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The BIG DATA era...

* Web: estimated Google index 45 billion pages
* Click-stream data: 10-100 TB/day

* Transaction data: 5-50 TB/day

* Satellite image feeds: ~| TB/day/satellite

* Biological data: |-10TB/day/sequencer

* TV: 2TB/day/channel; YouTube 4TB/day uploaded

* Photos: |.5 billion photos/week uploaded
* Digitized telephony: ~100 petabytes/day

e How to better utilize the value of data?
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Machine Learning (ML)

“... a scientific discipline that deals with the
“ construction and study of algorithms that can
WikipEDIA  |earn from data. ”

The Free Encyclopedia
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ML applications are everywhere

Recommendation

Web Search

Computer Vision

Driverless Car

Speech Recognition

Natural Language Processing (NLP)



Recommendation

Amazon.com recommends products based on purchase
history
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Web Search

® www.baidu.com/s?tn=baiduhome_pg&ie=utf-8&bs=polo&f=8&rsv_bp=1&rsv_spt=1&wd =

L 1INESS | Settings - Advance: Baidu Mobile Login BE—TF, LI 4 Manager Wiki

'‘EE wm mn mE 0N ves EE RS BE XA ES

- Tsil i
AR b CRTEREREXT | RS

%24 110402: -
a.edu.c/ 2012-6-1 - E[ERE

BEBH

EX4 : Tainghua University) . M. MAKRELBRENENE. BE
REMESE ERRITRY, FeEAPONSE
IERE - AN - BROE
com/view/1563.htm 2012-8-3

EERE PEBEES SETE
WEKRE (TsinghuaUniversity) BHEIREZMILH, SR FLANILERR
#® A

FRRR: FIR FEM: X

FREE  211BR  985HE

BEfER : TuE BERR BEHE

AHEDMREN

s (xm oz [ mW |

M ERSEERED

20120731 e
Search engine, ==.......

’& AUBHE | i (010)32735001
4 ,‘ map.baidu.comf

-Query Cla ﬁcatlon

112011 Lectu...ppt = T classification.ppt -+ [& es229-noteslps -+ & es229-linalg.ps

-Ranking
-Spam detection

S &inputT=3720

Login - NIPS 2012

it ml&m KIZRQ J—H"zmﬂxﬂﬁ 5
BHGAXRERK K
www.qgianzhiye.com

3

OIS
FEBRGHRRRAT B ORERAR
RREHHENRS FOREE-RNR

www.icda.cn

BAEAEDBEHE S0
AABAEDEBH L P OERERBRE, P
£B ARETEXBONASHE X2
www.qddrbaq.com

EEZEENOMOMEREN .
EHBHRF 0128 ZHBERGEIT TR
EBLARAXPAHFSAE

www.bjunv.com/010-57139005

g

1
BRRTRE B(OFFBER)R R L RPEE
IFERB 1 ERT(HAREHERS)!
www.luquchaxun.com/010-60871515

x o

RERPIE 165 RADM.

RERPHA REAGERNE BT RE R
BA— SR ERRN S
www.igo.cn

lecture3.pdf lecture2.pdf - 3

Computational advertising

- Estimate click-through rate
- Optimal ads placement
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1000 object classes that we recognize

/Iil. - o]

Computer Vision

Object recognition, detection, tracking
Scene segmentation, understanding

Action/behavior recognition
Image tagging and search

Optical character recognition (OCR)
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ImageNet Challenge: 1000 categories, 1.2 million
images for training
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Records Set by Deep Learning

* ImageNet classification: < 5% top-5 error

* Face recognition: 98% accuracy

* Handwritten digit recognition: 0.23% error

* And, even scene understanding: Computer-generated image descriptions

“A dog with a_tennis ball is swimming in murky water”™

'

‘ dog ‘ tennis ball dog swimming | murky water

| _SFClabels |
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Driverless Car
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Speech Recognition

L —
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Natural Language Processing (NLP)

Machine translation systems

| uatio

Information Extraction

£ hand-written £

statistical

U:iﬁij"gspeec

Information Retrieval, question answering

Text classification, spam filtering, etc....

Classical NLP
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Paradigms of Machine Learning

* Supervised learning:
— Given {x,, y.}, learn y=f(x; 0)
— Classification: y is categorical, e.g. digit recognition
— Regression: y is continuous, e.g. temperature, stock price
— Ranking: vy is ordinal

* Unsupervised learning:
— Given {x.}, learn y=f(x; 6)
— Clustering: y is cluster label
— Anomaly detection: y is abnormality

KITS Workshop Tutorial 2017/6/28
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An Example of Binary Classification

y KIE - KIE Kk e HE HE
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Linear Classifier

* A simplest classification model
* Help to understand nonlinear models
* Arguably the most useful classification method!

KITS Workshop Tutorial 2017/6/28
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Two classical linear models

e Support Vector Machines (SVM)

e Logistic Regression (LR)



Support Vector Machines (SVM)

* A powerful method for 2-class classification

— Become very hot since late 90’s

* Key ideas

— Use kernel function to transform low dimensional training samples to
higher dimensions

— Use quadratic programming (QP) to find the best classifier boundary
hyperplane

* Better generalization (less overfitting)
— What is ‘overfitting’?



Overfitting

KITS Workshop Tutorial 2017/6/28
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Overfitting
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Overfitting
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Overfitting
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f(x) §

=

Overfitting

’/ e
il

2 ‘
1) ,45?/ \/

Which curve is desired ?
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* denotes +1

° denotes -1

Linear Classifiers

. ° .
. . o How would you

o ° ’ classify this data?
(] © ° o

KITS Workshop Tutorial 2017/6/28
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* denotes +1

° denotes -1

Linear Classifiers

How would you
classify this data?
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* denotes +1

° denotes -1

Linear Classifiers

How would you
classify this data?
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Linear Classifiers

* denotes +1

° denotes -1

How would you
classify this data?
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Linear Classifiers

* denotes +1

° denotes -1

Any of these

. ° o ..but which is
° o best?

* Essentially, optimization

KITS Workshop Tutorial 2017/6/28
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* denotes +1

° denotes -1

About ‘Margin’

KITS Workshop Tutorial 2017/6/28

Define the margin
of a linear
classifier as the
width that the
boundary could be
increased by
before hitting a
datapoint.
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Maximum Margin

* denotes +1

The maximum
margin linear
- classifier is the
linear classifier
with maximum
margin.

This is the
simplest kind of
SVM (Called an

Linear SVM

° denotes -1
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... and Support Vectors

* denotes +1

° denotes -1

Support Vectors
are those
datapoints that
the margin
pushes up
against

Linear SVM

KITS Workshop Tutorial 2017/6/28

The maximum
margin linear
classifier is the
linear classifier
with maximum
margin.

This is the

simplest kind of
SVM (Called an
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Why Maximum Margin?

* denotes +1

The maximum
margin linear

° denotes -1

©

Intuitively this feels safest.

Support Vectors If we’ ve made a small error in the

3;;;8;?[5 that location of the bounglary this gives us
the margin Iegst cha_lr?ce pf causing a

pushes up misclassification.

against It also helps generalization

There’ s some theory that this is a
good thing.

5. Empirically it works very very well.

o classifier is the

KITS Workshop Tutorial 2017/6/28

34



Obtain the Maximum Margin Classifier

2

x* '\M = Margin Width = o

= /7

X Minimize it!

Given a guess of w and b we can

" Compute whether all data points in the correct half-planes
" Compute the width of the margin

So now we just need to write a program to search the space of

W’ s and b’ s to find the widest margin that matches all the data
points. How? Quadratic Programming (QP)
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Soft Margin

" What if the training set is not linearly separable?

" Slack variables & can be added to allow misclassification

of difficult or noisy examples, resulting so-called soft
margin.

KITS Workshop Tutorial 2017/6/28
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Soft Margin Classification Mathematically

" The old formulation:

Find w and b such that
®(w) =w'w is minimized
and for all (x;,y,), i=1..n: v, (WTx; + b) 2 1

" Modified formulation incorporates slack variables:

Find w and b such that
®(w) =w'w + C2Z¢  is minimized
and for all (x;,y,), =1..n: yiwix,;+b)21-¢ , 20

" Parameter C can be viewed as a way to control
overfitting: it “trades off the relative importance of
maximizing the margin and fitting the training data.
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From Another View...

" The soft margin SVM is equivalent to applying a hinge loss

L(w.b) = zn: max(1 — yi(w’ x; + b),0)

=1

" Equivalent unconstrained optimization formulation

Ming,p LW,DMFAIWI2  A=0.5/C

- Hinge Loss
- 0-1 Loss

y.(w.x+b)

KITS Workshop Tutorial 2017/6/28
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Logistic Regression (LR)

" Binary response: Y ={+1, -1}
Y;i| X; ~ Bernoulli(p;)

where p, is the probability of Y =1

1
- 1+exp(-WTX;)

0.54

Pi

" |ikelihood

n

n 1
[[ Poix) = I (T eprveri)

7=

KITS Workshop Tutorial 2017/6/28
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Logistic Regression (LR)

" Maximum likelihood estimator (MLE) becomes logistic
regression

n

11&1{'112. Inp(Y;| X5) Zln(l-}—exp(Yle W)

" Convex optimization problem in terms of W

" MAP is regularized logistic regression

111111 Z In(1 + exp(Y; XTW )) + )\HUHQ

1=1

KITS Workshop Tutorial 2017/6/28

40



General Formulation of Linear Classifiers

MiNg, 1 L(W,0)+A||w]|2

" The objective: empirical loss + regularization

" The regularization term is usually L2 norm, but
also often L/ norm for sparse models

" The empirical loss can be hinge loss, logistic loss,
smooth hinge loss, ... or your own invention

KITS Workshop Tutorial 2017/6/28
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Summary so far...

ML applications
ML definition
* ML paradigms

— Supervised learning

* Linear classifiers
— SVM
— LR
— General formulation:

— Unsupervised learning

Mingy o) L(W,b)+Al|W]12



Neural Network & Deep Learning

 “Deep learning is the
application to learning tasks
of artificial neural

Why deep learning

networks (ANNSs) that contain 2 Deep leaming
more than one hidden S
layers... £
T
e ...is part of a broader family o

of machine learning methods
based on learning data

representations, as opposed il
to task specific algorithms ...”

How do data science techniques scale with amount of data?

* Deep learning algorithms often perform
Y W) better with more data.
i Stronger computing power (e.g. GPU,

WIKIPEDIA cloud computing) also matters.

The Free Encyclopedia



Neural Networks (NN)

* Consider a supervised learning problem
— Labeled training examples (x{,y!)

* Neural networks give a way of defining a complex,
non-linear form of hypotheses h,, ,(x), with
parameters W, b that we can fit to our data.



Start from a Single Neuron...

X1
X5
—_—> hw,b(x)
X3
+1

hwa(@) = f(WTz) = f(S3, Wiz, +b)

1 ‘ R

* f:activation function

— e.g. the sigmoid function:

| 1
&) = e

0.5+

-6 -4 -2 0 2 4 6
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Feedforward Neural Network

* Aka. Multi-Layer Perceptron (MLP)
e Put together by hooking together many simple “neurons”
e QOutput of a neuron can be input of another

Layer L,

Output layer
+1

Layer L, Layer L,
Input layer Hidden layer



Forward Propagation

* Let o’ denote the activation (output value) of unit i
in layer /

(”)

FVD 2+ W2y + W5 + 6)
ag’) _ f( I (1) x+ W, (1),19 W (I)T; | b(l )
e a? = f(W ,f})al WS s + W s + b))

Layer L;

KITS Workshop Tutorial 2017/6/28

hvy(x) = af? = f(W})a 1) - Wd? + Wa? + b
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Can also have multiple output units

_—
E—
+1 Layer L,
Layer L

e OK, well... so how to train NN?
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First, define cost function

* Given a fixed training dataset

{("r(l)a y(l)): RN ('T(m)a y(m) )}

* Cost function with respect to a single example:

, 1 .
']( ‘ta b~ T, y) - 5 ”h'l“".b(:r) - y“._ .

* Overall cost function (to be minimized):

J(W,b) =

m m 1 s Si4a
EZ] (W, b; 1<*>,J<*)] | —S‘ o f‘ (Iv-t""j(_f))?

=1 i=1 j=1

15 Ctir-)] 5 £ E 0o

=1 i=1 j=1

weight decay
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Then, minimize it

e Batch gradient descent update

5
w® = w® — a—Z_J(W,b)
T ew
o
b

B = b —

J(W, b)
— a: learning rate

— lteratively search for better W and b until a stopping condition is
met

— Susceptible to local optima; however, in practice it usually works
fairly well

* How to efficiently compute these partial derivatives?
— Backpropagation (BP) algorithm



Backpropagation (BP) Algorithm

In one iteration...

1. Perform a feedforward pass, computing the activations for layers L», L3,
and so on up to the output layer L.,,‘,.
2. For each output unit ; in layer n; (the output layer), set

a 2 ng) ’ np)-
Py ||J hwa(z) P = —(yi — ™) - £ (™)

3.Forl=ny—1,n—2,n—3,...,2
For each node i in layer [, set

5 = (Z w® a““)) F0)

4. Compute the desired partial derivatives, which are given as:

é("l)

m;—),u)'](” b z,y) = a5 6y

(')

D J(W, b z,y) = 6 Y.

KITS Workshop Tutorial 2017/6/28
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Deep Network

Shallow!

\\ a
YA
’A: a
X —> P(y=0 | x)
a3
+1

Input Features Logistic

* Deep = Multiple hidden layers

* A deep network can have
significantly greater
representational power than
a shallow one

— can learn significantly more
complex functions

classifier
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In the case of images...

Deep networks can learn part-whole
decompositions

~ o AcEae=
ASAULEY. ECLOmCIN
SR I =
N R

temao®

KITS Workshop Tutorial 2017/6/28
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Popular Deep Neural Nets

Autoencoder (AE)

Convolutional Neural Network (CNN)
Recurrent Neural Network (RNN)
Generative Adversarial Network (GAN)



Popular Deep Neural Nets

e Autoencoder (AE)
* Convolutional Neural Network (CNN)



Autoencoder

* Unsupervised learning
— try to learn a function

hwao(z) =
* By placing sparsity ()
constraints on the
network, we can discover
Interesting structure
about the data

— E.g. learn a compressed
representation of input data  wayery,

Layer L, Layer L,

KITS Workshop Tutorial 2017/6/28 56



Sparsity Constraint

* Think of a neuron (assuming a sigmoid activation
function)

— as being "active" if its output value is close to 1
— as being "inactive" if its output value is close to O

e We'd like to constrain neurons to be inactive
most of the time

— Activation becomes sparse in the network



Mathematically

* Average activation of hidden unit

— averaged over the training set

m

A 1 2 i
Pi = ; Z [(LE ')(;'],‘('))j|

i=1

* Approximately enforce the constraint
Pi = P

— P is a sparsity parameter, typically a small value close to
zero (say 0.05)

— To satisfy this constraint, hidden unit's activations must
mostly be near zero



Define a penalty term

* Atypical form:

S92 1 —
Zplogg F(1— p)log —~2-
= Pj L =pj

— summing over the hidden units in network

* Itis the Kullback-Leibler (KL) divergence between a
Bernoulli random variable with mean p and a
Bernoulli random variable with mean p;

Y KL(p||5),
j=1

KL(pl|p;) = plog £ + (1 - p) log ;=2

S 1-p;



Property of KL divergence

KL(p||pj) = plog £ + (1 - p) log ;=2

T 1

4 1 | |
0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9
Average activation of hidden unit

KITS Workshop Tutorial 2017/6/28
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Cost Function of Autoencoder

The overall cost function with adding the sparsity penalty:

Jeparse( W, b) = J(W, b) JZI\L (pl15;),

— 3 controls weight of sparsity penalty

To incorporate the KL-divergence term into derivative
calculation in BP:

_ Replace ()( 2) (Z” (7 O(‘)) (9))

with 5 - ((Z u';;-’»s@) (L ize 1))) FE0)
-1 pi — Pi
J=1

Then, we can use BP to train an autoencoder



What does Autoencoder learn?

 Compressed representation (or say, features)
— Qutputs of hidden units 100
a? = f (Z l-‘Iv-"",;(J-l);r‘,- I bg”) :

 What does it look like? Any intuitive
interpretations?
— Suppose input training data are 10x10 (n=100) images

— The image would cause ¥ to be maximally activated:
o J=1,,1OO ‘"I-":.(.l)
T;= — J .
VR




Visually...

* Suppose an autoencoder

with 100 hidden units e BNPAd =N
— One image per hidden unit 2Nl JE TR
Vsl N7

Different hidden units have ‘:‘,l-mts’l-r‘“
learned to detect edges E-. ‘ ".“i-_
— at different positions and ol ':u[ U |
orientations in the image .l ‘n'f'. I'E:“

L L9 =" | TS

These features are useful for ﬂnl'l!lﬂ'l" |
object recognition and other ALAF INE 1IN

vision tasks
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Handwritten Digit Recognition

e On MNIST dataset

* Features learned by
autoencoder

— Pen strokes
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Convolutional Neural Network (CNN)

Supervised learning
— Typically for image classification tasks
— Output is a softmax: Generalization of LR for multi-class problems

LeNet (LeCun et al. 1998)

— Sparse, convolutional layers and max-pooling are at the heart of the
LeNet family of models

C3: f. maps 16@10x10
S4: f. maps 16@5x5

CS:layer £g.jayer OUTPUT
120 8 o 10

C1: feature maps

INPUT
- 6@28x28

S2: f. maps
6@14x14

I
| Full oonAection | Gaussian connections

Convolutions Subsampling Convolutions  Subsampling Full connection

KITS Workshop Tutorial 2017/6/28
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Fully Connected V.S. Locally Connected

* Fully connected networks

— Traditional NN
* "fully connect" all hidden units to all
input units
— Computationally expensive
* Many weights to learn

* Locally connected networks
— Sparse connectivity:
* Allow each hidden unit to connect to only a small subset of input units

— Draws inspiration from how the early visual system is wired up
in biology

* neurons in the visual cortex have localized receptive fields (i.e., they
respond only to stimuli in a certain location)



Feature Extraction using Convolution:
A Simple Example

Apply a 3x3 feature detector (or say, filter, convolution kernel) anywhere in
input image
— 3x3: Receptive field size (i.e. filter shape)

Convolve the filter with the larger image to obtain a different feature
activation value at each location in the image

1x1 1x0 1x1 0 O
1/0(1 0, 1/1/1]|0 4
O 0 ()xl Q<0 1x1 1 1
1/0]1 0/|0|1]|1]|0
0/|1|1|/0]|0
Filter image Convolved

Feature



ldentical to “Shared Weights”

* Each filter is replicated across the entire visual field

— They share the same weight vector, and form a feature
map

— Weights of the same color are shared—constrained to be
identical

— Locally connected

layer m

layer m- | O OO O

KITS Workshop Tutorial 2017/6/28
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Pooling

* Convolved features could be too many
— High dimension makes learning hard
— Prone to overfitting

* Pooling

— Sub-sampling .

— Dimension reduction

— Translation invariant Convolved
— Max/mean/random pooling feature

KITS Workshop Tutorial 2017/6/28
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feature
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Some Classical CNNs

* AlexNet (Krizhevsky et al. 2012)
— Winner of ImageNet LSVRC 2012, top-5 error 15.3%

— 8 layers: 5 conv (2 with LRN, 3 with pooling) + 3 FC (2 with
dropout) layers

 GoogleNet (Szegedy et al. 2015)
— Winner of ImageNet LSVRC 2014, top-5 error 6.67%
— 22 layers

 ResNet (He et al. 2016)
— Winner of ImageNet ILSVRC & COCO 2015, top-5 error 3.57%
— “Ultra-deep”, 152 layers



Revolution of Depth 282
[ 152 layers ] :

‘ 22 layers ’ ‘ 19 Iayers

\67

357

ILSVRC'15  ILSVRC'14 ILSVRC'14  ILSVRC'13  ILSVRC'12 ILSVRC'11 ILSVRC'10
ResNet GoogleNet VGG AlexNet

ImageNet Classification top-5 error (%)

Figure source: Kaiming He
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AlexNet Architecture
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Features Learned

* ... by the first convolutional layer

KITS Workshop Tutorial 2017/6/28

73



mite

container ship

motor scooter

Ieopa rd

mite container ship motor scooter ledpard
black widow lifeboat go-kart jaguar
cockroach amphibian moped cheetah
tick fireboat bumper car snow leopard
starfish drilling platform golfcart Egyptian cat

. z , ™

y
o . -
K& '

s .3,

%
grille mushroom cherry Madagascar cat
convertible agaric dalmatiah squirrel monkey
grille mushroom grape spider monkey
pickup jelly fungus elderberry titi
beach wagon gill fungus |ffordshire bullterrier indri

fire engine

dead-man's-fingers

currant

howler monkey

KITS Workshop Tutorial 2017/6/28

74



The last 4096d activations...
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Many tricks & details!

Initialization of weights

Selection of activation functions
#layers

#feature maps

Filter size & shape, pooling shape
Normalization

Learning rate

Data augmentation

Parameter tuning

More like black box than traditional ML methods!



Deep Learning is now leading
the “Al Revolution”

Voice Recognition Healthcare
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Summary

From a single neuron to feedforward NN (MLP)
— BP algorithm

— Deep vs. Shallow

Popular deep nets

— Autoencoder
— CNN

Deep learning models are being used for very difficult
problems and making progress

Deep learning is hot, it is delivering results and now is the
time to get involved!






