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Quantum Monte Carlo zoo 1
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Figure: Various quantum Monte Carlo algorithms

Ref.: Quantum Monte Carlo Methods, 2016
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Quantum Monte Carlo zoo 2
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Figure: Various continuous time quantum Monte Carlo algorithms

Ref.: Rev. Mod. Phys. 83, 349 (2011)
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In my opinions, the applications of quantum Monte Carlo methods

are mainly hampered by the following three problems: Falicov-Kimball model

RBM

How to visit the configuration space efficiently? A

Critical slowing down

Negative sign problem (for fermionic system)
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Machine learning + Many-body physics 1

Detecting phase transitions in classic or quantum models

Monte Carlo

Machine learning
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Figure: Detecting phase transitions in Ising model with ANN
Ref.: Nat. Phys. 13, 431 (2017)
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Representation of quantum many-body states

Figure: Artificial neural network encoding a many-body quantum state

Ref.: Science 355, 602 (2017)
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Machine learning + Many-body physics 3

Solve the inverse problems

Monte Carlo
Machine learning
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Figure: Sparse modeling approach to analytical continuation of G(7)

Ref.: Phys. Rev. E 95, 061302 (2017)
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Our ideas 1

Is it possible to use ML tools to accelerate QMC?
Our ideas
e Supposed that it is difficult (not easy) to sample the target

distributions by Monte Carlo directly.

e With the available data, we train a restricted Boltzmann ma-
chine (RBM) which can be viewed as a proxy (approximation)

of the statistical distributions.

o We simulate the trained RBM, and then use it to propose new
(local or non-local) Monte Carlo updates. The role played by
the RBM in the Monte Carlo simulation is just like a recom-

mender system in e-commerce platforms.



Our ideas 2

How to visit the configuration space efficiently?

e The acceptance ratio is increased. ©

Critical slowing down

e The autocorrelation time is reduced. .

Negative sign problem (for fermionic system)

« NO SOLUTION! @
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Falicov-Kimball model 1: Hamiltonian

Hamiltonian:
ol 1 1
@7 i=

Probability distribution:

pric(x) = e~ 10/ Zpy (2)
“Free energy":
_pUu
—Frk (x) sz +Indet (1 + e 7%) (3)
=1

x; € {0,1}: occupation number of the localized fermion at site 3.
n; = éjéz occupation number operator of the mobile fermion.

K is the kinetic energy matrix of the mobile fermions.
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Falicov-Kimball model
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Falicov-Kimball model 2: Phase diagram

Ref.: Phys. Rev. Lett. 117, 146601 (2016)
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Falicov-Kimball model 3: Lattice QMC

Bit-flip update:

Detailed balance condition:

Cons:

e Scaling: O(N*)

e Long autocorrelation times
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RBM 1: Architecture

The RBM is a classical statistical mechanics system defined by the

following energy function

E(X,h) = fZaixibejhj 7ZZ$1W13}1J, (6)

RBM

visible layer

nnnnnnn
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RBM 2: Recent applications

Connecting RBM with tensor networks states

Monte Carlo
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Ref.: arXiv:1701.04831



Contents

RBM 3: Recent applications

Searching new cluster updates
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Ref.: arXiv:1702.08586
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Numerical recipes 1: Collecting data

Our ideas

Falicov-Kimball model

RBM

Collecting training data set {x} by traditional Monte Carlo method

Numerical recipes

in a preliminary calculation.
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Numerical recipes 2: Training RBM

Joint probability distribution of the visible and hidden variables

p(x,h) = e PN /7 (9)
Marginal distribution
Numerical recipes
p(x) =Y p(x,h)=e /7 (10)
h

“Free energy” of RBM

N M
~F(x) =Y aw+ 3 In (1 + bt xiWw‘) (11)
i=1 =1
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Numerical recipes 3: Training RBM (cont.)

“Free energy” of RBM

N M
SF ()= 3w+ oI (14 B (1)
i=1 j=1
Numerical recipes

“Free energy” of Falicov-Kimball model
— Frk (%) Zxﬁ—lndet (1+e %), (13)

We use F (x) to approximate Frk(x), and setup the parameters

a;, bi, and Wij of RBM.
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Numerical recipes 4: Training RBM (cont.)
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Figure: Fitting of the log probability of the RBM to the one of the

Falicov-Kamball model.
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Numerical recipes 5: Training RBM (cont.)

Monte Carlo
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Figure: Connection weights W;; of the RBM. (left) T'/t

T/t =0.13.
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Numerical recipes 6: Simulating RBM

We simulate the trained RBM using the standard blocked Gibbs
sampling approach. The conditional probabilities of the hidden vari-

ables and visible variables read:

M
p(hfx) = [] (%) (14) -
j:l Numerical recipes
p(x/h) = Hp z;|h) (15)
N
p(hj =1x) =0 (bj + inWij> (16)
i=1
M
plei=1h) =0 [ a; + > Wih; (17)

j=1



Contents

Numerical recipes 7: Simulating RBM (cont.)

Monte Carlo
Machine learning
Our ideas
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Figure: Two strategies of proposing Monte Carlo updates using the RBM.



Numerical recipes 8: RBM + MC

We use the trained RBM to propose new updates (instead of local
bit-flip updates), and then apply the Metropolis algorithm to update
the Markov chain.

p(x) prk(x)
p(x)  prk(x)

A(x — x') = min |1, (18)

Ideally, the acceptance ratio is one if the RBM fits the Falicov-

Kimball model perfectly.
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Preliminary results
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Figure: (a) The acceptance ratio and (b) the total energy autocorrelation

time of the Falicov-Kimball model.
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Discussions
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Discussion 1

Why does it work?

e The trained RBM captures the target distribution correctly.
o |t is more efficient to explore the configuration space.

Discussion

e non-local updates vs. local updates
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Discussion 2

Is this method general?

No! Since the limitation of RBM architecture, the MC algorithm

must have binary degree of freedoms.

e Ising and Z5 gauge fields models

Discussion

e Determinant quantum Monte Carlo

CT-AUX

HF-QMC

e etc.
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Discussion 3

Is this idea general?

Sure. We can consider RBM as an efficient recommender system

to accelerate Monte Carlo simulations.

Similar works:

e Using classic gas model to accelerate CT-INT Discucsion
Ref.: Phys. Rev. E 95, 031301 (2017)

e Using effective Ising model to accelerate DQMC and CT-AUX
Ref.: Phys. Rev. B 95, 041101 (2017), Phys. Rev. B
95, 241104 (2017), arXiv:1612.03804, arXiv:1705.06724



Discussion 4
Is there space to improve it?

Sure.

o Self-guiding or online training approach

e Deep Boltzmann machines or deep belief networks

Deep Belief Deep Boltzmann
Network Machine

iscussion



Take-home messages

e |t is possible to design special recommender systems to accel-

erate some Monte Carlo simulations.
e The RBM is a good recommender system for the Monte Carlo
simulation for Falicov-Kimball model.
Ref.: Phys. Rev. B 95, 035105 (2017)
Future works:
e Exploring reliable and efficient recommender systems for CT-

HYB, which is the core computational engine in dynamical

mean-field theory.

Ref.: Phys. Rev. E 95, 031301 (2017)
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Conclusions
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