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PHASES, PHASE TRANSITIONS, AND THE ORDER PARAMETER

Ferromagnetic transition: order parameter3
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FIG. 1: Machine learning the Ising model. (A) The numerically trained fully connected neural

network learns representations of the low- and high-temperature phases of the Ising model. (B)

The magnetization M (dahsed blue line) as a function of temperature T for the ferromagnetic

Ising model on the square lattice. The training and test sets include 1000 states drawn from the

partition function of the Ising model at 40 di↵erent temperatures. (C) The average of the output

layer neurons over the test sets as a function of temperature. (D) The average accuracy of test

sets as a function of temperature. The vertical orange lines signal the critical temperature of the

Ising model T
c

= 2/ ln
�
1 +

p
2
�
.

system size is increased, as inferred from Figure 5(D), so that this training/testing paradigm

is capable of narrowing in on the true thermodynamic value of T
c

in a way analogous to the

direct measurement of the magnetization order parameter in a conventional Monte Carlo

simulation. In fact, due to the simplicity of the underlying order parameter (a bulk polar-

ization of Ising spins below T
c

), one can understand the training of the network through a

Ising results

in preparation

M =
1

N

X

i

h�ii, �i = ±1

Ferromagnet 

 M>0

Paramagnet  

M=0

Lars Onsager Phys. Rev. 65, 117 

It is a measure of the  

degree of order  

in the system



LEARNING PHASES OF MATTER: 
INSPIRATION FROM THE 

FLUCTUATIONS IN HANDWRITTEN 
DIGITS AND SUPERVISED LEARNING
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INSPIRATION: FLUCTUATIONS HANDWRITTEN DIGITS (MNIST)

ML community has developed 
powerful learning algorithms based 
on artificial neural networks
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system size is increased, as inferred from Figure 5(D), so that this training/testing paradigm

is capable of narrowing in on the true thermodynamic value of T
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in a way analogous to the

direct measurement of the magnetization order parameter in a conventional Monte Carlo

simulation. In fact, due to the simplicity of the underlying order parameter (a bulk polar-
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Artificial neural networks

f : Rn ! Rm

Artificial neural networks are a family of models 
used to approximate functions that can depend on a large 
number of inputs. Artificial neural networks are generally 
presented as systems of interconnected "neurons" which 

exchange messages between each other

Connections= sets of adaptive 
weights, i.e. numerical parameters 

that are tuned by a learning 
algorithm

Wikipedia



A neuron:  

Sigmoid neuron

Perceptron:

x1

x2
h⇥ (x) =

1

1 + e

��⇥T
x

� ! 1

+1

⇥ = (✓0 ✓1 ✓2 ✓3)

� = 1 x3

⇥(1)

x = (1 x1 x2 x3)

Where     ‘s  are the parameters you fiddle with⇥



more neurons
h⇥(x) = tanh(⇥T

x)

A neural net is a composition of 
these simpler nonlinear functions

Rectified linear unit or ReLu

h⇥(x) = max(0,⇥T
x)



One architecture for phase 
recognition

Input output

Input layer

. . . . 

. . . . 

hidden layer output layer

0 
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⇥(1)

⇥(2)

The theta matrices parametrize our function
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How do we specify our function               
to do what we want?               (           )⇥(1)⇥(2)

Train the function with a big bunch of known (m) images called 
training set:

Figure 1: Examples from the dataset

This is the same dataset that you used in the previous exercise. There are
5000 training examples in ex3data1.mat, where each training example is a
20 pixel by 20 pixel grayscale image of the digit. Each pixel is represented by
a floating point number indicating the grayscale intensity at that location.
The 20 by 20 grid of pixels is “unrolled” into a 400-dimensional vector. Each
of these training examples becomes a single row in our data matrix X. This
gives us a 5000 by 400 matrix X where every row is a training example for a
handwritten digit image.

X =

2

6664

— (x(1))T —
— (x(2))T —

...
— (x(m))T —

3

7775

The second part of the training set is a 5000-dimensional vector y that
contains labels for the training set. To make things more compatible with
Octave/MATLAB indexing, where there is no zero index, we have mapped
the digit zero to the value ten. Therefore, a “0” digit is labeled as “10”, while
the digits “1” to “9” are labeled as “1” to “9” in their natural order.

1.2 Model representation

Our neural network is shown in Figure 2. It has 3 layers – an input layer,
a hidden layer and an output layer. Recall that our inputs are pixel values

3

Define a cost function to be minimized (recall least squares 
cost function) Cross entropy

Recall that the cost function for the neural network (without regulariza-
tion) is

J(✓) =
1

m

mX

i=1

KX

k=1

h
�y

(i)
k log((h✓(x

(i)))k)� (1� y

(i)
k ) log(1� (h✓(x

(i)))k)
i
,

where h✓(x(i)) is computed as shown in the Figure 2 and K = 10 is the total

number of possible labels. Note that h✓(x(i))k = a

(3)
k is the activation (output

value) of the k-th output unit. Also, recall that whereas the original labels
(in the variable y) were 1, 2, ..., 10, for the purpose of training a neural
network, we need to recode the labels as vectors containing only values 0 or
1, so that

y =

2

666664

1
0
0
...
0

3

777775
,

2

666664

0
1
0
...
0

3

777775
, . . . or

2

666664

0
0
0
...
1

3

777775
.

For example, if x(i) is an image of the digit 5, then the corresponding
y

(i) (that you should use with the cost function) should be a 10-dimensional
vector with y5 = 1, and the other elements equal to 0.

You should implement the feedforward computation that computes h✓(x(i))
for every example i and sum the cost over all examples. Your code should
also work for a dataset of any size, with any number of labels (you
can assume that there are always at least K � 3 labels).

Implementation Note: The matrix X contains the examples in rows
(i.e., X(i,:)’ is the i-th training example x

(i), expressed as a n ⇥ 1
vector.) When you complete the code in nnCostFunction.m, you will
need to add the column of 1’s to the X matrix. The parameters for each
unit in the neural network is represented in Theta1 and Theta2 as one
row. Specifically, the first row of Theta1 corresponds to the first hidden
unit in the second layer. You can use a for-loop over the examples to
compute the cost.

Once you are done, ex4.m will call your nnCostFunction using the loaded
set of parameters for Theta1 and Theta2. You should see that the cost is
about 0.287629.
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Learning: it sometimes just means 
fitting data to a function (the neural 
net) used to make predictions for 

unknown data. 

Learning algorithm



Stochastic gradient descent

Relies on the analytical expression for the 
derivatives of the cost function with 

respect to the weights. For the neural 
nets this still OK:  

NN=composition of functions, so that 
derivatives can be computed using the 

chain rule. 



2D Ising model in 
the ordered phase

2D Ising model  
in the disordered phase

COLLECTING THE TRAINING/TESTING DATA: MC SAMPLING ISING MODEL AND LABELS
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FIG. 1: Machine learning the Ising model. (A) The numerically trained fully connected neural

network learns representations of the low- and high-temperature phases of the Ising model. (B)

The magnetization M (dahsed blue line) as a function of temperature T for the ferromagnetic

Ising model on the square lattice. The training and test sets include 1000 states drawn from the

partition function of the Ising model at 40 di↵erent temperatures. (C) The average of the output

layer neurons over the test sets as a function of temperature. (D) The average accuracy of test

sets as a function of temperature. The vertical orange lines signal the critical temperature of the

Ising model T
c

= 2/ ln
�
1 +

p
2
�
.

system size is increased, as inferred from Figure 5(D), so that this training/testing paradigm

is capable of narrowing in on the true thermodynamic value of T
c

in a way analogous to the

direct measurement of the magnetization order parameter in a conventional Monte Carlo

simulation. In fact, due to the simplicity of the underlying order parameter (a bulk polar-

ization of Ising spins below T
c

), one can understand the training of the network through a

Ising results

in preparation

p(�1,�2, ...,�N ) =
e��E(�1,�2,...,�N )

Z(�)

Training/testing data is drawn from 
the Boltzmann distribution
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FIG. 6. Two-dimensional t-SNE visualization of the training set used in the Ising model for L = 30

colored according to temperature. The orange line represents a hyperplane separating the low- from

high-temperatures states.

cool region (and vice versa), crossing over to a low value as the system is warmed through

the orange hyperplane. This allows the classification of a state in terms of the neuron values.

Appendix C: Details of the convolutional neural network of the Ising lattice gauge

theory

The exact architecture of the convolutional neural network (CNN) [4], schematically

described in Figure 4, is as follows. The input layer is a two-dimensional Ising spin config-

uration with N = 16 ⇥ 16 ⇥ 2 spins, where �
i

= ±1. The first hidden layer convolves 64

2⇥ 2 filters on each of the two sublattices of the model with a unit stride, no padding, with

periodic boundary conditions, followed by rectified linear unit (ReLu). The final hidden

layer is a fully-connected layer with 64 ReLu units, while the output is a softmax layer with

two outputs (correponding to T = 0 and T = 1 states). To prevent overfitting, we apply a

dropout regularization in the fully-connected layer [28]. Our model has been implemented
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FIG. 1: Machine learning the Ising model. (A) The numerically trained fully connected neural

network learns representations of the low- and high-temperature phases of the Ising model. (B)

The magnetization M (dahsed blue line) as a function of temperature T for the ferromagnetic

Ising model on the square lattice. The training and test sets include 1000 states drawn from the

partition function of the Ising model at 40 di↵erent temperatures. (C) The average of the output

layer neurons over the test sets as a function of temperature. (D) The average accuracy of test

sets as a function of temperature. The vertical orange lines signal the critical temperature of the

Ising model T
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.

system size is increased, as inferred from Figure 5(D), so that this training/testing paradigm

is capable of narrowing in on the true thermodynamic value of T
c

in a way analogous to the

direct measurement of the magnetization order parameter in a conventional Monte Carlo

simulation. In fact, due to the simplicity of the underlying order parameter (a bulk polar-

ization of Ising spins below T
c

), one can understand the training of the network through a

Ising results

in preparation

Successful training amounts to finding functions
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2D Ising model in 
the ordered phase

2D Ising model  
in the disordered phase

RESULTS: SQUARE LATTICE ISING MODEL (TEST SETS)
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FIG. 1: Machine learning the Ising model. (A) The numerically trained fully connected neural

network learns representations of the low- and high-temperature phases of the Ising model. (B)

The magnetization M (dahsed blue line) as a function of temperature T for the ferromagnetic

Ising model on the square lattice. The training and test sets include 1000 states drawn from the

partition function of the Ising model at 40 di↵erent temperatures. (C) The average of the output

layer neurons over the test sets as a function of temperature. (D) The average accuracy of test

sets as a function of temperature. The vertical orange lines signal the critical temperature of the
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system size is increased, as inferred from Figure 5(D), so that this training/testing paradigm

is capable of narrowing in on the true thermodynamic value of T
c

in a way analogous to the

direct measurement of the magnetization order parameter in a conventional Monte Carlo

simulation. In fact, due to the simplicity of the underlying order parameter (a bulk polar-

ization of Ising spins below T
c

), one can understand the training of the network through a

Ising results

in preparation

3

FIG. 1: Machine learning the square-lattice ferromagnetic Ising model. (A) The trained neural

network learns representations of the low- and high-temperature Ising states. (B) The average

of the output layer neurons over the test sets vs. temperature. (C) The average accuracy over

a test set vs. temperature. (D) Toy model of a neural network for the Ising model. (E) The

average output layer and accuracy of the toy model are displayed in (E) and (F), respectively.

The orange lines signal the critical temperature of the Ising model in the thermodynamic limit,

Tc/J = 2/ ln
�
1 +

p
2
�
.
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ANALYTICAL UNDERSTANDING
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Investigating the argument of the hidden layer during the training

9

values of the low-temperature output neuron in our convolutional neural net for the Ising

lattice gauge theory can be further trained to represent the ground state of the toric code

Hamiltonian [1, 9]. We thus anticipate adoption to the field of quantum technology [25],

such as quantum error correction protocols and quantum state tomography [26]. The ability

of machine learning algorithms to generalize to situations beyond their original design an-

ticipates future applications such as the detection of phases and phase transitions in models

vexed with the Monte Carlo sign problem [3], as well as in experiments with single-site res-

olution capabilities such as the modern quantum gas microscopes [27, 28]. As in all other

areas of “big data”, we expect the rapid adoption of machine learning techniques as a basic

research tool in condensed matter and statistical physics in the near future.
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Appendix A: Details of the toy model

The analytical model encodes the low- and high-temperature phases of the Ising model

through their magnetization. The hidden layer contains 3 perceptrons (a neuron with a

Heaviside step nonlinearity); the first two perceptrons activate when the input states are

mostly polarized, while the third one activate if the states are polarized up or unpolarized.

Notice that the third neuron can also be choosen to activate if the states are polarized down

or unpolarized. The resulting outcomes are recombined in the output layer and produce the

desired classification of the state. The hidden layer is parametrized through a weight matrix

and bias vector given by

W =
1

N (1 + ✏)

0

BBB@

1 1 · · · 1

�1 �1 · · · �1

1 1 · · · 1

1

CCCA
, and b =

✏

(1 + ✏)

0

BBB@

�1

�1

1

1

CCCA
, (A1)
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FIG. 5: Hidden layer arguments as a function of the magnetization of the Ising state m(x). (A)

displays the hidden layer arguments for our toy model, while (B) and (C) display the arguments

for a neural net with 3 sigmoid neurons before and after training, respectively.

where 0 < ✏ < 1 is the only free parameter of the model. The arguments of the three hidden

layer neurons, in terms of the weight matrix, bias vector, and a particular Ising configuration

x = [�1�2, ..., �N ]T, are given by

Wx + b =
1

(1 + ✏)

0

BBB@

m(x)� ✏

�m(x)� ✏

m(x) + ✏

1

CCCA
, (A2)

where m(x) = 1
N

NP
i=1

�i is the magnetization of the Ising configuration. In Figure 5(A) we

display the components of the Wx + b vector as a function of the magnetization of the

Ising state m(x). The first and second neuron activate when the state is predominantly

polarized, i.e., when m(x) > ✏ or m(x) < �✏. The third neuron activates if the state has

a magnetization m(x) > �✏, which means that, in the limit where 0 < ✏ ⌧ 1, it activates

when the state is either polarized or unpolarized. The parameter ✏ is thus a threshold value

of the magnetization that helps deciding whether the state is considered polarized or not.

The output layer is parametrized through a weight matrix and bias vector given by

W2 =

0

@ 2 1 �1

�2 �2 1

1

A , and b2 =

0

@0

0

1

A , (A3)

where these arbitrary choices ensure that the ordered, low-T output neuron OLow-T = 1

is active when either the spins polarize mostly " or #. On the other hand, when the " k 0

neuron is active but the " is not, then the high-temperature output neuron OHigh-T = 1,

symbolizing a high-temperature state.
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FOR A REAL NN THIS REMAINS TRUE

input states are mostly polarized up or down, while the other two classes activate if the states are

polarized up (down) or unpolarized. When compared to our toy model, the training of the 100-

unit model is such that the neural network behaves more symmetrically as it constructs neurons

that detect both polarized up/down or unpolarized in the classification process, while in the con-

struction of our toy model we only use a neuron that activates when the states are polarized up or

unpolarized.
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Figure S2 Investigating the numerically trained model. Hidden layer arguments as a

function of the magnetization of the Ising state m(x) (colored circles) for the numerically

trained model with 100 units. All the curves lie on top of only 4 different straight lines but

to ease their visualization all curves are artificially spaced vertically.

2 Aubry-Andr

´

e model of spinless fermions

In this section we explore whether our supervised learning approach has the potential to be ex-

tended to quantum systems. To do this we consider a simple fermionic, i.e., the Aubry-André

model of spinless fermions2 at half-filling. Its Hamiltonian is given by H = �J
P

i

⇣
c†ici+1 + h.c

⌘
+

5



ANALYTICAL UNDERSTANDING
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Investigating the argument of the hidden layer during the training
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values of the low-temperature output neuron in our convolutional neural net for the Ising

lattice gauge theory can be further trained to represent the ground state of the toric code

Hamiltonian [1, 9]. We thus anticipate adoption to the field of quantum technology [25],

such as quantum error correction protocols and quantum state tomography [26]. The ability

of machine learning algorithms to generalize to situations beyond their original design an-

ticipates future applications such as the detection of phases and phase transitions in models

vexed with the Monte Carlo sign problem [3], as well as in experiments with single-site res-

olution capabilities such as the modern quantum gas microscopes [27, 28]. As in all other

areas of “big data”, we expect the rapid adoption of machine learning techniques as a basic

research tool in condensed matter and statistical physics in the near future.
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Appendix A: Details of the toy model

The analytical model encodes the low- and high-temperature phases of the Ising model

through their magnetization. The hidden layer contains 3 perceptrons (a neuron with a

Heaviside step nonlinearity); the first two perceptrons activate when the input states are

mostly polarized, while the third one activate if the states are polarized up or unpolarized.

Notice that the third neuron can also be choosen to activate if the states are polarized down

or unpolarized. The resulting outcomes are recombined in the output layer and produce the

desired classification of the state. The hidden layer is parametrized through a weight matrix

and bias vector given by

W =
1

N (1 + ✏)

0

BBB@

1 1 · · · 1

�1 �1 · · · �1

1 1 · · · 1

1

CCCA
, and b =

✏

(1 + ✏)

0

BBB@

�1

�1

1

1

CCCA
, (A1)
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FIG. 5: Hidden layer arguments as a function of the magnetization of the Ising state m(x). (A)

displays the hidden layer arguments for our toy model, while (B) and (C) display the arguments

for a neural net with 3 sigmoid neurons before and after training, respectively.

where 0 < ✏ < 1 is the only free parameter of the model. The arguments of the three hidden

layer neurons, in terms of the weight matrix, bias vector, and a particular Ising configuration

x = [�1�2, ..., �N ]T, are given by
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m(x)� ✏
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m(x) + ✏
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where m(x) = 1
N

NP
i=1

�i is the magnetization of the Ising configuration. In Figure 5(A) we

display the components of the Wx + b vector as a function of the magnetization of the

Ising state m(x). The first and second neuron activate when the state is predominantly

polarized, i.e., when m(x) > ✏ or m(x) < �✏. The third neuron activates if the state has

a magnetization m(x) > �✏, which means that, in the limit where 0 < ✏ ⌧ 1, it activates

when the state is either polarized or unpolarized. The parameter ✏ is thus a threshold value

of the magnetization that helps deciding whether the state is considered polarized or not.

The output layer is parametrized through a weight matrix and bias vector given by

W2 =

0

@ 2 1 �1

�2 �2 1

1

A , and b2 =

0

@0

0

1

A , (A3)

where these arbitrary choices ensure that the ordered, low-T output neuron OLow-T = 1

is active when either the spins polarize mostly " or #. On the other hand, when the " k 0

neuron is active but the " is not, then the high-temperature output neuron OHigh-T = 1,

symbolizing a high-temperature state.
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The neural net discovers the order 
parameter and uses it to perform the  

classification task
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Artificial neural networks

f : Rn ! Rm

Artificial neural networks are a family of models 
used to approximate functions that can depend on a large 
number of inputs. Artificial neural networks are generally 
presented as systems of interconnected "neurons" which 

exchange messages between each other

Connections= sets of adaptive 
weights, i.e. numerical parameters 

that are tuned by a learning 
algorithm

Wikipedia



A neuron:  

Sigmoid neuron

Perceptron:

x1

x2
h⇥ (x) =

1

1 + e

��⇥T
x

� ! 1

+1

⇥ = (✓0 ✓1 ✓2 ✓3)

� = 1 x3

⇥(1)

x = (1 x1 x2 x3)

Where     ‘s  are the parameters you fiddle with⇥



more neurons
h⇥(x) = tanh(⇥T

x)

A neural net is a composition of 
these simpler nonlinear functions

Rectified linear unit or ReLu

h⇥(x) = max(0,⇥T
x)



Learning: it sometimes just means 
fitting data to a function (the neural 
net) used to make predictions for 

unknown data. 

Learning algorithm



Stochastic gradient descent

Relies on the analytical expression for the 
derivatives of the cost function with 

respect to the weights. For the neural 
nets this still OK:  

NN=composition of functions, so that 
derivatives can be computed using the 

chain rule. 



Example: Handwritten digits

FM phase

High T phase
gray=spin up 

white=spin 
down

FM (0)

PM (1)

Pirsa: 16060005 Page 18/49

5
ML community has developed 
powerful supervised learning 
algorithms=5+Fluctuations



Input data
2D Ising model in the ordered phase

2D Ising model in the disordered phase

Critical



One architecture for phase 
recognition

Input output

FM 
FM 
HT 
HT

Input layer

. . . . 

. . . . 

hidden layer output layer

0 
1 

⇥(1)

⇥(2)

The theta matrices parametrize our function



How do we specify our function               
to do what we want?               (           )⇥(1)⇥(2)

Train the function with a big bunch of known (m) images called 
training set:

Figure 1: Examples from the dataset

This is the same dataset that you used in the previous exercise. There are
5000 training examples in ex3data1.mat, where each training example is a
20 pixel by 20 pixel grayscale image of the digit. Each pixel is represented by
a floating point number indicating the grayscale intensity at that location.
The 20 by 20 grid of pixels is “unrolled” into a 400-dimensional vector. Each
of these training examples becomes a single row in our data matrix X. This
gives us a 5000 by 400 matrix X where every row is a training example for a
handwritten digit image.

X =

2

6664

— (x(1))T —
— (x(2))T —

...
— (x(m))T —

3

7775

The second part of the training set is a 5000-dimensional vector y that
contains labels for the training set. To make things more compatible with
Octave/MATLAB indexing, where there is no zero index, we have mapped
the digit zero to the value ten. Therefore, a “0” digit is labeled as “10”, while
the digits “1” to “9” are labeled as “1” to “9” in their natural order.

1.2 Model representation

Our neural network is shown in Figure 2. It has 3 layers – an input layer,
a hidden layer and an output layer. Recall that our inputs are pixel values

3

Define a cost function to be minimized (recall least squares 
cost function)

Recall that the cost function for the neural network (without regulariza-
tion) is

J(✓) =
1

m

mX

i=1

KX

k=1

h
�y

(i)
k log((h✓(x

(i)))k)� (1� y

(i)
k ) log(1� (h✓(x

(i)))k)
i
,

where h✓(x(i)) is computed as shown in the Figure 2 and K = 10 is the total

number of possible labels. Note that h✓(x(i))k = a

(3)
k is the activation (output

value) of the k-th output unit. Also, recall that whereas the original labels
(in the variable y) were 1, 2, ..., 10, for the purpose of training a neural
network, we need to recode the labels as vectors containing only values 0 or
1, so that

y =

2

666664

1
0
0
...
0

3

777775
,

2

666664

0
1
0
...
0

3

777775
, . . . or

2

666664

0
0
0
...
1

3

777775
.

For example, if x(i) is an image of the digit 5, then the corresponding
y

(i) (that you should use with the cost function) should be a 10-dimensional
vector with y5 = 1, and the other elements equal to 0.

You should implement the feedforward computation that computes h✓(x(i))
for every example i and sum the cost over all examples. Your code should
also work for a dataset of any size, with any number of labels (you
can assume that there are always at least K � 3 labels).

Implementation Note: The matrix X contains the examples in rows
(i.e., X(i,:)’ is the i-th training example x

(i), expressed as a n ⇥ 1
vector.) When you complete the code in nnCostFunction.m, you will
need to add the column of 1’s to the X matrix. The parameters for each
unit in the neural network is represented in Theta1 and Theta2 as one
row. Specifically, the first row of Theta1 corresponds to the first hidden
unit in the second layer. You can use a for-loop over the examples to
compute the cost.

Once you are done, ex4.m will call your nnCostFunction using the loaded
set of parameters for Theta1 and Theta2. You should see that the cost is
about 0.287629.

5

y =


1
0

�
,


0
1

�



2d Ising training/test sets: uncorrelated 
classical Monte Carlo configurations

TcTmin Tmax

100 configurations at 
20 temperatures 

below Tc

100 configurations at 
20 temperatures 

above Tc

Tmin=1.0 Tc=2.2691 Tmax=3.538

Overall accuracy: 98%!


