MACHINE LEARNING PHASES OF MATTER
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LEARNING PHASES OF MATTER:
INSPIRATION FROM THE
FLUCTUATIONS IN HANDWRITTEN
DIGITS AND SUPERVISED LEARNING



INSPIRATION: FLUCTUATIONS HANDWRITTEN DIGITS (MNIST)
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ML community has developed
powerful learning algorithms based
on artificial neural networks
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PHASES, PHASE TRANSITIONS, AND THE ORDER PARAMETER

We want 2 functions cold and hot such that
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Artificial neural networks

Artificial neural networks are a family of models
used to approximate functions that can depend on a large
number of inputs. Artiticial neural networks are generally
presented as systems of interconnected "neurons” which
exchange messages between each other

Hidden Connections= sets of adaptive

weights, i.e. numerical parameters
that are tuned by a learning
algorithm
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A neuron: ?
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Perceptron:
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Where © ‘s are the parameters you fiddle with



MOore Neurons

f he(2) = tanh (07T z)
/ ho(z) = maz(0,01 x)

Rectified linear unit or Rel_u

A neural net is a composition of
these simpler nonlinear functions



One architecture for phase

recognition
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Input layer hidden layer output layer

The theta matrices parametrize our function



How do we specity our function

to do what we want”? (eMe®)
Train the function with a big bunch of known (m) images called
training set:
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Define a cost function to be minimized (recall least squares
cost function) Cross entropy
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_earning algorithm

Learning: it sometimes just means
fitting data to a function (the neural
net) used to make predictions for
unknown data.



Stochastic gradient descent

Relies on the analytical expression for the
derivatives of the cost function with

net
NN=composi

respect to the weights. For the neural

s this still OK:
tion of functions, so that

derivatives ca

N be computed using the
chain rule.



COLLECTING THE TRAINING/TESTING DATA: MC SAMPLING ISING MODEL AND LABELS

2D Ising model in ~ Training/testing data is drawn from
the ordered phase the Boltzmann distribution
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2D Ising model
in the disordered phase
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COLLECTING THE TRAINING/TESTING DATA: MC SAMPLING ISING MODEL AND LABELS

2D Ising model in Successful training amounts to finding functions
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RESULTS: SQUARE LATTICE ISING MODEL (TEST SETS)

2D Ising model in
the ordered phase = o2,
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ANALYTICAL UNDERSTANDING
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FOR A REAL NN THIS REMAINS TRUE




ANALYTICAL UNDERSTANDING
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The neural net discovers the order

parameter and uses it to perform the

classification task
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Artificial neural networks

Artificial neural networks are a family of models
used to approximate functions that can depend on a large
number of inputs. Artiticial neural networks are generally
presented as systems of interconnected "neurons” which
exchange messages between each other

Hidden Connections= sets of adaptive

weights, i.e. numerical parameters
that are tuned by a learning
algorithm
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MOore Neurons

f he(2) = tanh (07T z)
/ ho(z) = maz(0,01 x)

Rectified linear unit or Rel_u

A neural net is a composition of
these simpler nonlinear functions



_earning algorithm

Learning: it sometimes just means
fitting data to a function (the neural
net) used to make predictions for
unknown data.



Stochastic gradient descent

Relies on the analytical expression for the
derivatives of the cost function with

net
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Example: Hanawritten aigits

ML community has developed
powerful supervised learning

algorithms
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INnput data

2D Ising model in the ordered phase
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One architecture for phase

recognition
e o1
Input vd. 6 output
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Input layer hidden layer output layer

The theta matrices parametrize our function



How do we specity our function

to do what we want”? (eMe®)
Train the function with a big bunch of known (m) images called
training set:
(@) -
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Define a cost function to be minimized (recall least squares
cost function)
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2d Ising training/test sets: uncorrelated
classical Monte Carlo configurations

100 configurations at
20 temperatures

100 configurations at
20 temperatures

below T¢ above Tc
Tmin Tmax
Tmin=1.0 1c=2.2691 Trmax=3.538

Overall accuracy: 98%!



