

MACHINE LEARNING PHASES OF MATTER

Juan Carrasquilla D-Wave systems

Ferromagnet

Paramagnet

Lars Onsager Phys. Rev. 65, 117

Ferromagnet

Paramagnet

Ferromagnetic transition: order parameter

LEARNING PHASES OF MATTER: INSPIRATION FROM THE FLUCTUATIONS IN HANDWRITTEN DIGITS AND SUPERVISED LEARNING

INSPIRATION: FLUCTUATIONS HANDWRITTEN DIGITS (MNIST)

S = 5 + Fluctuations

High T phase

gray=spin up white=spin down

ML community has developed powerful learning algorithms based on artificial neural networks

We want 2 functions cold and hot such that

Artificial neural networks

Artificial neural networks are a family of models used to approximate functions that can depend on a large number of inputs. Artificial neural networks are generally presented as systems of interconnected "neurons" which exchange messages between each other

Connections= sets of adaptive weights, i.e. numerical parameters that are tuned by a learning algorithm

$$f: \mathbf{R}^n \to \mathbf{R}^m$$

Wikipedia

Perceptron: $\beta \rightarrow \infty$

Where Θ 's are the parameters you fiddle with

Rectified linear unit or ReLu

A neural net is a composition of these simpler nonlinear functions

The theta matrices parametrize our function

How do we specify our function to do what we want? $(\Theta^{(1)}\Theta^{(2)})$

Train the function with a big bunch of known (m) images called training set:

$$X = \begin{bmatrix} - (x^{(1)})^T - \\ - (x^{(2)})^T - \\ \vdots \\ - (x^{(m)})^T - \end{bmatrix} \qquad \qquad y = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

Define a cost function to be minimized (recall least squares cost function) Cross entropy

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \sum_{k=1}^{n} \left[-y_k^{(i)} \log((h_\theta(x^{(i)}))_k) - (1 - y_k^{(i)}) \log(1 - (h_\theta(x^{(i)}))_k) \right],$$

Learning algorithm

Learning: it sometimes just means fitting data to a function (the neural net) used to make predictions for unknown data.

Stochastic gradient descent

Relies on the analytical expression for the derivatives of the cost function with respect to the weights. For the neural nets this still OK: NN=composition of functions, so that derivatives can be computed using the chain rule. COLLECTING THE TRAINING/TESTING DATA: MC SAMPLING ISING MODEL AND LABELS

the ordered phase

2D Ising model in the disordered phase

2D Ising model in Training/testing data is drawn from the Boltzmann distribution

$$p(\sigma_1, \sigma_2, ..., \sigma_N) = \frac{e^{-\beta E(\sigma_1, \sigma_2, ..., \sigma_N)}}{Z(\beta)}$$

COLLECTING THE TRAINING/TESTING DATA: MC **SAMPLING** ISING MODEL AND **LABELS**

2D Ising model in the ordered phase

2D Ising model in the disordered phase

Successful training amounts to finding functions

 $F_{\text{High }T}(\sigma_1,...,\sigma_N) \qquad F_{\text{Low }T}(\sigma_1,...,\sigma_N)$

RESULTS: SQUARE LATTICE ISING MODEL (TEST SETS)

2D Ising model in the ordered phase

2D Ising model in the disordered phase

ANALYTICAL UNDERSTANDING

Investigating the argument of the hidden layer during the training

$$x = [\sigma_1 \sigma_2, \dots, \sigma_N]^{\mathrm{T}} \qquad m(x) = \frac{1}{N} \sum_{i=1}^N \sigma_i$$

1605.01735, Nature Physics

FOR A REAL NN THIS REMAINS TRUE

ANALYTICAL UNDERSTANDING

Investigating the argument of the hidden layer during the training

$$x = [\sigma_1 \sigma_2, \dots, \sigma_N]^{\mathrm{T}} \qquad m(x) = \frac{1}{N} \sum_{i=1}^N \sigma_i$$

TUTORIAL

Artificial neural networks

Artificial neural networks are a family of models used to approximate functions that can depend on a large number of inputs. Artificial neural networks are generally presented as systems of interconnected "neurons" which exchange messages between each other

Connections= sets of adaptive weights, i.e. numerical parameters that are tuned by a learning algorithm

$$f: \mathbf{R}^n \to \mathbf{R}^m$$

Wikipedia

Perceptron: $\beta \rightarrow \infty$

Where Θ 's are the parameters you fiddle with

Rectified linear unit or ReLu

A neural net is a composition of these simpler nonlinear functions

Learning algorithm

Learning: it sometimes just means fitting data to a function (the neural net) used to make predictions for unknown data.

Stochastic gradient descent

Relies on the analytical expression for the derivatives of the cost function with respect to the weights. For the neural nets this still OK: NN=composition of functions, so that derivatives can be computed using the chain rule.

Example: Handwritten digits

0000000000000000000 1/1/11/1 2222222222222 22 3333333 33 33 33 6666666666 66 777777777) 8 8 888 8 999934999999999 99 S = 5 + Fluctuations

FM phase

High T phase

gray=spin up white=spin down

ML community has developed powerful <mark>supervised</mark> learning algorithms

Input data

2D Ising model in the ordered phase

2D Ising model in the disordered phase

Input layer hidden layer output layer

The theta matrices parametrize our function

How do we specify our function to do what we want? $(\Theta^{(1)}\Theta^{(2)})$

Train the function with a big bunch of known (m) images called training set:

$$X = \begin{bmatrix} - (x^{(1)})^T - \\ - (x^{(2)})^T - \\ \vdots \\ - (x^{(m)})^T - \end{bmatrix} \qquad y = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

Define a cost function to be minimized (recall least squares cost function)

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \sum_{k=1}^{K} \left[-y_k^{(i)} \log((h_\theta(x^{(i)}))_k) - (1 - y_k^{(i)}) \log(1 - (h_\theta(x^{(i)}))_k) \right],$$

2d Ising training/test sets: uncorrelated classical Monte Carlo configurations

