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Machine learning has physics in its DNA

02000000
«—> [t
Q000000
Boltzmann Disordered
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The "Renormalization
Group”

Deep Belief Networks

P. Mehta and D.J. Schwab, arxiv:1410.3831



Convolutional neural network

"MERA" tensor network



Impact of tensor networks in physics
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Are tensor networks useful for
machine learning? AAAAAAA

This Talk

Tensor networks can compress weights of
powerful machine learning models

Benefits include
 Linear scaling
» Adaptive optimization

* Feature sharing



Prior tensor networks + machine learning

Markov random field models
Novikov et al., Proceedings of 31st ICML (2014)

Large scale PCA
Lee, Cichocki, arxiv: 1410.6895 (2014)

Feature extraction of tensor data
Bengua et al., IEEE Congress on Big Data (2015)

Compressing weights of neural nets

Novikov et al., Advances in Neural Information Processing (2015)



What are Tensor Networks?



Original setting is quantum mechanics

Spin model (Transverse field Ising model):
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Wavefunction just a rule to
map spin configurations to numbers \Jy51525354555635758
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Simplest rule: store every amplitude separately



Let's make a different rule

Introduce matrices, one for each spin
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Compute amplitude by multiplying matrices together
(with boundary vectors vy, and vgr )
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Compute amplitude by multiplying matrices together
(with boundary vectors vy, and vgr )
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Compute amplitude by multiplying matrices together
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Compute amplitude by multiplying matrices together
(with boundary vectors vy, and vgr )
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This rule is called a matrix product state (MPS)
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 Matrices can vary from site to site
e Size of matrices called m (the "bond dimension")
e For m = 2V2 can represent any state of N spins

* Really just a way of compressing a big tensor



What have we gained?

By representing a wavefunction as an MPS with small
matrices (small bond dimension m)

Then we've represented 2" amplitudes using only
(2 N m?) parameters

Efficient to compute properties of an MPS, or to
optimize an MPS (DMRG algorithm)



MPS = matrix product state

MPS come with powerful optimization
techniques (DMRG algorithm)
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White, PRL 69, 2863 (1992)
Stoudenmire, White, PRB 87, 155137 (2013)



Tensor Diagrams (Briefly)



Helpful to draw N-index tensor as blob with
N lines
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Diagrams for simple tensors



Joining lines implies contraction, can omit names




Matrix product state in diagram notation

\Ijsl S28385455S6

192 203 304 4 0O5

> MM M M M M

Can suppress index names, very convenient



Matrix product state in diagram notation

\Ijsl S28385455S6

192 203 304 4 0O5

> MM M M M M

O—0-0-0-b-4

Can suppress index names, very convenient



Besides MPS, other successful tensor are

PEPS and MERA

LS
77

PEPS
(2D systems)

Il 13 4 Is g 7 I3 I o N1 N2 N3 N4 15 e

MERA

(critical systems)

Evenbly, Vidal, PRB 79, 144108 (2009)
Verstraete, Cirac, cond-mat/0407066 (2004)
Orus, Ann. Phys. 349, 117 (2014)



Learning with Tensor Networks



Proposal:

1. Lift data to exponentially higher space
(feature space = Hilbert space)

2. Apply linear classitier in feature space

3. Compress weights using a tensor network

Following slides use feature map of Novikov et al.

Novikov, Trofimov, Oseledets, "Exponential Machines", arxiv:1605.03795

Stoudenmire, Schwab, "Supervised Learning with Tensor Networks", arxiv:1605.05775



Original / raw data vectors
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Example of grayscale images,
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components of x are pixels



1. Lift data to exponentially higher space
(feature space = Hilbert space)

X = (331733275637°°°733N)
l if
(I)(X) = (1,331,£E2,£E3,... singles
r1xro, r1xX3, roI3, ... pairs
T1X2x3, T1X2T4, ... triples

T1T2X3 TN ) N-tuple



2. Apply linear classifier in feature space

f(x) = W - d(x)
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Weights are an N-index tensor
Just like an N-site wavefunction



N=3 example:
fx) =W @(x) = ) Wiss, a7 25°25

= Wooo + Wigo x1 + Woio 22 + Woo1 3
+ Wiito 129 + Wio1 z123 + Wo11 2223

+ Wi z1x223

Contains linear classifier, and various poly. kernels



3. Compress weights as a tensor network
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Could also use MERA or PEPS instead of MPS



Tensor diagrams of the approach




Tensor diagrams of the approach
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Tensor diagrams of the approach
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Linear scaling
Can use algorithm similar to DMRG to optimize

N = size of input

Scalingis N - Np-m°

Nt = size of training set

m = MPS bond dimension
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Linear scaling
Can use algorithm similar to DMRG to optimize

N = size of input

Scalingis N - Np-m°

Nt = size of training set

m = MPS bond dimension

M= 0888
®(x)

Could improve with stochastic gradient



Linear scaling

Model similar to kernel learning

Can train without "kernel trick",
avoiding its N7 scaling problem



Does the weight tensor obey an "area law"?

More entangled than a ground-state wavefunction?
Less entangled?

Do an experiment to find out...



MNIST Experiment

MNIST is a benchmark data set of grayscale

handwritten digits (labels ¢=0,1,2,...,9)

60,000 labeled training images
10,000 labeled test images
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MNIST Experiment

Details:

* Shrink images from 28x28 —— 14x14

« Trained 10 models™ to distinguish each digit,
largest output is prediction

* Minimize quadratic cost function
Nt

C = = D 0(x,) — )2 + AW

n=1



MNIST Experiment

One-dimensional mapping
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MNIST Experiment

Results:
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MNIST in friendly neighborhood
of Hilbert space (feature space)




Situation for other data sets?

Optimistic

Pessimistic

‘ = typical W
machine
learning

‘ = tensor
networks



Benefits of Tensor Network Models



Many interesting benefits of using tensor
network weights.

Two benefits:

1. Adaptive training

2. Feature sharing



1. Tensor networks are adaptive
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2. Feature sharing
Multi-class decision function f‘(x) = W* . ®(x)
Index ¢ runs over possible labels

Predicted label is argmax,|f*(x)]|

P (x)



2. Feature sharing

f(x)

e Different central tensors
* "Wings" shared between models

» Regularizes models



2. Feature sharing
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Progressively learn shared features

333
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2. Feature sharing
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Progressively learn shared features
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Implications for quantum computing?

Weights formally inhabit same space as
quantum Hilbert space (space of wavefunctions)

Negative Outlook & =
Weights have low Quantum computer
entanglement, quantum could train extremely
computer not needed expressive models

Tensor networks equivalent to finite-depth
quantum circuits...



Connections to Other Approaches

* Graphical models: like tensor networks but with positive
weights (Rolfe, "Multifactor Expectation Maximization...")

 Weighted Finite Automata: like translation invariant MPS,

trained with spectral method (Balle, "Spectral Learning..."
Mach Learn (2014) 96:33-63)

* Neural Networks: "ConvAC" neural networks with linear
activation and product pooling equivalent to tensor

networks (Levine, "Deep Learning and Quantum
Entanglement..." arxiv:1704.01552)
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ITensor Codes

Open-source codes based on ITensor for a variety projects and tasks. If you have a high-quality code you'd like
listed here, please contact us. Codes extending core ITensor features may become candidates for inclusion in
ITensor at a later date.

Name Contributors Description
Finite T MPS Benedikt Bruognolo Codes for finite temperature calculations with MPS
Miles Stoudenmire techniques, including the minimally entangled typical thermal

states (METTS) algorithm applied to 2D systems.

—> Tensor Network Miles Stoudenmire Handwriting recognition using matrix product states (MPS) to
Machine Learning parameterize the weights of the model, and a DMRG-like
algorithm to optimize.

Parallel DMRG Miles Stoudenmire Real-space parallel DMRG code. Works for both single MPO
Hamiltonians and Hamiltonians that are a sum of separate
MPOs. Uses MPI to communicate DMRG boundary tensors
across nodes.



