

Machine Learning and Many-Body Physics @KITS, UCAS, Beijing 7 July, 2017

Bayesian spectral deconvolution: How many peaks are there in this spectrum?

Satoru Tokuda MathAM-OIL, AIST

<u>ST</u>, K. Nagata and M. Okada, *J. Phys. Soc. Jpn*. 86, 024001, 2017. (arXiv:1607.07590)

1

Collaborators

Kenji Nagata AIRC, AIST Masato Okada UTokyo/NIMS

<u>ST</u>, K. Nagata and M. Okada, *J. Phys. Soc. Jpn*. 86, 024001, 2017. (arXiv:1607.07590)

Spectroscopy

Planetary science

Some pictures have been removed from the original version due to copyright.

Effective model of spectrum

$$f(x;w) = \sum_{k=1}^{K} a_k \phi_k(x;\widetilde{w}_k), \quad w = \{a_k,\widetilde{w}_k\}_{k=1}^{K}$$

$$\phi_k(x; \widetilde{w}_k) = \begin{cases} \exp\left(-\frac{(x-\mu_k)^2}{2\rho_k^2}\right) \\ \frac{1}{(x-\mu_k)^2 + \gamma_k^2} \end{cases}$$

Physical parameters

K: Peak number μ_k : Energy level a_k : Number density ϱ_k : Temperature γ_k : Lifetime Thermal Doppler broadening

Natural broadening

How many peaks are there?

Peak fitting: Learning in radial basis function network

Peak fitting: Learning in radial basis function network

Peak fitting: Learning in radial basis function network

Bayesian spectral deconvolution

[Nagata et al., *Neural Netw.*, 2012]

9

Overfitting: Underrate unknown noise

AIST-TohokuU Mathematics for Advanced Materials-OIL (MathAM-OIL)

Underfitting: Overrate unknown noise

AIST-TohokuU Mathematics for Advanced Materials-OIL (MathAM-OIL)

Aim of this study

 Propose a framework that enables the joint estimate of peak number and noise variance from the observed spectrum by modifying the previous framework of Bayesian spectral deconvolution

<u>ST</u>, K. Nagata and M. Okada, *J. Phys. Soc. Jpn*. 86, 024001, 2017. (arXiv:1607.07590)

Model: The forward problem

Effective model of spectrum

$$f(x;w) = \sum_{k=1}^{K} a_k \phi_k(x;\widetilde{w}_k), \quad w = \{a_k,\widetilde{w}_k\}_{k=1}^{K}$$

$$\phi_k(x; \widetilde{w}_k) = \begin{cases} \exp\left(-\frac{(x-\mu_k)^2}{2\rho_k^2}\right) \\ \frac{1}{(x-\mu_k)^2 + \gamma_k^2} \end{cases}$$

Physical parameters

K: Peak number μ_k : Energy level a_k : Number density ϱ_k : Temperature γ_k : Lifetime Thermal Doppler broadening

Natural broadening

Statistical model of spectroscopy

 $D = \{X_i, Y_i\}_{i=1}^n$ Measured data $X_i = X_{i-1} + \Delta x \quad (\Delta x > 0)$ Sample points $Y_i = f(X_i; w) + \varepsilon_i, \quad \varepsilon_i \sim N(f(X_i; w), b^{-1})$ Additive white Gaussian noise b^{-1} : Noise variance Measurement parameters Δx : Energy resolution Sample points Additive noise Measured data -f(x;w) $f(X_i;w)$ X_{i}

$$D = \{X_i, Y_i\}_{i=1}^n \quad \text{Measured data}$$

$$X_i = X_{i-1} + \Delta x \quad (\Delta x > 0) \quad \text{Sample points}$$

$$Y_i = f(X_i; w) + \varepsilon_i, \quad \varepsilon_i \sim N(f(X_i; w), b^{-1}) \quad \text{Additive white Gaussian noise}$$

$$\boxed{\text{Measurement}} \quad b^{-1}: \text{Noise variance}$$

$$\boxed{\text{Measurement}} \quad \Delta x: \text{Energy resolution}$$

$$\text{Statistical model:} \quad p(Y_i | X_i; w) \coloneqq \sqrt{\frac{b}{2\pi}} \exp\left(-\frac{b}{2}(Y_i - f(X_i; w))^2\right)$$

$$\text{Likelihood:} \quad p\left(Y^n | X^n, w, b\right) \coloneqq \prod_{i=1}^n p(Y_i | X_i, w, b) = \left(\frac{b}{2\pi}\right)^{\frac{n}{2}} \exp(-nbE_n(w))$$

$$\text{Square error:} \quad E_n(w) \coloneqq \frac{1}{2n} \sum_{i=1}^n (Y_i - f(X_i; w))^2$$

Bayesian formulation:

The inverse problem

Bayesian inference

Bayes'
theorem
$$p(A|B) = \frac{p(B|A)p(A)}{p(B)}$$

$$\because p(A,B) = p(A|B)p(B) = p(B|A)p(A)$$

$$p(B) = \begin{cases} \sum_{A} p(B|A)p(A) \\ \int dAp(B|A)p(A) \end{cases}$$

(as *A* is discrete-valued)

(as A is continuous-valued)

Not only the effect *B* but also the cause *A* is treated as random variable to estimate p(A|B)

Trace back to the cause issuing from its effect

Bayesian hierarchical modeling

[1] Regression $p(w|D,K,b) = \frac{p(Y^n|X^n,w,b)p(w|K)}{p(Y^n|X^n,K,b)}$ $p(Y^n|X^n,w,b) = \left(\frac{b}{2\pi}\right)^{n/2} \exp(-nbE_n(w))$ $p(Y^n|X^n,K,b) = \int dwp(Y^n|X^n,w,b)p(w|K)$

 X_{i} [2] Model Selection $p(K,b|D) = \frac{p(Y^{n}|X^{n},K,b)p(K)p(b)}{p(Y^{n}|X^{n})}$ $p(Y^{n}|X^{n}) = \sum_{K} \int db p(Y^{n}|X^{n},K,b)p(K)p(b)$ $(\widehat{K},\widehat{b}) \coloneqq \arg\max_{K,b} p(Y^{n}|X^{n},K,b)$

Posterior distribution

Solution space including least-squares solution

Posterior distribution

What is the optimal pair of K and b?

Bayesian hierarchical modeling

[1] Regression $p(w|D,K,b) = \frac{p(Y^n|X^n,w,b)p(w|K)}{p(Y^n|X^n,K,b)}$ $p(Y^n|X^n,w,b) = \left(\frac{b}{2\pi}\right)^{n/2} \exp(-nbE_n(w))$ $p(Y^n|X^n,K,b) = \int dwp(Y^n|X^n,w,b)p(w|K)$

[2] Model Selection

$$p(K,b|D) = \frac{p(Y^n|X^n,K,b)p(K)p(b)}{p(Y^n|X^n)}$$

$$p(Y^n|X^n) = \sum_{K} \int db p(Y^n|X^n,K,b)p(K)p(b)$$

$$(\widehat{K},\widehat{b}) \coloneqq \arg\max_{K,b} p(Y^n|X^n,K,b)$$

Bayes free energy

Mathematical correspondence

Statistical physics

Bayesian inference

$$Z_{N}(\beta) = \int d\omega \exp(-N\beta H_{N}(\omega)) \quad \widetilde{Z}_{n}(b) = \int d\omega \exp(-nbE_{n}(\omega))p(\omega)$$
$$F_{N}(\beta) = -\frac{1}{\beta}\log Z_{N}(\beta) \quad \widetilde{F}_{n}(b) = -\frac{1}{b}\log \widetilde{Z}_{n}(b)$$

- N: Particle number
- H_N : Hamiltonian
 - β : Inverse temperature

- n: Sample size
- E_n : Square error
 - b: Inverse noise variance

Mathematical correspondence

Statistical physics

Bayesian inference

Utilize the calculation methods of free energy in statistical physics for Bayesian inference thanks to their mathematical equivalence

N: Particle number

- *H_N*: Hamiltonian
 - β : Inverse temperature

n: Sample size *E_n*: Square error *b*: Inverse noise variance

Thermodynamic integration

$$F_{n}(K,b) \coloneqq -\log p(Y^{n}|X^{n},K,b)$$

$$= b\widetilde{F}_{n}(K,b) - \frac{n}{2}(\log b - \log 2\pi)$$

$$\widetilde{F}_{n}(K,b) \coloneqq -\frac{1}{b}\log \int dw \exp(-nbE_{n}(w))\varphi(w|K)$$

$$= \frac{1}{b}\int_{0}^{b}db' \langle nE_{n}(w) \rangle_{b'}$$

$$\langle E_{n}(w) \rangle_{b'} \coloneqq \int dw E_{n}(w)p(w|D,K,b')$$

$$\left[(\widehat{K},\widehat{b}) \coloneqq \arg \max p(Y^{n}|X^{n},K,b) \right]_{K,b} = \arg \min F_{n}(K,b)$$

Need to compute "thermal average"

Exchange Monte Carlo method [Hukushima & Nemoto, J. Phys. Soc. Jpn., 1996]

$$p(\{w_l\}_{l=1}^L | D, K, \{b_l\}_{l=1}^L) = \prod_{l=1}^L p(w_l | D, K, b_l)$$

$$0 = b_1 < b_2 < \cdots < b_L = b_{\max}$$

1. State update (Metropolis type)

$$w_l^t \Longrightarrow w_l^{t+1}$$

2. State exchange (Metropolis type)

Exchange Monte Carlo method [Hukushima & Nemoto, J. Phys. Soc. Jpn., 1996]

$$p(\{w_l\}_{l=1}^{L} | D, K, \{b_l\}_{l=1}^{L}) = \prod_{l=1}^{L} p(w_l | D, K, b_l)$$

$$0 = b_1 < b_2 < \dots < b_L = b_{\max}$$

$$\langle E_n(w) \rangle_{b_l} = \frac{1}{M_l} \sum_{t=1}^{M_l} E_n(w_l^t)$$

Advantages Fast relaxation and good match for parallel computing

Disadvantages Only a finite number *L* of candidates of the optimal value $b = \hat{b} \in [0, b_{max}]$, which minimize $F_n(K, b)$

How about interpolation?

Multiple histogram method [Ferrenberg & Swendsen, *Phys. Rev. Lett.*, 1989]

$$\widetilde{Z}_{n}(K,b) \coloneqq \int dw \exp(-nbE_{n}(w))\varphi(w|K)$$

$$= \int dEg(E) \exp(-nbE)$$

$$\int dw \delta(E - E_{n}(w))\varphi(w|K)$$

$$= \frac{\sum_{l=1}^{L} N_{l}(E)}{\sum_{l'=1}^{L} M_{l'}\widetilde{Z}_{n}(K,b_{l'})^{-1} \exp(nb_{l'}E)}$$

$$N_{l}(E) \coloneqq \text{Histogram of square error}$$

$$M_{l} \qquad : \text{ Sample size of MCMC}$$

$$= \int dw \delta(E - E_{n}(w))\varphi(w|K)$$

$$= \frac{\sum_{l=1}^{L} N_{l}(E)}{\sum_{l'=1}^{L} M_{l'}\widetilde{Z}_{n}(K,b_{l'})^{-1} \exp(nb_{l'}E)}$$

$$Small \qquad b_{1} \qquad b_{2} \qquad b_{3} \qquad Large$$

$$M_{l} \qquad : \text{ Sample size of MCMC}$$

Demonstration:

Why the joint estimate of peak number and noise variance

Simulation

Simulation

Result

Joint estimate of peak number and noise variance

Estimate correct peak number with accurate noise variance

Posterior probability of peak number

Discuss physical validity with these probabilities

Inseparability of peak number and noise variance

Inseparability of peak number and noise variance

Is there any need to estimate noise variance if peak number is known?

Posterior distribution of energy levels

AIST-TohokuU Mathematics for Advanced Materials-OIL (MathAM-OIL)

Posterior distribution of energy levels

Estimate of energy levels depends on the setting of noise variance even if the peak number is known

You should estimate noise variance jointly!

Summary

- Propose the framework that enables the joint estimate of peak number and noise variance from the observed spectrum by modifying the previous framework of Bayesian spectral deconvolution
 - Utilize the relationship between Bayesian inference and statistical physics
 - Show the inseparability of the estimate of peak number and noise variance

<u>ST</u>, K. Nagata and M. Okada, *J. Phys. Soc. Jpn*. 86, 024001, 2017. (arXiv:1607.07590)