Accelerated Monte Carlo simulations with restricted Boltzmann machines

Li Huang¹ Lei Wang²

¹China Academy of Engineering Physics

²Institute of Physics, Chinese Academy of Sciences

July 6, 2017

Machine Learning and Many-Body Physics, KITS, Beijing

Motivation

Monte Carlo

Machine learning

Our idea

Method

Falicov-Kimball mode

RBM

Numerical recipe

Results

scussion

Contents

Motivation

Monte Carl

Machine learnin

Our idea

Method

Falicov-Kimball mode

RRM

Numerical recipe

esults

nclusions

Motivation

Quantum Monte Carlo zoo 1



Figure: Various quantum Monte Carlo algorithms

Ref.: Quantum Monte Carlo Methods, 2016

Motivation

Monte Carlo

Machine learning

Our ideas

Method

Falicov-Kimball mode

RBM

Numerical recipes

Results

Discussion

Quantum Monte Carlo zoo 2

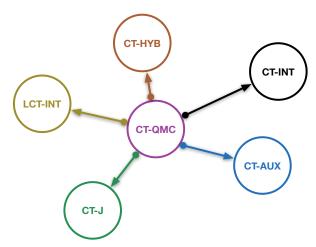


Figure: Various continuous time quantum Monte Carlo algorithms

Ref.: Rev. Mod. Phys. 83, 349 (2011)

4 D > 4 P > 4 E > 4 E > 9 Q (~)

Motivation

Monte Carlo

Machine learning

Our idea

Method

Falicov-Kimball model

RBM

Numerical recipe

Results

Discussion

Troubles

In my opinions, the applications of quantum Monte Carlo methods are mainly hampered by the following three problems:

How to visit the configuration space efficiently?

Critical slowing down

Negative sign problem (for fermionic system)

Motivation

Monte Carlo

Machine learning

Dur idea

Method

Falicov-Kimball mode

RBM

Numerical recipe

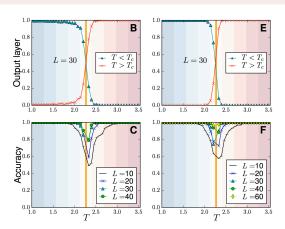
Results

iscussion

.......

Machine learning + Many-body physics 1

Detecting phase transitions in classic or quantum models



Motivation

Monte Carlo

Machine learning

Our ideas

Method

Falicov-Kimball mode

RBM

Numerical recipes

Results

scussion

nclusions

Figure: Detecting phase transitions in Ising model with ANN

Ref.: Nat. Phys. 13, 431 (2017)

Machine learning + Many-body physics 2

Representation of quantum many-body states

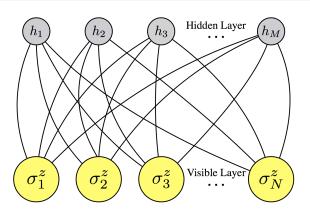


Figure: Artificial neural network encoding a many-body quantum state

Ref.: Science 355, 602 (2017)

4日 → 4団 → 4 豆 → 4 豆 → 9 Q (~)

Motivation

Aonte Carlo

Machine learning

Our ideas

Method

Falicov-Kimball mode

RBM

Numerical recipe

Results

Discussion

Machine learning + Many-body physics 3

Solve the inverse problems

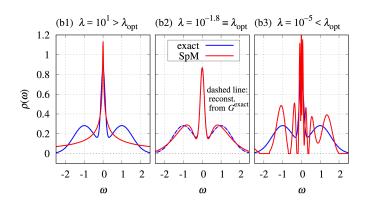


Figure: Sparse modeling approach to analytical continuation of G(au)

Ref.: Phys. Rev. E 95, 061302 (2017)

vionte Cario

Machine learning

Our ideas

Method

Falicov-Kimball mode

RBM

Numerical recipes

Results

iscussion

Our ideas 1

Is it possible to use ML tools to accelerate QMC?

- Supposed that it is difficult (not easy) to sample the target distributions by Monte Carlo directly.
- With the available data, we train a restricted Boltzmann machine (RBM) which can be viewed as a proxy (approximation) of the statistical distributions.
- We simulate the trained RBM, and then use it to propose new (local or non-local) Monte Carlo updates. The role played by the RBM in the Monte Carlo simulation is just like a recommender system in e-commerce platforms.

Motivation

Monte Carlo

Machine learning

Our ideas

Method

Falicov-Kimball mode

RBM

Numerical recipe

Results

iscussion

Our ideas 2

How to visit the configuration space efficiently?

• The acceptance ratio is increased.

Critical slowing down

• The autocorrelation time is reduced.

Negative sign problem (for fermionic system)

• NO SOLUTION!

Motivation

Monte Carlo

Machine learning

Our ideas

Method

Falicov-Kimball mode

RBM

Numerical recipes

esults

iscussion

Contents

Notivation

lonte Carlo

Machine learnin

Our ide

Method

Falicov-Kimball mode

RBN

Numerical recipe

aculte

nclusions

Method

Falicov-Kimball model 1: Hamiltonian

Hamiltonian:

$$\hat{H}_{FK} = \sum_{i,j} \hat{c}_i^{\dagger} \mathcal{K}_{ij} \hat{c}_j + U \sum_{i=1}^{N} \left(\hat{n}_i - \frac{1}{2} \right) \left(x_i - \frac{1}{2} \right) \tag{1}$$

Probability distribution:

$$p_{\rm FK}(\mathbf{x}) = e^{-F_{\rm FK}(\mathbf{x})}/Z_{\rm FK} \tag{2}$$

"Free energy":

$$-F_{\text{FK}}(\mathbf{x}) = \frac{\beta U}{2} \sum_{i=1}^{N} x_i + \ln \det \left(1 + e^{-\beta \mathcal{H}} \right)$$
 (3)

 $x_i \in \{0,1\}$: occupation number of the localized fermion at site i.

 $\hat{n}_i \equiv \hat{c}_i^\dagger \hat{c}_i$: occupation number operator of the mobile fermion.

 ${\cal K}$ is the kinetic energy matrix of the mobile fermions.

Motivation

Nonte Carlo

Machine learning

ur ideas

1ethod

Falicov-Kimball model

RBM

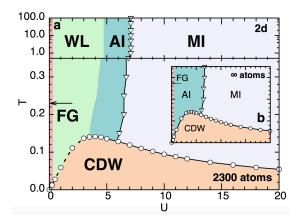
Numerical recipes

sults

scussion

Falicov-Kimball model 2: Phase diagram

Ref.: Phys. Rev. Lett. 117, 146601 (2016)



CDW: charge density wave insulator

Al: Anderson insulator

MI: Mott insulator

FG: Fermi gas

WL: weakly localized

Motivation

Monte Carlo

Machine learnin

Our idea

Method

Falicov-Kimball model

RBM

Numerical recipes

Results

Discussion

Bit-flip update:

$$x_i \longrightarrow 1 - x_i$$
 (4)

Detailed balance condition:

$$\frac{T(\mathbf{x} \to \mathbf{x}')}{T(\mathbf{x}' \to \mathbf{x})} \frac{A(\mathbf{x} \to \mathbf{x}')}{A(\mathbf{x}' \to \mathbf{x})} = \frac{p_{\text{FK}}(\mathbf{x}')}{p_{\text{FK}}(\mathbf{x})}$$
(5)

Cons:

- Scaling: $O(N^4)$
- Long autocorrelation times

Motivation

Monte Carlo

Machine learning

Our ideas

lethod

Falicov-Kimball model

RBM

Numerical recipes

sults

scussion

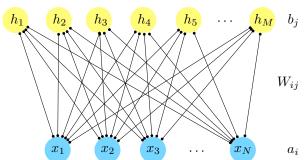
nelucione

RBM 1: Architecture

The RBM is a classical statistical mechanics system defined by the following energy function

$$E(\mathbf{x}, \mathbf{h}) = -\sum_{i=1}^{N} a_i x_i - \sum_{j=1}^{M} b_j h_j - \sum_{i=1}^{N} \sum_{j=1}^{M} x_i W_{ij} h_j, \quad (6)$$

hidden layer



Motivation

Monte Carlo

Machine learning

Our ideas

Method

Falicov-Kimball model

RBM

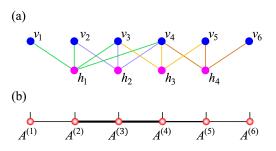
Numerical recipe

Results

Discussion

RBM 2: Recent applications

Connecting RBM with tensor networks states



$$\Psi_{\text{RBM}}(v) = \sum_{h} e^{-E(v,h)} = \prod_{i,j} e^{a_i v_i} (1 + e^{b_j + \sum_i v_i W_{ij}})$$
 (7)

$$\Psi_{\mathsf{MPS}}(v) = \mathsf{Tr}\left(\prod_{i=1}^{n_v} A^{(i)}[v_i]\right) \tag{8}$$

Ref.: arXiv:1701.04831

Motivation

Monte Carl

Machine Jearning

Our idea

Method

Falicov-Kimball model

RBM

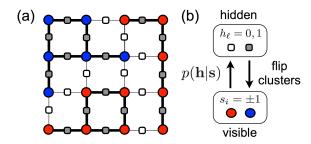
Numerical recipe

Results

iscussion

RBM 3: Recent applications

Searching new cluster updates



Ref.: arXiv:1702.08586

Motivation

Monte Carlo

Machine learning

Dur ideas

Method

Falicov-Kimball mode

RBM

Numerical recipe

Results

Discussion

Numerical recipes 1: Collecting data

Collecting training data set $\{x\}$ by traditional Monte Carlo method in a preliminary calculation.

Motivation

Monte Carlo

Machine learning

Our idea

Method

Falicov-Kimball mode

RBM

Numerical recipes

Results

iscussion

nelucione

Numerical recipes 2: Training RBM

Joint probability distribution of the visible and hidden variables

$$p(\mathbf{x}, \mathbf{h}) = e^{-E(\mathbf{x}, \mathbf{h})} / Z \tag{9}$$

Marginal distribution

$$p(\mathbf{x}) = \sum_{\mathbf{x}} p(\mathbf{x}, \mathbf{h}) = e^{-F(\mathbf{x})}/Z$$
 (10)

"Free energy" of RBM

$$-F(\mathbf{x}) = \sum_{i=1}^{N} a_i x_i + \sum_{i=1}^{M} \ln\left(1 + e^{b_j + \sum_{i=1}^{N} x_i W_{ij}}\right)$$
(11)

Motivation

Monte Carlo

Machine learning

Our ideas

lethod

Falicov-Kimball model

BM

Numerical recipes

Results

iscussion

Numerical recipes 3: Training RBM (cont.)

"Free energy" of RBM

$$-F(\mathbf{x}) = \sum_{i=1}^{N} a_i x_i + \sum_{j=1}^{M} \ln\left(1 + e^{b_j + \sum_{i=1}^{N} x_i W_{ij}}\right)$$
(12)

"Free energy" of Falicov-Kimball model

$$-F_{\text{FK}}(\mathbf{x}) = \frac{\beta U}{2} \sum_{i=1}^{N} x_i + \ln \det \left(1 + e^{-\beta \mathcal{H}} \right), \tag{13}$$

We use $F(\mathbf{x})$ to approximate $F_{\text{FK}}(\mathbf{x})$, and setup the parameters a_i , b_i , and W_{ij} of RBM.

Motivation

Monte Carlo

Machine learning

Our ideas

Method

Falicov-Kimball mode

BM

Numerical recipes

Results

Discussion

Numerical recipes 4: Training RBM (cont.)

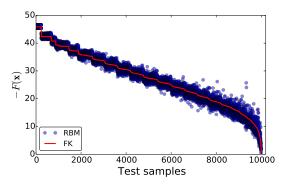


Figure: Fitting of the log probability of the RBM to the one of the Falicov-Kamball model.

Motivation

Monte Carlo

Machine learning

Our ideas

Method

Falicov-Kimball mode

RBM

Numerical recipes

Results

Discussion

Numerical recipes 5: Training RBM (cont.)

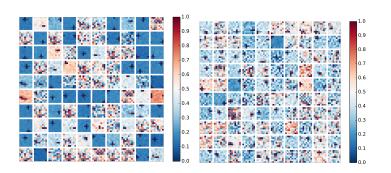


Figure: Connection weights W_{ij} of the RBM. (left) T/t=0.15. (right) T/t=0.13.

Motivation

Monte Carl

Nachine learning

Our ideas

Method

Falicov-Kimball mode

BM

Numerical recipes

Results

Discussion

Numerical recipes 6: Simulating RBM

We simulate the trained RBM using the standard blocked Gibbs sampling approach. The conditional probabilities of the hidden variables and visible variables read:

$$p(\mathbf{h}|\mathbf{x}) = \prod_{j=1}^{M} p(h_j|\mathbf{x})$$
 (14)

$$p(\mathbf{x}|\mathbf{h}) = \prod_{i=1}^{N} p(x_i|\mathbf{h})$$
 (15)

$$p(h_j = 1|\mathbf{x}) = \sigma\left(b_j + \sum_{i=1}^{N} x_i W_{ij}\right)$$
(16)

$$p(x_i = 1|\mathbf{h}) = \sigma\left(a_i + \sum_{j=1}^{M} W_{ij}h_j\right)$$
(17)

Motivation

Monte Carlo

Machine learning

Our ideas

1ethod

alicov-Kimball model

BM

Numerical recipes

esults

iscussion

lusions

Numerical recipes 7: Simulating RBM (cont.)

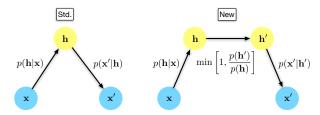


Figure: Two strategies of proposing Monte Carlo updates using the RBM.

Motivation

Monte Carlo

Machine learning

Our ideas

Method

Falicov-Kimball mode

Numerical recipes

Results

Discussion

onelucione

Numerical recipes 8: RBM + MC

We use the trained RBM to propose new updates (instead of local bit-flip updates), and then apply the Metropolis algorithm to update the Markov chain.

$$A(\mathbf{x} \to \mathbf{x}') = \min \left[1, \frac{p(\mathbf{x})}{p(\mathbf{x}')} \cdot \frac{p_{\text{FK}}(\mathbf{x}')}{p_{\text{FK}}(\mathbf{x})} \right]. \tag{18}$$

Ideally, the acceptance ratio is one if the RBM fits the Falicov-Kimball model perfectly.

Motivation

Monte Carlo

Machine learning

Our ideas

Method

Falicov-Kimball mode

RBM

Numerical recipes

Results

D.

nelucione

Contents

Motivation

lonte Carlo

Machine learnin

Our idea

Results

Method

Falicov-Kimball mode

RBN

Numerical recipe

Results

nelucione

Preliminary results

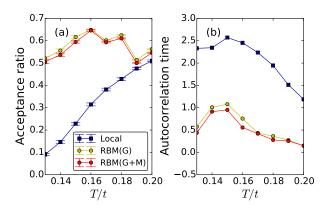


Figure: (a) The acceptance ratio and (b) the total energy autocorrelation time of the Falicov-Kimball model.

Motivation

Monte Carle

Machine learning

Our idea

Method

Falicov-Kimball mode

RBM

Numerical recipes

Results

Discussion

Contents

lotivation

lonte Carlo

Machine learnin

Our idea

Method

Falicov-Kimball mode

RBM

Numerical recipe

Recult

Discussion

nclusions

Discussions

Why does it work?

- The trained RBM captures the target distribution correctly.
- It is more efficient to explore the configuration space.
- non-local updates vs. local updates

Motivation

Monte Carlo

Machine learning

Our ideas

Method

Falicov-Kimball mode

RRM

Numerical recipes

Results

Discussion

. .

Is this method general?

No! Since the limitation of RBM architecture, the MC algorithm must have binary degree of freedoms.

- Ising and Z₂ gauge fields models
- Determinant quantum Monte Carlo
- CT-AUX
- HF-QMC
- etc.

Motivation

Aonte Carlo

Machine learning

Our ideas

Method

Falicov-Kimball mode

RBM

Numerical recipe

Results

Discussion

Is this idea general?

Sure. We can consider RBM as an efficient recommender system to accelerate Monte Carlo simulations.

Similar works:

- Using classic gas model to accelerate CT-INT Ref.: Phys. Rev. E 95, 031301 (2017)
- Using effective Ising model to accelerate DQMC and CT-AUX
 Ref.: Phys. Rev. B 95, 041101 (2017), Phys. Rev. B
 95, 241104 (2017), arXiv:1612.03804, arXiv:1705.06724

Motivation

Monte Carlo

Machine learning

Dur ideas

Method

Falicov-Kimball mode

RBM

Numerical recipes

Results

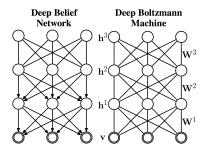
Discussion

. .

Is there space to improve it?

Sure.

- Self-guiding or online training approach
- Deep Boltzmann machines or deep belief networks



otivation

Monte Carlo

Machine learning

Our ideas

Method

Falicov-Kimball mode

RM

Numerical recine

Results

Discussion

Take-home messages

 It is possible to design special recommender systems to accelerate some Monte Carlo simulations.

 The RBM is a good recommender system for the Monte Carlo simulation for Falicov-Kimball model.

Ref.: Phys. Rev. B 95, 035105 (2017)

Future works:

 Exploring reliable and efficient recommender systems for CT-HYB, which is the core computational engine in dynamical mean-field theory.

Ref.: Phys. Rev. E 95, 031301 (2017)

Motivation

Aonte Carlo

Machine learning

Our ideas

Method

alicov-Kimball mode

DIVI

Numerical recipe:

Results

Discussion