Ground State Selection in Quantum Pyrochlore Magnets

J. Gaudet¹ E. Kermarrec ^{1, 2} A.M. Hallas¹ K.A. Ross 1, 3 G. Sala¹ K. Fritsch^{1,4} G.M. Luke¹ D. Maharaj¹ J.P.C. Ruff^{1,5} M.M.P. Couchman¹ H.A. Dabkowska¹ D. Pomaranski⁶ J.B. Kycia⁶ M.A. White ⁷ C.R. Wiebe^{1,8} M.J.P. Gingras⁶ L. Savary 9, 10 L. Balents ⁹

¹ McMaster University
² Universite' Paris-Sud
³ Colorado State University
⁴ Helmholtz Zentrum Berlin
⁵ CHESS Cornell University
⁶ University of Waterloo
⁷ Dalhousie University
⁸ University of Winnipeg
⁹ KITP, UC Santa Barbara
¹⁰ MIT

Bruce D. Gaulin McMaster University

Brockhouse Institute for Materials Research

Collaborators at International Neutron and Muon Sources

Bruce D. Gaulin McMaster University

Brockhouse Institute for Materials Research

Physics of Frustration in 3D on Tetrahedra

Cubic Pyrochlore Lattice

Spin Ice: Ferromagnetic interactions combined with local Ising anisotropy leads to 6-fold degeneracy on a single tetrahedron - macroscopic degeneracy on 3D crystal

M.J. Harris, S.T. Bramwell, D.F. McMorrow, T. Zeiske, and K.W. Godfrey, PRL 79 2554 (1997)

Structure of Ice

Ferro coupling + [III] anisotropy "2 in 2 out" 6-fold degenerate

Spin Ice

•Classical macroscopic degeneracy

Supports monopole excitations

•Rare example of deconfined excitations in 3D

C. Castelnovo, R. Moessner, and S.L. Sondi, Nature, 451, 43 (2007) L. Balents, Nature, 464, 199 (2010)

"Quantum" Spin Ice

- Can tunnel between ice rules states
- Introduces fluctuations in the gauge field
 - Electric monopoles coherent, propagating wavepacket of ice configurations
 - Magnetic monopoles violate ice rules, i.e. 3-in 1-out
 - Gauge photons transverse fluctuations of gauge field

Pyrochlores have the quintessential lattice for the phenomena of magnetic frustration in 3D.

> (Er³⁺)₂(Ti⁴⁺)₂O₇ 4f¹¹ J=15/2

Η	(Yb³⁺)₂(Ti⁴⁺)₂O ₇									Не							
Li	Ве	4f ¹³ J=7/2						В	С	Ν	0	F	Ne				
Na	Mg									ΑΙ	Si	Ρ	S	CI	Ar		
κ	Ca	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Rb	Sr	Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	I	Xe
Cs	Ва	La	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Ро	At	Rn

Gardner, Gingras, and Greedan, Rev. Mod. Phys **82**, 53 (2010) Wiebe and Hallas, APL Materials **3**, 041519 (2015)

"disorder-free" spin glass spin ice metal-insulator transitions spin liquid order-by-disorder fragmentation

Real Pyrochlores: playgrounds for frustration

Anisotropy and Interactions combine for diverse exotic ground states

	Single Ion Anisotropy	Interactions	Ground state
Ho, Dy	Ising	FM	spin ice
Tb	Ising	AF	"quantum spin ice"
Gd	Heisenberg	AF	partial order
Er	XY	AF	Neel state via ObD
Yb	ΧΥ	FM	"quantum spin ice"

Yb₂Ti₂O₇: An XY Ferromagnetic Pyrochlore

H. W. J. Blöte, R. F. Wielinga and W. J. Huiskamp, Physica 43, 549 (1969).

Ferromagnetic "XY" pyrochlore
 covered by 6 K."T_C" ~ 240 mK
 Cp (T) has 2 peaks: one at "T_C"; one at ~ 3 K
 associated for effective spins K g⊥/g_{||} ~ 2

Crystal Field Environment at the RE Site

(2J+1) degenerate multiplet splits in presence of strong crystalline electric field from O²⁻ neighbours

Hallas et al., Phys. Rev. B 93, 104405 (2016)

Yb₂Ti₂O₇ Crystal Field Scheme

Crystal Field Effects

$Yb_2Ti_2O_7$	Er2Ti2O7	$Dy_2Ti_2O_7$
Gaudet et al, PRB 92, I34420 (2015)	Gaudet et al, unpublished. 900K	Bertin et al., J. Phys: CM, 24, 256003, 2012
= I 278K 900K	680K	== 550K == 500K ===== 450K
=843K	250K	== 300K
	76K	
$g_{ } = 1.92$ $g_{\perp} = 3.69$	$g_{ } = 3.91$ $g_{\perp} = 6.30$	g _{II} ~ 10 g⊥ ~ 0
4f ¹³ J=7/2	4f ¹¹ J=15/2	4f ⁹ J = I5/2

Yb₂Ti₂O₇ shows no conventional spin waves in H=0 Spin waves appear for H // [1-10] > 0.5 T

K. A. Ross et al, Phys. Rev. Lett. 103, 227202 (2009)

a)

002

000

00-2

113

111

11-1

11-3

222

220

22-2

Yb₂Ti₂O₇ shows no conventional spin waves in H=0 Spin waves appear for H // [1-10] > 0.5 T

[H,H,H]

 $Er_2Ti_2O_7: T_N=1.2 K$ $Q_{ord}=(220)$

1.0 1.5 [H,H,H]

K. A. Ross, J. P. C. Ruff, C. P. Adams, J. S. Gardner, H. A. Dabkowska, Y. Qiu, J. R. D. Copley, and B. D. Gaulin, Phys. Rev. Lett. 103, 227202 (2009)

Anisotropic Exchange

RE ions are heavy - spin orbit coupling is strong

 \rightarrow anisotropic exchange possible

4 symmetry-allowed terms for exchange tensor

S. Curnoe. Phys. Rev. B 78, 094418 (2008). see also S. Onoda and Y. Tanaka, Phys. Rev. B 83, 094411 (2011).

*local XY-*plane

local z-axes

$$\begin{split} H &= \sum_{\langle ij \rangle} \Big\{ \underbrace{J_{zz}}_{i} \mathbf{S}_{i}^{z} \mathbf{S}_{j}^{z} - \underbrace{J_{\pm}}_{i} (\mathbf{S}_{i}^{+} \mathbf{S}_{j}^{-} + \mathbf{S}_{i}^{-} \mathbf{S}_{j}^{+}) + \underbrace{J_{++}}_{i+} \Big[\gamma_{ij} \mathbf{S}_{i}^{+} \mathbf{S}_{j}^{+} + \gamma_{ij}^{*} \mathbf{S}_{i}^{-} \mathbf{S}_{j}^{-} \Big] \\ &+ \underbrace{J_{z\pm}}_{i} \Big[\mathbf{S}_{i}^{z} (\zeta_{ij} \mathbf{S}_{j}^{+} + \zeta_{ij}^{*} \mathbf{S}_{j}^{-}) + i \leftrightarrow j \Big] \Big\}, \end{split}$$

Hermele, M., Fisher, M. & Balents, L. Phys. Rev. B 69, 064404 (2004)

L. Savary, L. Balents, Phys. Rev. Lett. 108, 037202 (2012)

Spin waves in Yb₂Ti₂O₇'s field polarized state

K.A. Ross, L. Savary, B.D. Gaulin, and L. Balents, PRX, 1, 021002 (2011)

$S_{eff} = I/2$ XY AF Pyrochlore : $Er_2Ti_2O_7$ $\Theta_{CW} \sim -22 \text{ K}$

150

100

50

Counts/µs

A 9 year mystery (2003-2012) as to what selects Ψ_2 ground state in $Er_2Ti_2O_7$

$Er_2 Ti_2O_7$ @ 50 mK

J.P.C. Ruff, J.P. Clancy, A. Bourque, M.A. White, M. Ramazanoglu, J.S. Gardner, Y. Qiu, J.R.D. Copley, M.B. Johnson, H.A. Dabkowska and B.D. Gaulin, Phys. Rev. Lett., 101, 147205 (2008)

AF interactions and local XY anisotropy

Movie Credits: Oleg Tchernyshyov

- continuous degeneracy in mean field
- 6 Ψ_2 and 6 Ψ_3 domains
- ψ_2 selected by ObD

 $6 \Psi 2$ domains

A very small gap exists - It stabilizes $\Psi_2 vs \Psi_3$!

K.A. Ross, Y. Qiu, J.R.D. Copley, H.A. Dabkowska, and B.D. Gaulin, Phys. Rev. Lett., 112, 057201, 2014

A very small gap exists - It stabilizes $\Psi_2 vs \Psi_3$!

K.A. Ross, Y. Qiu, J.R.D. Copley, H.A. Dabkowska, and B.D. Gaulin, Phys. Rev. Lett., 112, 057201, 2014

The anisotropic exchange Hamiltonian predicts a rich phase diagram for the XY pyrochlores

$$\mathcal{H} = \sum_{\langle ij \rangle} \vec{S_i} \vec{J_{ij}} \vec{S_j}$$

 $J_1 = XY$ $J_2 = Ising$ $J_3 = Symmetric off-diagonal$ $J_4 = Dzyaloshinskii-Moriya$

The anisotropic exchange Hamiltonian predicts a rich phase diagram for the XY pyrochlores

Er₂Pt₂O_{7:}

Palmer-Chalker (Γ_7) Phase at much reduced T_N

300 (a) 0.06 K T = 0.06 K - 8 K8 K 200 60 (111)100 (002)Intensity (arb. units) 40 80 60 100 40 120 (113)(220)20 -20 60 80 100 40 120 2θ (degrees) (b)

Evidence that small changes in anisotropic exchange can easily induce different ordered phase(s): $\Gamma_5 \longrightarrow \Gamma_7$

A.M. Hallas, J. Gaudet et al, arXiv:1705.06680

Er₂Pt₂O₇: Inelastic Scattering

Er₂Pt₂O₇: Inelastic Scattering

A.M. Hallas, J. Gaudet et al, arXiv:1705.06680

Low energy spin excitation is gapped and dispersion less near Γ_7 to Γ_5 phase boundary

Yb₂Ti₂O₇: Sample dependent ground state properties

Powder samples grown from solid state synthesis tend to have $T_C \sim 0.26$ and very sharp C_P anomalies

Single crystal samples grown using FZ techniques tend to have lower T_{CS} (0.15 - 0.22 K) and broader, sometimes multiple, and weaker C_P anomalies

What is different betw and single crystal Y

K.A. Ross et al., Phys. Rev. B 86, 174424 (2012)

Yb_{2+x}Ti_{2-x}O_{7-y}

Our powders are stoichiometric: x=0

Our floating zone grown single crystals tend to be "lightly stuffed" x ~ 0.04

In contrast, Er₂Ti₂O₇ shows little or no sample variability

In contrast, Er₂Ti₂O₇ shows little or no sample variability

Magnetic properties (muons, neutrons ..) also show sample dependence about T_c ~ 0.15 - 0.26 K

Disorder at 16 mK; no phase transition D'ortenzio et al, Phys. Rev. B 88, 134428 (2013) Order at 50 mK; T_C ~ 0.25 K Chang et al, Phys. Rev. B 89, 184416 (2014)

Stoichiometric Yb₂Ti₂O₇ does order under pressure!

0.5

Temperature (K)

Tb₂Ti₂O₇, another QSI candidate, also displays extreme sensitivity to stoichiometry

powders

single crystals (& powders)

Sensitivity to disorder: Its not a bug, its a feature!

R2Ti2O7 "Rare earth titanates"

	Anisotropy	Interactions	Ground state	Sensitivity to disorder
Ho, Dy	Ising	FM	spin ice	-
Tb	Ising	AFM	quantum spin ice	very high
Gd	Heisenberg	AFM	partial order	-
Er	XY	AFM	Neel state via ObD	little
Yb	XY	FM	quantum spin ice	very high

Conclusions:

Pyrochore magnets can exhibit exotic quantum ground states despite
 J=large magnetic moments

Modern neutron scattering techniques offer remarkable advances for comprehensive, high resolution measurements

Proximity to other ordered phases?

Bruce D. Gaulin McMaster University

Brockhouse Institute for Materials Research