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Machine learning has physics in its DNA
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Fig. 4 (Color online) As pointed
out by Swingle [91], the scale
invariant MERA for the ground
state of a quantum spin chain can
be interpreted as a discrete
realization of the AdS/CFT
correspondence. The ground state
of the one-dimensional lattice
model corresponds to a discrete
version of the vacuum of a
CFT1+1, whereas the MERA
spans a two dimensional
geometry that corresponds to a
discrete version of a time slice of
AdS2+1. The Figure shows a
MERA similar to that of Fig. 3,
but from another perspective,
with the scale parameter z as a
radial coordinate

Fig. 5 (Color online) Homogeneous tensor network states for the ground state in an infinite lattice in D = 1
spacial dimensions. (i) A homogeneous MPS is characterized by a single tensor that is repeated infinitely
many times throughout the tensor network. (ii) A homogeneous scale invariant MERA is characterized by two
tensors, a disentangler and an isometry, repeated throughout the tensor network, which consists of infinitely
many layers

4 Correlations and Geodesics

The asymptotic decay of correlations has long been known to be exponential in an MPS
[1–3] and polynomial in the scale invariant MERA [16, 18, 19]. In this section we point out
that such behavior is dictated by the structure of geodesics in the geometry attached to each
of these tensor network states. For an MPS, the later is a rather straightforward statement;
for the MERA, it was first noted by Swingle [91].

4.1 Geodesics Within a Tensor Network

Given a tensor network state for the state |!⟩ of a lattice L, and two sites of L at positions
x1 and x2, we can define a notion of distance between these two sites within the tensor
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Impact of tensor networks in physics
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Figure 18. A black hole in a holographic code, and the corresponding wormhole geometry.

It is amusing to note that we can also describe configurations corresponding to the

two-sided wormhole of [2]; we just prepare two networks with central black holes of

equal size, and maximally entangle the bulk legs at their horizons, as shown in figure

18b. It would be interesting to make contact with recent speculations about how the

length of the wormhole relates to the complexity of the tensor network describing the

state [49], although for that purpose we would probably need to incorporate dynamics

into our model.

7 Open problems and outlook

A remarkable convergence of quantum information science and quantum gravity has

accelerated recently, propelled in particular by a vision of quantum entanglement as the

foundation of emergent geometry. We expect this interface area to continue to grow

in importance, as practitioners in both communities struggle to develop a common

language and toolset. This paper was spurred by the connection between AdS/CFT

and quantum error correction proposed in [1]. We have strived to make this connection

more concrete and accessible by formulating toy models which capture the key ideas,

and we hope our account will equip a broader community of scientists to contribute to

further progress. Indeed, much remains to be done.

First of all, the entanglement structure of holographic codes is not yet completely

understood. We would like a more precise characterization of the violations of the

Ryu-Takayanagi formula which can occur, and of the relationship between bulk residual

regions and the multipartite entanglement of the boundary state. How is the greedy
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Fig. 7 (Color online) (i) In an
MPS, two spins at positions x1
and x2 are connected by a path
containing |x1 − x2| tensors.
(ii) In a MERA, the same two
spins are connected by a path that
only has O(log2(|x1 − x2|))
tensors, in correspondence with
geodesics in AdS space

4.2 Correlations in the MPS

The MPS reproduces the physical geometry of a lattice L in D = 1 dimensions, and there-
fore the induced physical distance,

Dphys(x1, x2) ≈ |x1 − x2|, (15)

is simply proportional to the number of lattice sites between positions x1 and x2, see Fig. 7(i).
Replacing the physical distance in (13) leads to the following asymptotic expression for the
correlators of the MPS,

CMPS(x1, x2) ≈ e−αDphys(x1,x2) ≈ e−|x1−x2|/ξ , (16)

for some correlation length ξ > 0, which indeed reproduces the exponential decay of corre-
lations characteristic of gapped systems, see (2).

4.3 Correlations in the Scale Invariant MERA

In the scale invariant MERA, two sites at positions x1 and x2 of the lattice L are connected
by a geodesic path of length O(log2(x1 − x2)), see Fig. 7(ii), giving rise to the holographic
distance

Dhol(x1, x2) ≈ log2(|x1 − x2|), (17)

which is consistent with the structure of geodesics in AdS space [91]. Replacing this holo-
graphic distance in (13) leads to the following asymptotic expression for the correlators of
the scale invariant MERA,

CMERA(x1, x2) ≈ e−αDhol(x1,x2) (18)

≈ e−q log2(|x1−x2|) = |x1 − x2|−q , (19)

for some exponent q ≥ 0, which reproduces the polynomial decay of correlators character-
istic of critical systems, (3).
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Are tensor networks useful for 
machine learning?

This Talk
Tensor networks can compress weights of 
powerful machine learning models

Benefits include 

• Linear scaling  

• Adaptive optimization 

• Feature sharing



Prior tensor networks + machine learning

Novikov et al., Proceedings of 31st ICML (2014)

Markov random field models

Lee, Cichocki, arxiv: 1410.6895 (2014)

Large scale PCA

Bengua et al., IEEE Congress on Big Data (2015)

Feature extraction of tensor data

Novikov et al., Advances in Neural Information Processing (2015)

Compressing weights of neural nets



What are Tensor Networks?



Original setting is quantum mechanics
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Spin model (Transverse field Ising model):
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Wavefunction just a rule to 
map spin configurations to numbers
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Simplest rule: store every amplitude separately
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Let's make a different rule

Introduce matrices, one for each spin

#
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Compute amplitude by multiplying matrices together 
(with boundary vectors       and       )vRvL
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This rule is called a matrix product state (MPS)

 s1s2s3s4 = v†LM
s1Ms2Ms3Ms4vR

• Matrices can vary from site to site 

• Size of matrices called m  (the "bond dimension") 

• For m = 2N/2  can represent any state of N spins 

• Really just a way of compressing a big tensor



What have we gained?

By representing a wavefunction as an MPS with small 
matrices (small bond dimension m)

Then we've represented 2N amplitudes using only 
(2 N m2) parameters

Efficient to compute properties of an MPS, or to 
optimize an MPS (DMRG algorithm)



MPS come with powerful optimization 
techniques (DMRG algorithm)

MPS = matrix product state

White, PRL 69, 2863 (1992)
Stoudenmire, White, PRB 87, 155137 (2013)



Tensor Diagrams (Briefly)



Helpful to draw N-index tensor as blob with 
N lines

s1 s2 s3 s4

 s1s2s3···sN =

sN



Diagrams for simple tensors
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Joining lines implies contraction, can omit names

X

j

Mijvj
ji

AijBjk = AB

AijBji = Tr[AB]



s1 s2 s3 s4 s5 s6

Matrix product state in diagram notation

=
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Can suppress index names, very convenient
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Evenbly, Vidal, PRB 79, 144108 (2009)

R. Orús / Annals of Physics 349 (2014) 117–158 121

Fig. 2. (Color online) Two examples of tensor network diagrams: (a)Matrix Product State (MPS) for 4 sites with open boundary
conditions; (b) Projected Entangled Pair State (PEPS) for a 3 ⇥ 3 lattice with open boundary conditions.

states is radically different from the usual approach, where one just gives the coefficients of a wave-
function in some given basis. When dealing with a TN state we will see that, instead of thinking
about complicated equations, we will be drawing tensor network diagrams, see Fig. 2. As such, it has
been recognized that this tensor description offers the natural language to describe quantum states
of matter, including those beyond the traditional Landau’s picture such as quantum spin liquids and
topologically-ordered states. This is a new language for condensed matter physics (and in fact, for all
quantum physics) that makes everything much more visual and which brings new intuitions, ideas
and results.

3.3. Entanglement induces geometry

Imagine that you are given a quantum many-body wave-function. Specifying its coefficients in
a given local basis does not give any intuition about the structure of the entanglement between its
constituents. It is expected that this structure is different depending on the dimensionality of the
system: this should be different for 1d systems, 2d systems, and so on. But it should also depend on
more subtle issues like the criticality of the state and its correlation length. Yet, naive representations
of quantum states do not possess any explicit information about these properties. It is desirable, thus,
to find a way of representing quantum states where this information is explicit and easily accessible.

As we shall see, a TN has this information directly available in its description in terms of a network
of quantum correlations. In a way, we can think of TN states as quantum states given in some
entanglement representation. Different representations are better suited for different types of states
(1d, 2d, critical, etc.), and the network of correlations makes explicit the effective lattice geometry in
which the state actually lives. We will be more precise with this in Section 4.2. At this level this is
just a nice property. But in fact, by pushing this idea to the limit and turning it around, a number
of works have proposed that geometry and curvature (and hence gravity) could emerge naturally
from the pattern of entanglement present in quantum states [51]. Here we will not discuss further
this fascinating idea, but let us simply mention that it becomes apparent that the language of TN is,
precisely, the correct one to pursue this kind of connection.

3.4. Hilbert space is far too large

This is, probably, the main reason why TNs are a key description of quantum many-body states of
Nature. For a systemof e.g.N spins 1/2, the dimension of theHilbert space is 2N , which is exponentially
large in the number of particles. Therefore, representing a quantum state of the many-body system
just by giving the coefficients of the wave function in some local basis is an inefficient representation.
TheHilbert space of a quantummany-body system is a really big placewith an incredibly large number
of quantum states. In order to give a quantitative idea, let us put some numbers: if N ⇠ 1023 (of the
order of the Avogadro number) then the number of basis states in the Hilbert space is ⇠O(101023),
which is much larger (in fact exponentially larger) than the number of atoms in the observable
universe, estimated to be around 1080! [52].

Luckily enough for us, not all quantum states in the Hilbert space of amany-body system are equal:
some are more relevant than others. To be specific, many important Hamiltonians in Nature are such
that the interactions between the different particles tend to be local (e.g. nearest or next-to-nearest

PEPS
(2D systems)

Besides MPS, other successful tensor are 
PEPS and MERA

Verstraete, Cirac, cond-mat/0407066 (2004)
Orus, Ann. Phys. 349, 117 (2014)

tation of two-point correlators! and also leads to a much
more convenient generalization in two dimensions.

II. MERA

Let L denote a D-dimensional lattice made of N sites,
where each site is described by a Hilbert space V of finite
dimension d, so that VL"V!N. The MERA is an ansatz used
to describe certain pure states #!$!VL of the lattice or, more
generally, subspaces VU!VL.

There are two useful ways of thinking about the MERA
that can be used to motivate its specific structure as a tensor
network, and also help understand its properties and how the
algorithms ultimately work. One way is to regard the MERA
as a quantum circuit C whose output wires correspond to the
sites of the lattice L.5 Alternatively, we can think of the
MERA as defining a coarse-graining transformation that
maps L into a sequence of increasingly coarser lattices, thus
leading to a renormalization-group transformation.1 Next we
briefly review these two complementary interpretations.
Then we compare several MERA schemes and discuss how
to exploit space symmetries.

A. Quantum circuit

As a quantum circuit C, the MERA for a pure state #!$
!VL is made of N quantum wires, each one described by a
Hilbert space V, and unitary gates u that transform the unen-
tangled state #0$!N into #!$ %see Fig. 1!.

In a generic case, each unitary gate u in the circuit C
involves some small number p of wires,

u: V!p → V!p, u†u = uu† = I , %1!

where I is the identity operator in V!p. For some gates, how-
ever, one or several of the input wires are in a fixed state #0$.
In this case we can replace the unitary gate u with an iso-
metric gate w

w: Vin → Vout, w†w = IVin
, %2!

where Vin"V!pin is the space of the pin input wires that are
not in a fixed state #0$ and Vout"V!pout is the space of the
pout= p output wires. We refer to w as a %pin , pout! gate or
tensor.

Figure 2 shows an example of a MERA for a 1D lattice L
made of N=16 sites. Its tensors are of types %1,2! and %2,2!.
We call the %1,2! tensors isometries w and the %2,2! tensors
disentanglers u for reasons that will be explained shortly, and
refer to Fig. 2 as a binary 1D MERA, since it becomes a
binary tree when we remove the disentanglers. Most of the
previous work for 1D lattices1,5–7,16–18 has been done using
the binary 1D MERA. However, there are many other pos-

FIG. 1. %Color online! Quantum circuit C corresponding to a
specific realization of the MERA, namely, the binary 1D MERA of
Fig. 2. In this particular example, circuit C is made of gates involv-
ing two incoming wires and two outgoing wires, p= pin= pout=2.
Some of the unitary gates in this circuit have one incoming wire in
the fixed state #0$ and can be replaced with an isometry w of type
%1,2!. By making this replacement, we obtain the isometric circuit
of Fig. 2. FIG. 2. %Color online! %Top! Example of a binary 1D MERA for

a lattice L with N=16 sites. It contains two types of isometric
tensors, organized in T=4 layers. The input %output! wires of a
tensor are those that enter it from the top %leave it from the bottom!.
The top tensor is of type %1,2! and the rank "T of its upper index
determines the dimension of the subspace VU!VL represented by
the MERA. The isometries w are of type %1,2! and are used to
replace each block of two sites with a single effective site. Finally,
the disentanglers u are of type %2,2! and are used to disentangle the
blocks of sites before coarse-graining. %Bottom! Under the
renormalization-group transformation induced by the binary 1D
MERA, three-site operators are mapped into three-site operators.

G. EVENBLY AND G. VIDAL PHYSICAL REVIEW B 79, 144108 %2009!

144108-2

MERA
(critical systems)



Learning with Tensor Networks



Proposal:  

1. Lift data to exponentially higher space 
(feature space = Hilbert space)  

2. Apply linear classifier in feature space 

3. Compress weights using a tensor network

Novikov, Trofimov, Oseledets, "Exponential Machines", arxiv:1605.03795

Stoudenmire, Schwab, "Supervised Learning with Tensor Networks", arxiv:1605.05775

Following slides use feature map of Novikov et al.



Original / raw data vectors

x = (x1, x2, x3, . . . , xN )

Example of grayscale images, 
components of      are pixels

x

xj 2 [0, 1]



1. Lift data to exponentially higher space    
    (feature space = Hilbert space)

x = (x1, x2, x3, . . . , xN )

lift

singles

pairs

triples

x1x2, x1x3, x2x3, . . .

�(x) = (1, x1, x2, x3, . . .

x1x2x3, x1x2x4, . . .

. . .

x1x2x3 · · ·xN ) N-tuple

. . .



2. Apply linear classifier in feature space

=
X

s

Ws1s2s3···sN x

s1
1 x

s2
2 x

s3
3 · · ·xsN

N

f(x) = W · �(x)

sj = 0, 1

Weights are an N-index tensor 
Just like an N-site wavefunction



f(x) = W · �(x)

N=3 example:

=
X

s

Ws1s2s3 x

s1
1 x

s2
2 x

s3
3

= W000 +W100 x1 +W010 x2 +W001 x3

+W111 x1x2x3

+W110 x1x2 +W101 x1x3 +W011 x2x3

Contains linear classifier, and various poly. kernels



3. Compress weights as a tensor network

Ws1s2s3···sN Ms1Ms2Ms3 · · ·MsN⇡

⇡

Could also use MERA or PEPS instead of MPS



Tensor diagrams of the approach

x �(x) =

s1 s2 s3 s4 s5 s6

· · ·
sN

=

sj

[ [1

xj



Tensor diagrams of the approach

x �(x) =

s1 s2 s3 s4 s5 s6

· · ·
sN

=

sj

[ [1

xj

Other choices include:

[
1
xj[
x

2
j

[ [cos

⇣
⇡

2

xj

⌘

sin
⇣
⇡

2
xj

⌘or



Tensor diagrams of the approach

�(x)

W=

⇡

⇡

(Ms1Ms2 · · ·MsN )�s1s2···sN (x)

f(x) W · �(x)=



Linear scaling

=
�(x)

Wf(x)

Can use algorithm similar to DMRG to optimize

Scaling is N ·NT ·m3
N = size of input

NT = size of training set
m = MPS bond dimension
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Linear scaling

=
�(x)

Wf(x)

Can use algorithm similar to DMRG to optimize

Scaling is N ·NT ·m3
N = size of input

NT = size of training set
m = MPS bond dimension

Could improve with stochastic gradient



Linear scaling

Model similar to kernel learning

Can train without "kernel trick", 
avoiding its         scaling problemN2

T



Does the weight tensor obey an "area law"?

More entangled than a ground-state wavefunction? 
Less entangled?

Do an experiment to find out...



MNIST is a benchmark data set of grayscale 
handwritten digits (labels     = 0,1,2,...,9)

MNIST Experiment

60,000 labeled training images  
10,000 labeled test images

`



Details: 

• Shrink images from 28x28          14x14 

• Trained 10 models* to distinguish each digit, 
largest output is prediction 

• Minimize quadratic cost function

MNIST Experiment

C =
1

NT

NTX

n=1

(W `�(xn)� y`n)
2 + �|W |2



MNIST Experiment

One-dimensional mapping



Results:

MNIST Experiment

Bond dimension      Test Set Error

~5%     (500/10,000 incorrect)

~2%      (200/10,000 incorrect)

 0.97%   (97/10,000 incorrect)m = 120                 

m = 20                 

m = 10                 



Demo

MNIST Experiment



MNIST in friendly neighborhood  
of Hilbert space (feature space)

MPS

MNISTW



Situation for other data sets?

Optimistic

Pessimistic

= typical 
   machine  
   learning

= tensor 
   networks

W



Benefits of Tensor Network Models

=
�(x)

Wf(x)



=
�(x)

Wf(x)

Many interesting benefits of using tensor 
network weights.

1. Adaptive training

2. Feature sharing

Two benefits:



1. Tensor networks are adaptive

grayscale 
training 
data

{
boundary pixels not 
useful for learning



Multi-class decision function    f `(x) = W ` · �(x)

Index     runs over possible labels`

Predicted label is argmax`|f `
(x)|

=
�(x)

`

W `
f `(x)

2. Feature sharing



=
�(x)

`

W `

• Different central tensors 
• "Wings" shared between models 
• Regularizes models

f `(x)

2. Feature sharing

`

=



=f `(x)

2. Feature sharing
`

Progressively learn shared features



=f `(x)

2. Feature sharing
`

Progressively learn shared features



=f `(x)

2. Feature sharing
`

Progressively learn shared features



=f `(x)

2. Feature sharing
`

Progressively learn shared features

Deliver to central tensor
`



Implications for quantum computing?

Negative Outlook !

Weights formally inhabit same space as 
quantum Hilbert space (space of wavefunctions)

Weights have low 
entanglement, quantum 
computer not needed

Positive Outlook "

Quantum computer 
could train extremely 
expressive models

Tensor networks equivalent to finite-depth 
quantum circuits...



Connections to Other Approaches

• Graphical models: like tensor networks but with positive 
weights (Rolfe, "Multifactor Expectation Maximization...") 

• Weighted Finite Automata: like translation invariant MPS, 
trained with spectral method (Balle, "Spectral Learning..." 
Mach Learn (2014) 96:33-63) 

• Neural Networks: "ConvAC" neural networks with linear 
activation and product pooling equivalent to tensor 
networks (Levine, "Deep Learning and Quantum 
Entanglement..." arxiv:1704.01552) 




