator around  
the expected critical temperature  ~0.2

No perfect separation for the !
quantum case!
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t_SNE: Hubbard Models

2D Hubbard
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Using a 3D CNN, we are able to  
predict magnetic critical temperature  
of the Fermi-Hubbard model  
as the interaction is varied.!

Unsupervised ML techniques can be  
used for quantum systems, however,  
it is hard to extract meaningful  
indicators for critical behavior similar  
to classical models.

Summary
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the training process of the neural network. Here, using
quantum Monte Carlo simulations of the Hubbard model
of strongly-correlated fermions on cubic lattices and
convolutional neural networks (CNNs), we show that
one can successfully classify finite-temperature phases of
quantum systems and estimate transition temperatures
with a reasonable degree of accuracy on relatively small
lattice sizes.

II. MODEL

The Fermi-Hubbard Hamiltonian [13, 14] in the
particle-hole invariant form is expressed as

H = −t ��ij�� c†i�cj� +U�i (ni↑− 1
2
)(ni↓− 1

2
)−µ�

i�

ni�, (1)

where ci� (c†i�) annihilates (creates) a fermion with spin

� on site i, ni� = c†i�ci� is the number operator, U
is the onsite Coulomb interaction, �..� denotes nearest
neighbors, t is the corresponding hopping integral, and
µ is the chemical potential. µ = 0 corresponds to the
half-filled model (average density of one fermion per site,
n = 1). We set t = 1 as the unit of energy, and consider
the model on three-dimensional (3D) cubic lattices.

The 3D model at half filling realizes a finite-
temperature transition to the antiferromagnetic Néel
phase for any U > 0, analogous to the magnetic
ordering in the 2D classical Ising model. The transition
temperature, TN , which is relatively well known from
the analysis of the staggered spin structure factor, or
the staggered susceptibility [15–21], is a non-monotonic
function of the interaction strength; it increases rapidly
with increasing U in the weak-coupling regime (U � 8),
a result that can be captured using the random phase
approximation [15], and decreases at large U . In the
strong-coupling regime (U � 12), the half-filled model can
be e↵ectively described by the antiferromagnetic (AFM)
Heisenberg model, whose exchange constant, and hence,
Néel temperature, is proportional to 1�U [22].

III. METHOD

Our goal here is to train a CNN to identify finite-
temperature phase boundaries of the Hubbard model.
We utilize the determinantal quantum Monte Carlo
(DQMC) [23], which reduces the numerical evaluation
of the observables of the Fermi-Hubbard model to a
stochastic averaging over a set of discrete auxiliary
fields extending in space and along an imaginary time

dimension. The spin correlations of the model can
be written directly in terms of the correlations in
our particularly chosen auxiliary field (see Appendix
A), rendering it an obvious choice to be used in the
identification of magnetic phases through machine
learning, although a previous attempt including two of

FIG. 2. Prediction of the Néel transition temperature by
the neural network. Using the auxiliary spin configurations,
the network is trained separately at U = 5 and U = 16 for
N = 43, and simultaneously at U = 5 and 16 for N = 43 and
N = 83. The errorbars are standard error of mean of four
to six di↵erent classifications using CNNs that were trained
starting from di↵erent random weights and biases. The
critical temperatures used for the training of the network with
N = 43 are shown as stars (see text). Grey filled symbols are
the estimates for TN in the thermodynamic limit from DQMC
and NLCE simulations. Grey pentagons, hexagons and circles
for weak-, intermediate-, and strong-coupling regimes are
taken from Refs. [19], [18], and [21], respectively. The solid
line is a guide to the eye.

the authors has not been successful [24]. The training
is done using the field configurations generated during
DQMC simulations in a range of temperatures around
one or two critical points. The objective is to use the
trained network to map out the entire phase boundary
associated with the same critical phenomenon by varying
the parameters driving the transition and generating
test data sets of the field configurations. In this work, we
focus on the magnetic properties of the Hubbard model.

We use a 3D CNN, originally developed for human
action recognition in videos [25], implemented in
Tensorflow [26]. Convolutions are designed to return
information about spatial dimension and locality to the
simpler idea of a fully-connected feed-forward neural
network. In our case, the three spatial dimensions of
the cubic lattice are treated with the convolution, while
slices in the fourth imaginary time axis are used as
di↵erent filter channels [1]. The network architecture for
N = 43 is shown in Fig. 1. We use 3 or 4 hidden layers,
depending on the spatial size of the system, for feature
extraction followed by a fully connected layer before the
output layer. The optimal number of neurons in each
layer (resulting in the largest accuracy) for N = 83 is
found using a Monte Carlo optimization procedure (see
Appendix B).


