
A Brief Introduction to Machine Learning

Weishan Dong 董维山 Big Data Lab, Baidu Research

About me

- Weishan Dong 董维山
 - Sr. Data Scientist, BDL, Baidu Research, 2016 now
 - Research Leader/Manager, IBM Research China (aka CRL), 2009 2016
 - PhD, Institute of Automation, CAS, 2009
 - Joint PhD study, University of Birmingham, UK, 2008
 - B.E., USTC, 2004
- Experience
 - 40+ publications, 50+ patents
 - Tech Leader of Baidu Medical Brain project, Baidu AI Technical Committee member (20 in all)
 - IBM Master Inventor (1/3000 per year), 10x IBM Invention Achievement Awards, 4x IBM Research Accomplishments, 1x IBM Research Division Award
 - Best Paper Award, IEEE INFORMS SOLI (2011)
 - Reviewer/PC member of TKDE, TEVC, JCST, IJCAI, ICDM, etc.

Acknowledgements

- Materials of this tutorial are partly from

 DragonStar 2012 summer course by Kai Yu
 UFLDL online course by Andrew Ng
- and with reorganization


The BIG DATA era...

- Web: estimated Google index 45 billion pages
- Click-stream data: 10-100 TB/day
- Transaction data: 5-50 TB/day
- Satellite image feeds: ~ITB/day/satellite
- Biological data: I-10TB/day/sequencer
- TV: 2TB/day/channel; YouTube 4TB/day uploaded
- Photos: 1.5 billion photos/week uploaded
- Digitized telephony: ~100 petabytes/day
- How to better utilize the value of data?

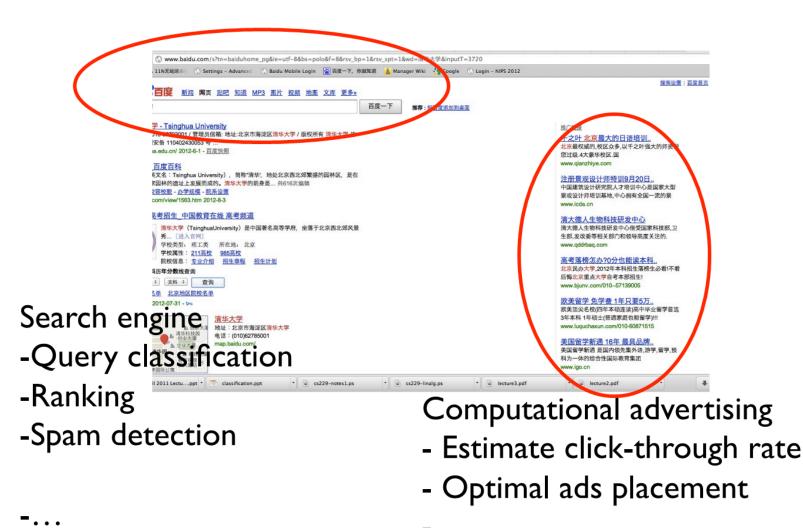
Machine Learning (ML)

"... a scientific discipline that deals with the construction and study of algorithms that can learn from data."

ML applications are everywhere

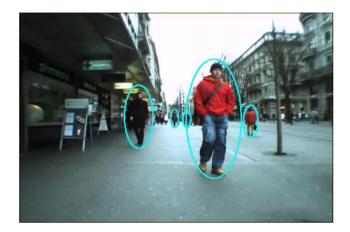
- Recommendation
- Web Search
- Computer Vision
- Driverless Car
- Speech Recognition
- Natural Language Processing (NLP)

Recommendation

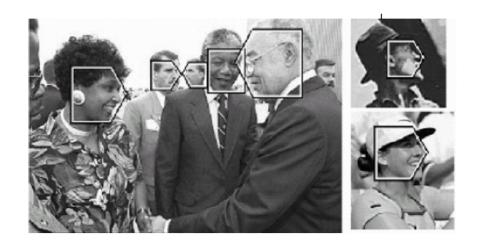

Amazon.com recommends products based on purchase history

< 5 ×	C 🗙 🐟 😹 🕑	Mp (here are	zon.om/gp/yourstam	hef-pd_H_gw					승립 - 책	neon ples bay area	P - 0
8. Amaza	n.com: Recommende	d for You 🔶									
ama	zon.com	Hello, LESTER	Vie 1	are recommendat	ione for you. (Not LE	STER?)			The	TwilightSaga: New MoonPres	item mure
\sim		LESTER's Arnaz	ron.com 101 Toda	ay's Deals Gifts I	& Web Lists GR	Cardo					Your Account Help
Shop Al	Departments 😪	Search AllDe	epartments	~						😳 👾 сыл	Wish List 💌
LESTER's	Amazon.com	Your Drove	oing Hatary	Recommende	ediffer Vou	Fale These Bers	: Ingrove I	four Recommendations	Your Profile	Your Communities	Learn/Hore
LESTE	R, Welcome to	your Ama	zon.com (<u>st v</u>	No of LOTES W	MACKEY JR. elsk la	(m)					
Toda	y's Recomme	ndations Fo	ar You								
Here's a daily sample of items recommended for you. Cick here to see all recommendations. Page 1 of 2								Page 1 of 22			
◄	Annapati Sectors of Sectors of Producting			-			Long Hard	3		INPERIOR	
	Acomptatic Theory Plandower) by Ar DesCupte Welkfield (2) \$71.0 fix this recommen	virlaan Xi	Corregator Rotas Top. Doc., (Harda Zaman P. Karasa Anishiki (NY) N Fiz this recommo	0.00	Second Foundation Name (Mana Mark by Januar Asimory Weights (72) 17 Fig. Sein recomme	at Paparback]	Loaming About Languag Anna (Paparback) by Rathlann Bailey 922.77 Fix this recommendation	(Hardsson) Ross 黄麻素水浴 (Pi		Hyperion (Mass Marlett Paperback) by Dan Simon Activities (493) 17:00 Fix the recommendation	070
	Any Category	Action & Adve	nture Adventur	Artificial Inte	eligence Calcu	us Card, Or	son Scott - compu	ter Mathematics Conte	mporary Dissipline	e Epio Fantasy I	Fiction
	Lting	le, Madeleine	Linear Linea	r Programming	Linguistics	Literature & F	ction Mathematical #	inalysis Hathematical I	Physics Nethods	Operating Systems	
		Pro	fessional &	Technical	Programming Lar	iguages Silen	ce fiction, Fantasy, & Mag	ic Software Developm	ent Stochaetic Med	lating	

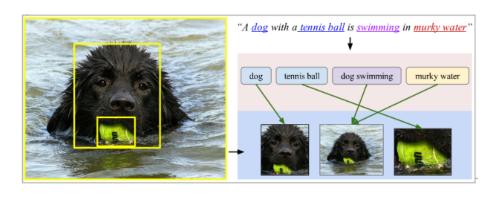
Linder et al., 2003 Recommendation contributes 35% of sales in Amazon

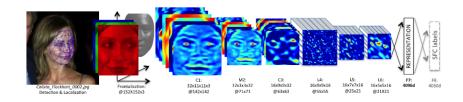

KITS Workshop Tutorial 2017/6/28

Web Search


Computer Vision

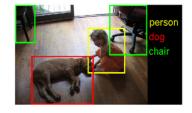
- Object recognition, detection, tracking
- Scene segmentation, understanding
- Action/behavior recognition
- Image tagging and search
- Optical character recognition (OCR)




ImageNet Challenge: 1000 categories, 1.2 million images for training


Records Set by Deep Learning

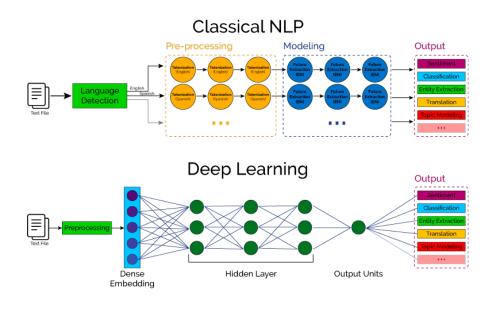
- ImageNet classification: < 5% top-5 error
- Face recognition: 98% accuracy
- Handwritten digit recognition: 0.23% error
- And, even scene understanding: Computer-generated image descriptions



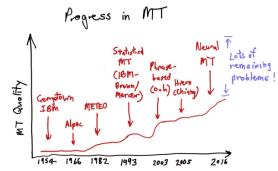
IM GENET

Driverless Car

Speech Recognition



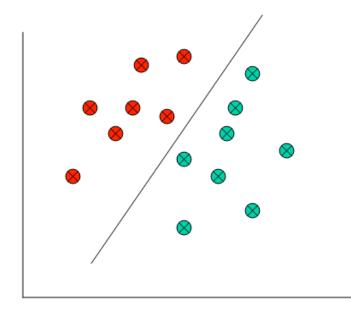
语音输入	
	× ↓ 请讲话
	2 中 J % 🕢
KIT\$ Workshop Tutorial 2017/6/28	


Natural Language Processing (NLP)

- Machine translation
- Information Extraction
- Information Retrieval, question answering
- Text classification, spam filtering, etc....

Paradigms of Machine Learning

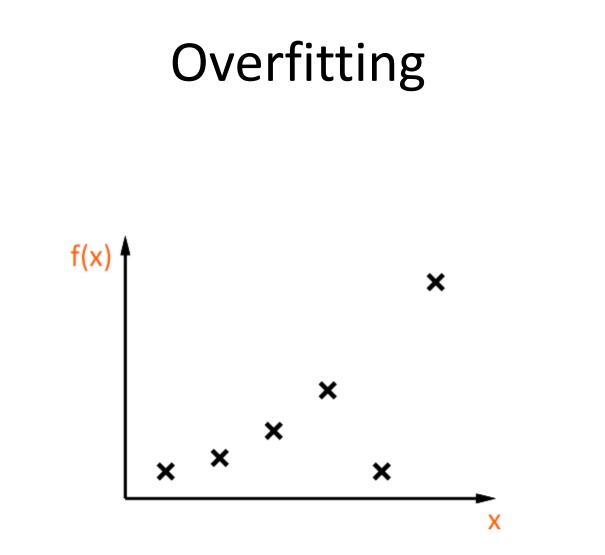
- Supervised learning:
 - Given $\{x_i, y_i\}$, learn y=f(x; θ)
 - Classification: y is categorical, e.g. digit recognition
 - Regression: y is continuous, e.g. temperature, stock price
 - Ranking: y is ordinal
- Unsupervised learning:
 - Given $\{x_i\}$, learn y=f(x; θ)
 - Clustering: y is cluster label
 - Anomaly detection: y is abnormality

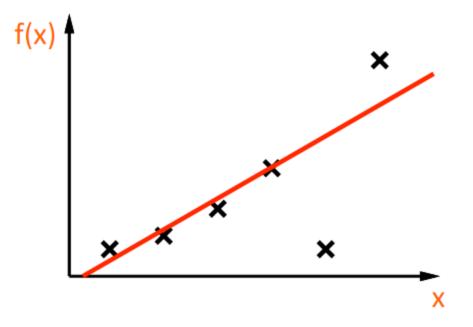

An Example of Binary Classification

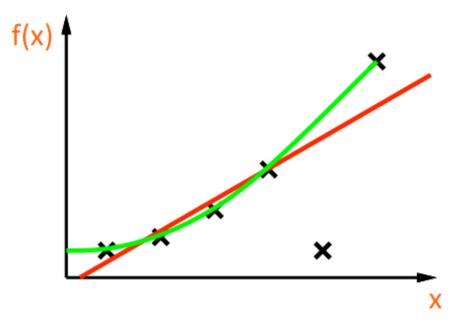
Y 长颈鹿 长颈鹿 长颈鹿 神兽 神兽 神兽

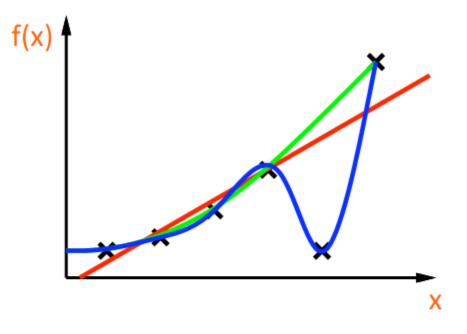
f(x) = ?

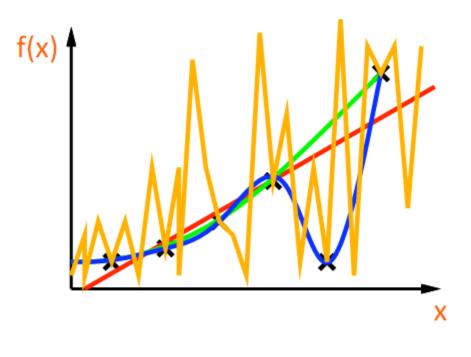
- A simplest classification model
- Help to understand nonlinear models
- Arguably the most useful classification method!

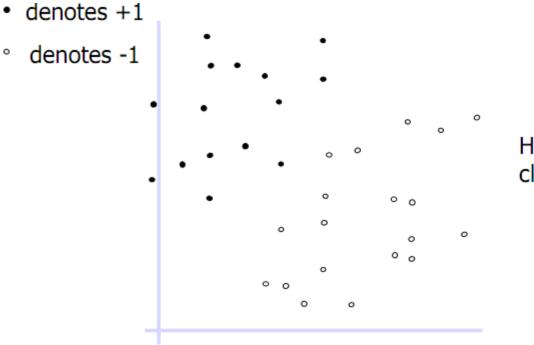

Two classical linear models

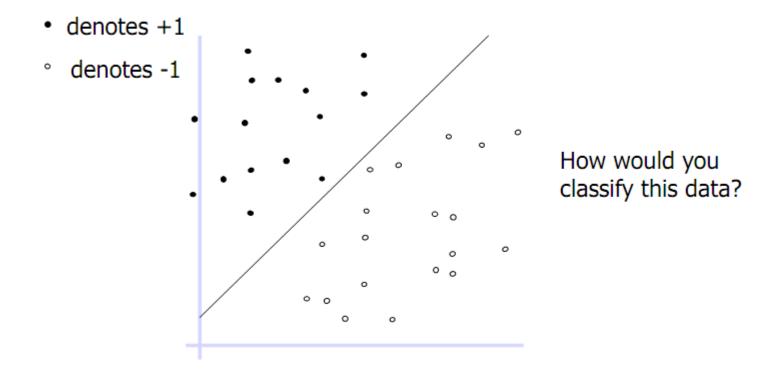

• Support Vector Machines (SVM)

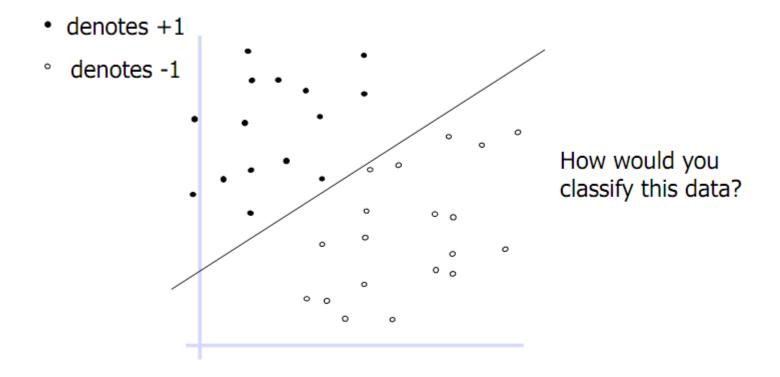

• Logistic Regression (LR)

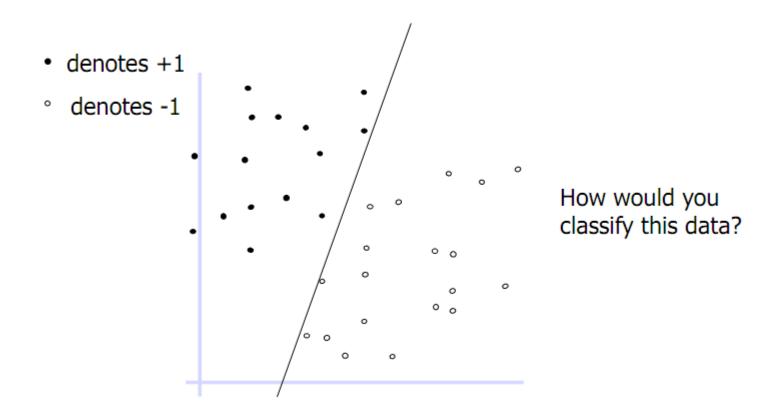

Support Vector Machines (SVM)

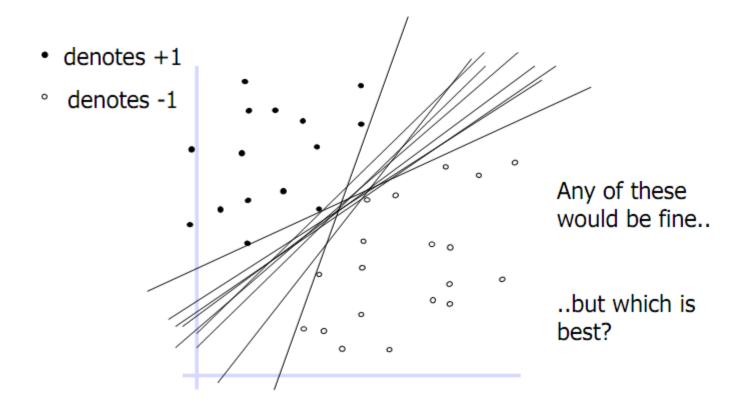

- A powerful method for 2-class classification
 - Become very hot since late 90's
- Key ideas
 - Use kernel function to transform low dimensional training samples to higher dimensions
 - Use quadratic programming (QP) to find the best classifier boundary hyperplane
- Better generalization (less overfitting)
 - What is 'overfitting'?



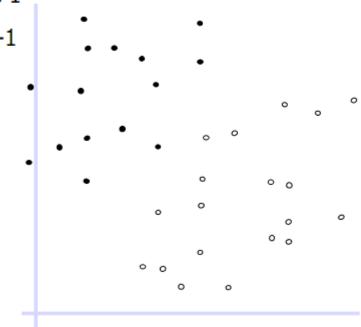




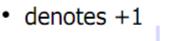

Which curve is desired ?



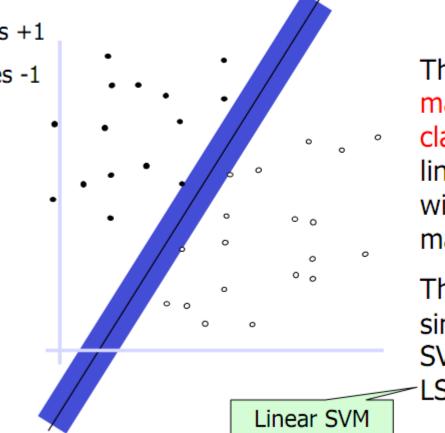
How would you classify this data?



• Essentially, optimization

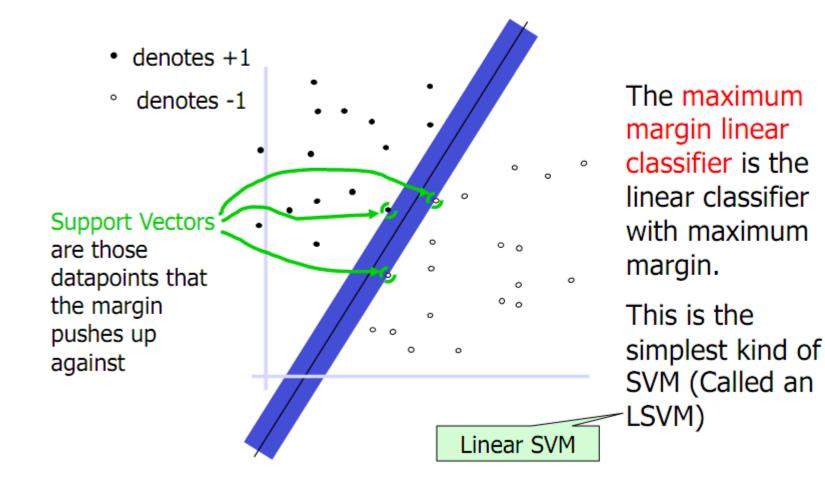

About 'Margin'

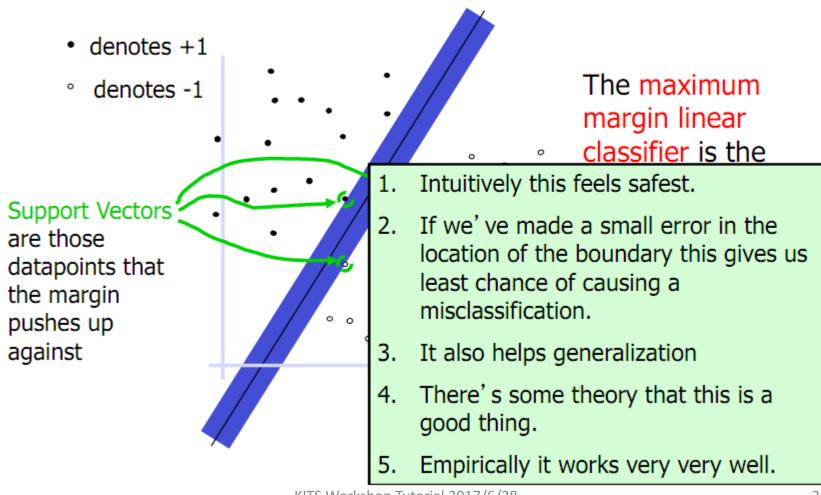
- denotes +1
- denotes -1



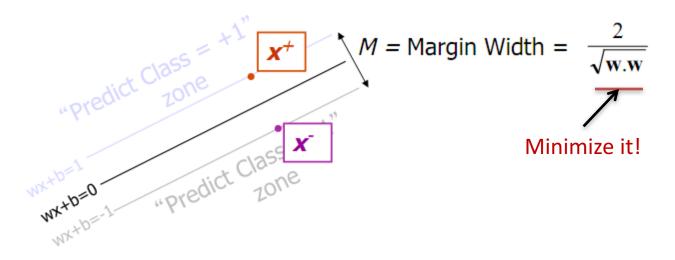
Define the margin of a linear classifier as the width that the boundary could be increased by before hitting a datapoint.

Maximum Margin


denotes -1


The maximum margin linear classifier is the linear classifier with maximum margin.

This is the simplest kind of SVM (Called an LSVM)


... and Support Vectors

Why Maximum Margin?

Obtain the Maximum Margin Classifier

Given a guess of w and b we can

- Compute whether all data points in the correct half-planes
- Compute the width of the margin

So now we just need to write a program to search the space of w's and b's to find the widest margin that matches all the data points. How? Quadratic Programming (QP)

Soft Margin

- What if the training set is not linearly separable?
- Slack variables ε_i can be added to allow misclassification of difficult or noisy examples, resulting so-called soft margin.

Soft Margin Classification Mathematically

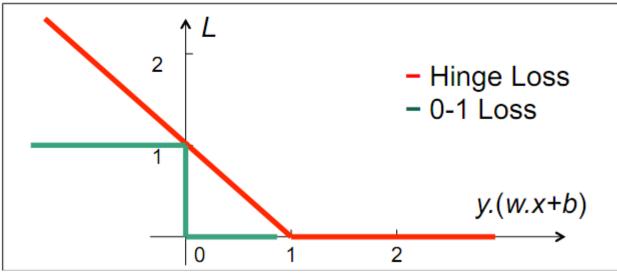
The old formulation:

Find **w** and b such that $\Phi(\mathbf{w}) = \mathbf{w}^{\mathsf{T}}\mathbf{w}$ is minimized and for all (\mathbf{x}_i, y_i) , i=1..n: $y_i (\mathbf{w}^{\mathsf{T}}\mathbf{x}_i + b) \ge 1$

Modified formulation incorporates slack variables:

Find **w** and b such that $\Phi(\mathbf{w}) = \mathbf{w}^{\mathsf{T}}\mathbf{w} + C\Sigma\xi_i$ is minimized and for all (\mathbf{x}_i, y_i) , i=1..n: $y_i (\mathbf{w}^{\mathsf{T}}\mathbf{x}_i + b) \ge 1 - \xi_i$, $\xi_i \ge 0$

Parameter C can be viewed as a way to control overfitting: it "trades off" the relative importance of maximizing the margin and fitting the training data.

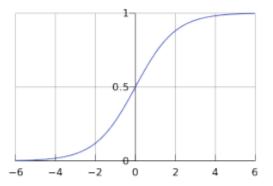

From Another View...

The soft margin SVM is equivalent to applying a hinge loss

$$L(w,b) := \sum_{i=1}^{n} \max(1 - y_i(w^T x_i + b), 0)$$

Equivalent unconstrained optimization formulation

$$\min_{\{\mathbf{w},b\}} L(\mathbf{w},b) + \lambda ||\mathbf{w}||^2 \qquad \lambda = 0.5/C$$


Logistic Regression (LR)

Binary response: Y = {+1, -1}

 $Y_i | X_i \sim \text{Bernoulli}(p_i)$

$$p_i = \frac{1}{1 + \exp(-W^T X_i)}$$

Likelihood

$$\prod_{i=1}^{n} P(Y_i | X_i) = \prod_{i=1}^{n} \left(\frac{1}{1 + \exp(-Y_i X_i^T W)} \right)$$

Logistic Regression (LR)

Maximum likelihood estimator (MLE) becomes logistic regression

$$\min_{W} \sum_{i=1}^{n} -\ln p(Y_i | X_i) = \sum_{i=1}^{n} \ln(1 + \exp(Y_i X_i^T W))$$

- Convex optimization problem in terms of W
- MAP is regularized logistic regression

$$\min_{W} \sum_{i=1}^{n} \ln(1 + \exp(Y_i X_i^T W)) + \lambda \|W\|^2$$

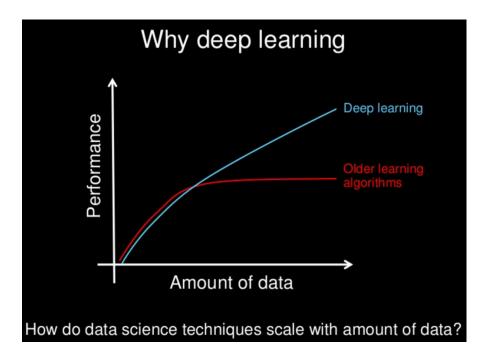
General Formulation of Linear Classifiers

$\min_{\{\mathbf{w},b\}} L(\mathbf{w},b) + \lambda ||\mathbf{w}||^2$

- The objective: empirical loss + regularization
- The regularization term is usually L2 norm, but also often L1 norm for sparse models
- The empirical loss can be hinge loss, logistic loss, smooth hinge loss, ... or your own invention

Summary so far...

- ML applications
- ML definition
- ML paradigms
 - Supervised learning
 - Linear classifiers
 - SVM
 - LR
 - General formulation:

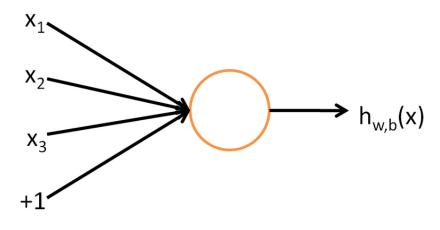

```
\min_{\{\mathbf{w},b\}} L(\mathbf{w},b)+\lambda ||\mathbf{w}||^2
```

- Unsupervised learning

Neural Network & Deep Learning

- "Deep learning is the application to learning tasks of artificial neural networks (ANNs) that contain more than one hidden layers...
- ... is part of a broader family of machine learning methods based on <u>learning data</u> <u>representations</u>, as opposed to task specific algorithms ..."

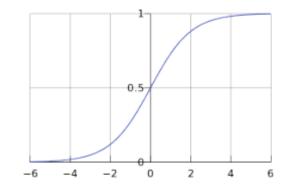
Deep learning algorithms often perform better with more data. Stronger computing power (e.g. GPU, cloud computing) also matters.


Neural Networks (NN)

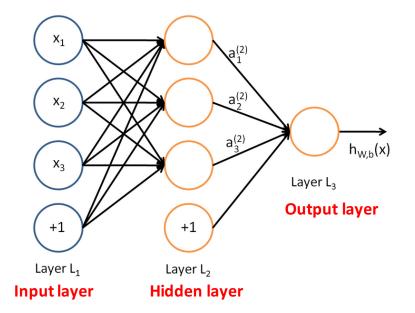
Consider a supervised learning problem

- Labeled training examples $(x^{(i)}, y^{(i)})$

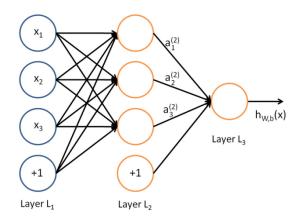
 Neural networks give a way of defining a complex, non-linear form of hypotheses h_{W,b}(x), with parameters W, b that we can fit to our data.


Start from a Single Neuron...

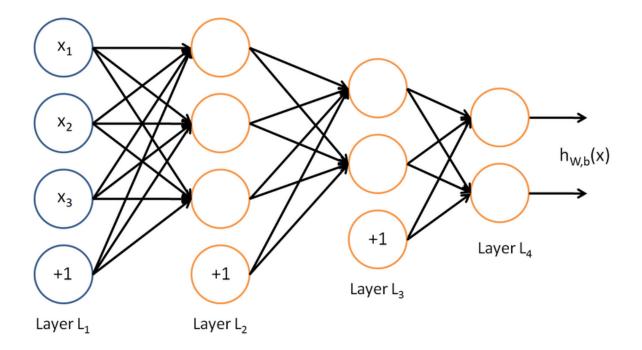
$$h_{W,b}(x) = f(W^T x) = f(\sum_{i=1}^3 W_i x_i + b)$$


- *f*: activation function
 - e.g. the sigmoid function:

$$f(z) = \frac{1}{1 + \exp(-z)}.$$


Feedforward Neural Network

- Aka. Multi-Layer Perceptron (MLP)
- Put together by hooking together many simple "neurons"
- Output of a neuron can be input of another


Forward Propagation

• Let $a_i^{(l)}$ denote the **activation** (output value) of unit *i* in layer *I*

$$\begin{aligned} a_1^{(2)} &= f(W_{11}^{(1)}x_1 + W_{12}^{(1)}x_2 + W_{13}^{(1)}x_3 + b_1^{(1)}) \\ a_2^{(2)} &= f(W_{21}^{(1)}x_1 + W_{22}^{(1)}x_2 + W_{23}^{(1)}x_3 + b_2^{(1)}) \\ a_3^{(2)} &= f(W_{31}^{(1)}x_1 + W_{32}^{(1)}x_2 + W_{33}^{(1)}x_3 + b_3^{(1)}) \\ h_{W,b}(x) &= a_1^{(3)} &= f(W_{11}^{(2)}a_1^{(2)} + W_{12}^{(2)}a_2^{(2)} + W_{13}^{(2)}a_3^{(2)} + b_1^{(2)}) \end{aligned}$$

Can also have multiple output units

• OK, well... so how to train NN?

First, define cost function

• Given a fixed training dataset

 $\{(x^{(1)}, y^{(1)}), \dots, (x^{(m)}, y^{(m)})\}$

• Cost function with respect to a single example:

$$J(W,b;x,y) = \frac{1}{2} \|h_{W,b}(x) - y\|^2.$$

• Overall cost function (to be minimized):

$$J(W,b) = \left[\frac{1}{m}\sum_{i=1}^{m} J(W,b;x^{(i)},y^{(i)})\right] + \frac{\lambda}{2}\sum_{l=1}^{n_l-1}\sum_{i=1}^{s_l}\sum_{j=1}^{s_{l+1}} \left(W_{ji}^{(l)}\right)^2$$
$$= \left[\frac{1}{m}\sum_{i=1}^{m} \left(\frac{1}{2} \left\|h_{W,b}(x^{(i)}) - y^{(i)}\right\|^2\right)\right] + \frac{\lambda}{2}\sum_{l=1}^{n_l-1}\sum_{i=1}^{s_l}\sum_{j=1}^{s_{l+1}} \left(W_{ji}^{(l)}\right)^2$$

weight decay

Then, minimize it

• Batch gradient descent update

$$W_{ij}^{(l)} = W_{ij}^{(l)} - \alpha \frac{\partial}{\partial W_{ij}^{(l)}} J(W, b)$$
$$b_i^{(l)} = b_i^{(l)} - \alpha \frac{\partial}{\partial b_i^{(l)}} J(W, b)$$

- α : learning rate
- Iteratively search for better W and b until a stopping condition is met
- Susceptible to local optima; however, in practice it usually works fairly well
- How to efficiently compute these partial derivatives?
 - Backpropagation (BP) algorithm

Backpropagation (BP) Algorithm

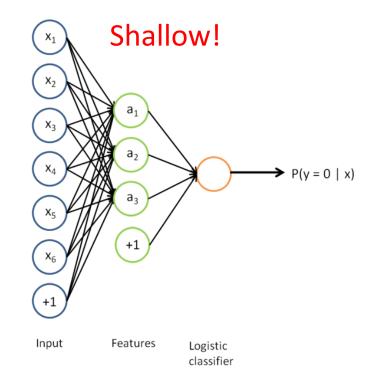
- In one iteration...
 - 1. Perform a feedforward pass, computing the activations for layers L_2 , L_3 , and so on up to the output layer L_{n_l} .
 - 2. For each output unit *i* in layer n_l (the output layer), set

$$\delta_i^{(n_l)} = \frac{\partial}{\partial z_i^{(n_l)}} \frac{1}{2} \|y - h_{W,b}(x)\|^2 = -(y_i - a_i^{(n_l)}) \cdot f'(z_i^{(n_l)})$$

3. For
$$l = n_l - 1, n_l - 2, n_l - 3, \dots, 2$$

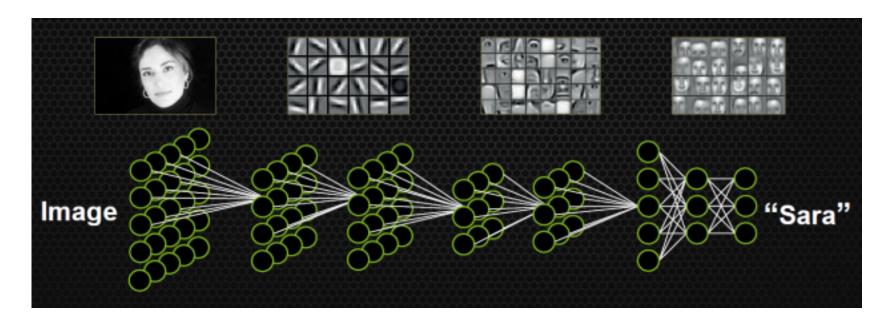
For each node *i* in layer *l*, set

$$\delta_i^{(l)} = \left(\sum_{j=1}^{s_{l+1}} W_{ji}^{(l)} \delta_j^{(l+1)}\right) f'(z_i^{(l)})$$


4. Compute the desired partial derivatives, which are given as:

$$\begin{aligned} &\frac{\partial}{\partial W_{ij}^{(l)}} J(W,b;x,y) = a_j^{(l)} \delta_i^{(l+1)} \\ &\frac{\partial}{\partial b_i^{(l)}} J(W,b;x,y) = \delta_i^{(l+1)}. \end{aligned}$$

KITS Workshop Tutorial 2017/6/28


Deep Network

- **Deep** = Multiple hidden layers
- A deep network can have significantly greater representational power than a shallow one
 - can learn significantly more complex functions

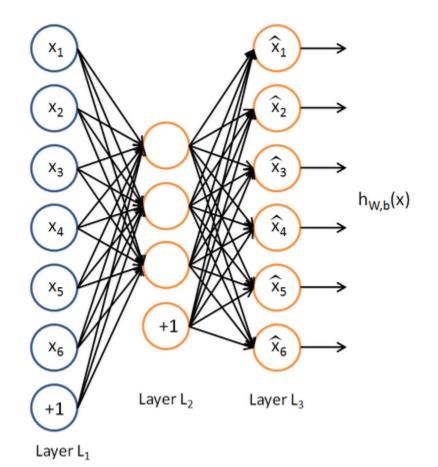
In the case of images...

 Deep networks can learn part-whole decompositions

Popular Deep Neural Nets

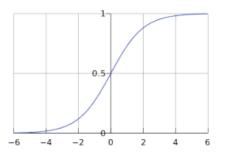
- Autoencoder (AE)
- Convolutional Neural Network (CNN)
- Recurrent Neural Network (RNN)
- Generative Adversarial Network (GAN)

Popular Deep Neural Nets


- Autoencoder (AE)
- Convolutional Neural Network (CNN)
- Recurrent Neural Network (RNN)
- Generative Adversarial Network (GAN)

Autoencoder

- Unsupervised learning
 - try to learn a function


 $h_{W,b}(x) \approx x$

- By placing sparsity constraints on the network, we can discover interesting structure about the data
 - E.g. learn a *compressed* representation of input data

Sparsity Constraint

- Think of a neuron (assuming a sigmoid activation function)
 - as being "active" if its output value is close to 1
 - as being "inactive" if its output value is close to 0

- We'd like to constrain neurons to be inactive most of the time
 - Activation becomes **sparse** in the network

Mathematically

- Average activation of hidden unit *j*
 - averaged over the training set

$$\hat{\rho}_j = \frac{1}{m} \sum_{i=1}^m \left[a_j^{(2)}(x^{(i)}) \right]$$

• Approximately enforce the constraint

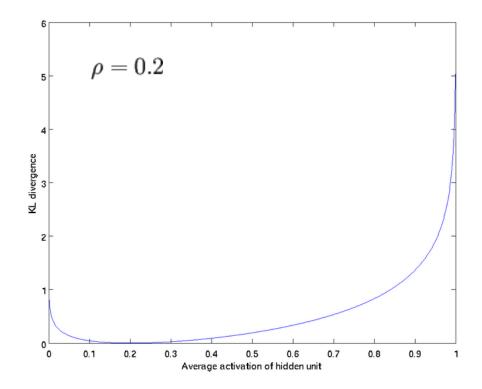
$$\hat{\rho}_j = \rho,$$

- ρ is a **sparsity parameter**, typically a small value close to zero (say 0.05)
- To satisfy this constraint, hidden unit's activations must mostly be near zero

Define a penalty term

• A typical form:

$$\sum_{j=1}^{s_2} \rho \log \frac{\rho}{\hat{\rho}_j} + (1-\rho) \log \frac{1-\rho}{1-\hat{\rho}_j}.$$


- summing over the hidden units in network

 It is the Kullback-Leibler (KL) divergence between a Bernoulli random variable with mean ρ and a Bernoulli random variable with mean ρ̂_j

$$\sum_{j=1}^{s_2} \mathrm{KL}(\rho || \hat{\rho}_j),$$
$$\mathrm{KL}(\rho || \hat{\rho}_j) = \rho \log \frac{\rho}{\hat{\rho}_j} + (1 - \rho) \log \frac{1 - \rho}{1 - \hat{\rho}_j}$$

Property of KL divergence

$$\mathrm{KL}(\rho||\hat{\rho}_j) = \rho \log \frac{\rho}{\hat{\rho}_j} + (1-\rho) \log \frac{1-\rho}{1-\hat{\rho}_j}$$

Cost Function of Autoencoder

• The overall cost function with adding the sparsity penalty: $J_{\text{sparse}}(W, b) = J(W, b) + \beta \sum_{i=1}^{s_2} \text{KL}(\rho || \hat{\rho}_j),$

 $-\beta$ controls weight of sparsity penalty

• To incorporate the KL-divergence term into derivative calculation in BP:

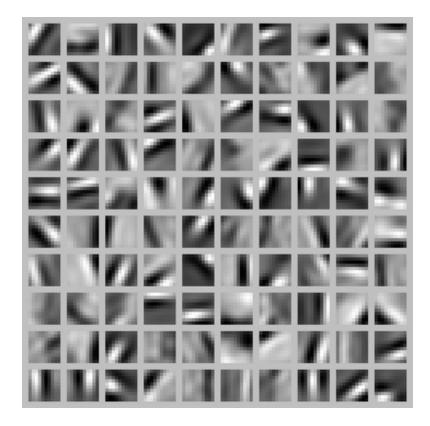
- Replace
$$\delta_i^{(2)} = \left(\sum_{j=1}^{s_2} W_{ji}^{(2)} \delta_j^{(3)}\right) f'(z_i^{(2)}),$$

with
$$\delta_i^{(2)} = \left(\left(\sum_{j=1}^{s_2} W_{ji}^{(2)} \delta_j^{(3)} \right) + \beta \left(-\frac{\rho}{\hat{\rho}_i} + \frac{1-\rho}{1-\hat{\rho}_i} \right) \right) f'(z_i^{(2)}).$$

• Then, we can use BP to train an autoencoder

What does Autoencoder learn?

- Compressed representation (or say, features)
 - Outputs of hidden units


$$a_i^{(2)} = f\left(\sum_{j=1}^{100} W_{ij}^{(1)} x_j + b_i^{(1)}\right).$$

- What does it look like? Any intuitive interpretations?
 - Suppose input training data are 10x10 (n=100) images
 - The image would cause $a_i^{(2)}$ to be maximally activated:

j=1,...,100
$$x_j = \frac{W_{ij}^{(1)}}{\sqrt{\sum_{j=1}^{100} (W_{ij}^{(1)})^2}}$$

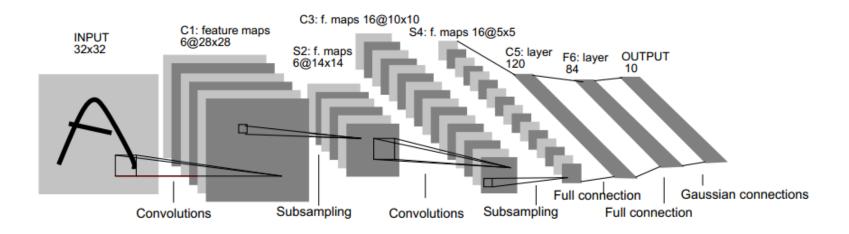
Visually...

- Suppose an autoencoder with 100 hidden units
 - One image per hidden unit
- Different hidden units have learned to detect edges
 - at different positions and orientations in the image
- These features are useful for object recognition and other vision tasks

Handwritten Digit Recognition

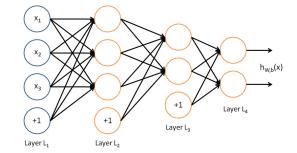
• On MNIST dataset

9665407401 3134727121 1742351244


- Features learned by autoencoder
 - Pen strokes

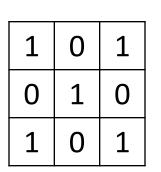
100		2	1	8	8	ê	Q.	2	3	N.	2	C	1
	0	3	9	i	67	7	E	Ú,	0	6	3		0
The second	100	3	2	3	3		3	-	C	1	9	a.	-
15	(5)	1	49	1	1		0	\mathbf{C}_{ij}		6.	31	1	•
7	3	2	\$3	1)	1	10	2	ġ.		0		3
0	1	1	C	53	0	3	0	1	12	2	1	6	0
3	1	Ø	25	1	0	1	\$	3	2	11	\$	e	1
3	1	14	0	6	7	6		Ś	W	1	57	1	×
	3	5	2	6	1	3	4	The second	12	1	9	6	1
1	10	5	10	X	30	1	0	1	6	0	6	1	10
3	0		10	9	1	C	2	3	1	1	JC.	6	3
-)	6	6	C	0	9	3	-	\$	2	ale a	1	18
10	I	(23)	*	15	0	5	J	6	6	2		3	2
	0	5	0	0	0	U	1	3	Y	1	15%	3	6

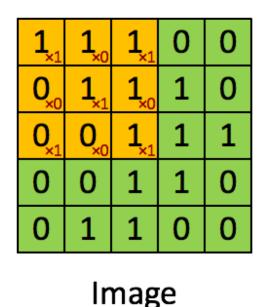
Convolutional Neural Network (CNN)

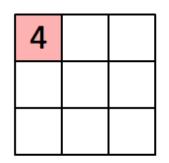

• Supervised learning

- Typically for image classification tasks
- Output is a softmax: Generalization of LR for multi-class problems
- LeNet (LeCun et al. 1998)
 - Sparse, convolutional layers and max-pooling are at the heart of the LeNet family of models

Fully Connected V.S. Locally Connected

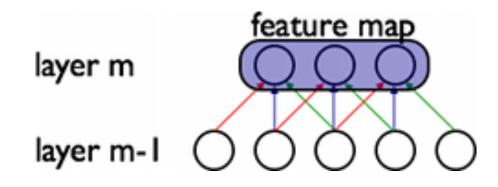

- Fully connected networks
 - Traditional NN
 - "fully connect" all hidden units to all input units
 - Computationally expensive
 - Many weights to learn


- Locally connected networks
 - Sparse connectivity:
 - Allow each hidden unit to connect to only a small subset of input units
 - Draws inspiration from how the early visual system is wired up in biology
 - neurons in the visual cortex have localized receptive fields (i.e., they respond only to stimuli in a certain location)

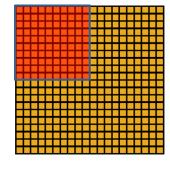

Feature Extraction using Convolution: A Simple Example

- Apply a 3x3 feature detector (or say, filter, convolution kernel) anywhere in input image
 - 3x3: Receptive field size (i.e. filter shape)
- **Convolve** the filter with the larger image to obtain a different feature activation value at each location in the image

Filter



Convolved Feature


Identical to "Shared Weights"

- Each filter is replicated across the entire visual field
 - They share the same weight vector, and form a *feature* map
 - Weights of the same color are shared—constrained to be identical
 - Locally connected

Pooling

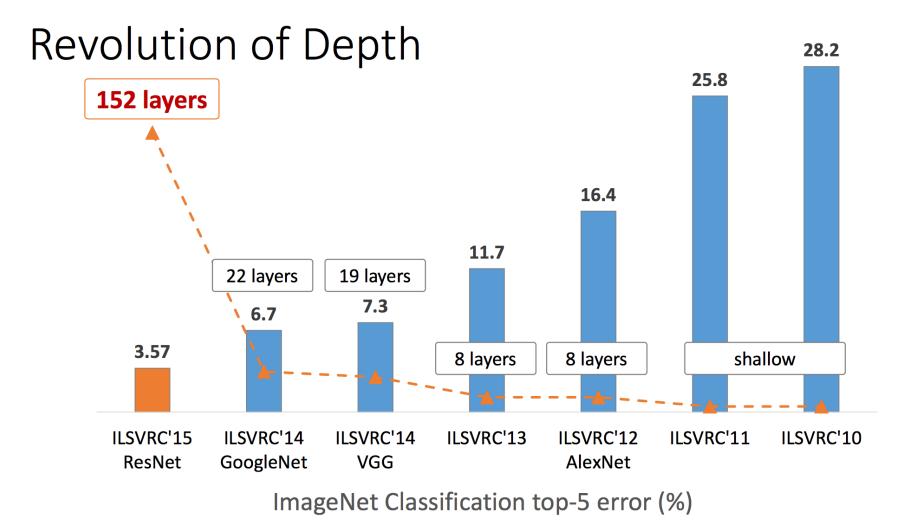
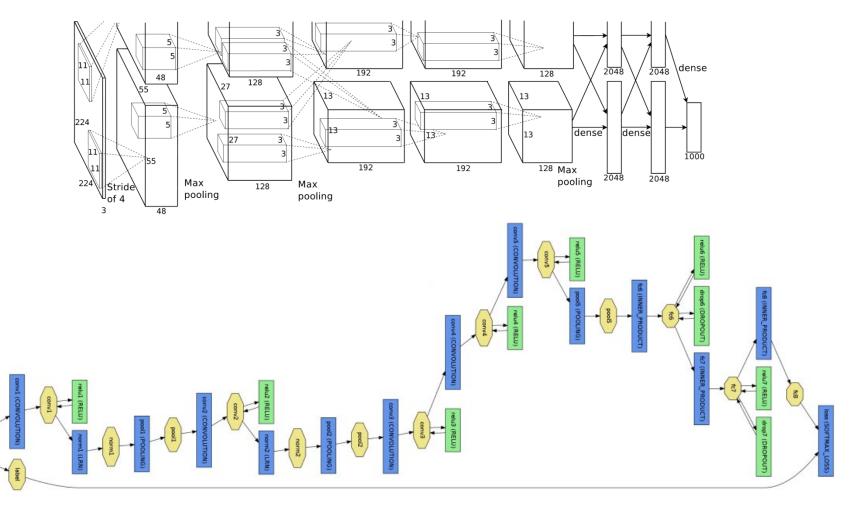
- Convolved features could be too many
 - High dimension makes learning hard
 - Prone to overfitting
- Pooling
 - Sub-sampling
 - Dimension reduction
 - Translation invariant
 - Max/mean/random pooling

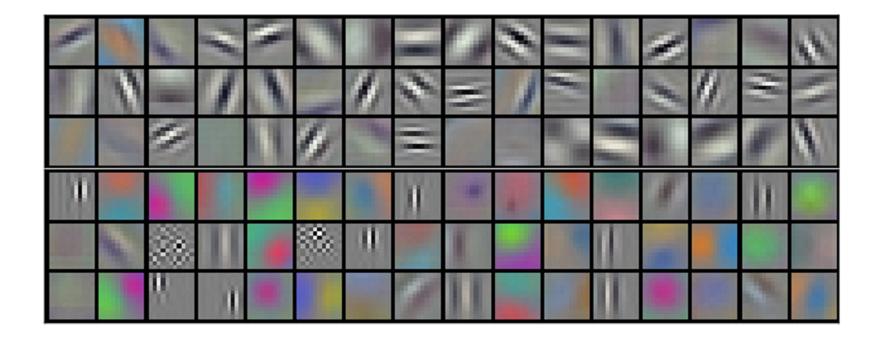
Pooled feature

1

Some Classical CNNs

- AlexNet (Krizhevsky et al. 2012)
 - Winner of ImageNet LSVRC 2012, top-5 error 15.3%
 - 8 layers: 5 conv (2 with LRN, 3 with pooling) + 3 FC (2 with dropout) layers
- GoogLeNet (Szegedy et al. 2015)
 - Winner of ImageNet LSVRC 2014, top-5 error 6.67%
 - 22 layers
- ResNet (He et al. 2016)
 - Winner of ImageNet ILSVRC & COCO 2015, top-5 error 3.57%
 - "Ultra-deep", 152 layers

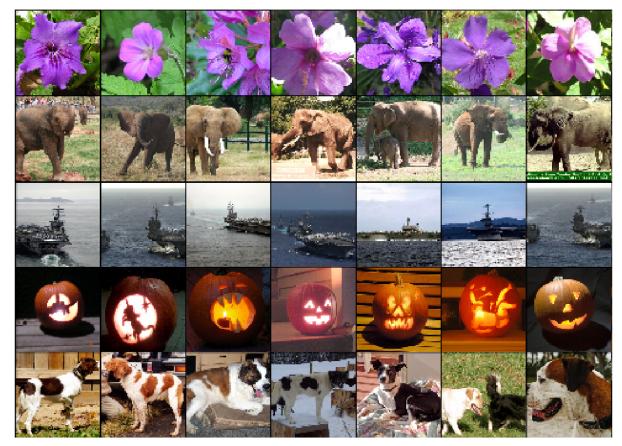

Figure source: Kaiming He

AlexNet Architecture

Features Learned

• ... by the first convolutional layer

	mite		container ship	motor scooter		leopard
	black widow		lifeboat	go-kart		jaguar
	cockroach		amphibian	moped		cheetah
T	tick	ſ	fireboat	bumper car	Γ	snow leopard
T	starfish		drilling platform	golfcart	[Egyptian cat
Property constrained and and	A REAL PROPERTY AND A REAL				1.1	



titi	elderberry	jelly fungus	pickup	
indri	ffordshire bullterrier	gill fungus	beach wagon	
howler monkey	currant	dead-man's-fingers	fire engine	

The last 4096d activations...

• Can be used for image retrieval

Many tricks & details!

- Initialization of weights
- Selection of activation functions
- #layers
- #feature maps
- Filter size & shape, pooling shape
- Normalization
- Learning rate
- Data augmentation
- Parameter tuning
- •
- More like **black box** than traditional ML methods!

Deep Learning is now leading the "AI Revolution"

Summary

- From a single neuron to feedforward NN (MLP)
 - BP algorithm
 - Deep vs. Shallow
- Popular deep nets
 - Autoencoder
 - CNN
- Deep learning models are being used for very difficult problems and making progress
- Deep learning is hot, it is delivering results and now is the time to get involved!

Thanks!