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Quantum many body systems:
Hilbert space: H = RgitesiHi

Hamiltonian: H = Z H, J = max, |H,




energy

Spectrum of gapped Hamiltonian:

~ J - Volume

<«—— excited states

——

ground state

Gapped:;

- exponentially decaying
correlations in ground state

- area law entanglement
entropy in ground state



Topological phases

non-gapped
— Hamiltonians

gapped Hamiltonians

- different phases distinguished by many-body invariants: e.g.
quantized Hall conductivity, quasiparticle statistics, etc.



Spectrum of gapped Hamiltonian:

~ J - Volume

energy

<«—— excited states

"= ground state

f

low energy physics



Topological phases

T=0 quantum phases: physics of the ground state
- quantum Hall effect (1980s):
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- quantum spin Hall effect, 3d topological insulator (2006-):
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New designer quantum systems

Alkalal atoms In
optical lattice:

Trapped ions:

Mott insulator -
superfluid transition

Quantum anti-
ferromagnetism
(Greiner 2017)

effective Ising spin chain:

Ay Ay e



Can we observe topological properties at finite
energy density?

energy ~ J - Volume

<— finite energy density

<«— excited states

>

= ground state



Generic expectation: subsystems are thermalized

(W(O)H[®(0)) =FE  E>Eg,
=> (V(1)|[H[¥(t)) = E

pa(t) = Trz [W(t))(W(t)

- becomes thermal:

1 _
pa(t) = - Trpe H/ k)

- finite energy density eigenstates have volume law entanglement
entropy (Eigenstate Thermalization Hypothesis)



Avoiding thermalization: Many-body localization (MBL)

- with strong disorder, can fail to achieve thermal equilibrium, even with
interactions

Basko, Aleiner, Altschuler; Pal, Huse, Gopalakrishnan, Nandkishore, Oganesyan, ...
experiments by Bloch group (cold atoms) and Monroe group (trapped ions)

- recall non-interacting Anderson insulator: all single-particle eigenstates
localized

— gl
nj = a;a;
\

complete set of quasi-local conserved quantities

- existence of complete set of quasi-local conserved quantities remains
remains true with weak interactions

J. Imbrie
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Finite depth quantum circuit of local unitaries:

- unitary operator on a many body Hilbert space built out of local
gates:

V)

- preserves notion of locality: if X is a local operator, then Ul XU
IS a ‘'nearby’ or ‘dressed’ quasi-local operator.

- Floquet unitaries are approximate quantum circuits
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disordered couplings

/
Hy = thf + Z Jijoio; + ...
v 1,
perturb with Hl — Z Cia'q;x: H = H() -+ H1
)

then there exists a finite depth circuit of unitaries U that approximately diagonalizes H
In the z basis: (Imbrie)

UTHU = Zhgaf —I—ZJ{,jafaj + ...
i i\

{UUfUT} then forms a complete set of quasi-local commuting conserved gquantities

f

‘I-bits’ (Huse, Nandkishore, Oganesyan)
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Many-body localization and topological order

- replace ‘gapped’ with ‘many-body localized’ (MBL)

generic Hamiltonians

/

‘e
.
.
.
“
‘e
.

MBL Hamiltonians

- topological order at finite energy density

(Bahri, Vosk, Altman, Vishwanath; Nandishore, Huse)

13



Floquet driving

- periodic time dependent Hamiltonian:

H(t+T)=H(t) Up = T exp (z / ) H(t)dt)

- diagonalize the ‘Floquet unitary’ U 4 Imaginary




Floquet band structure engineering

- free termions: trivial -> topological:

Oroularty polarized laser
_ (or periodic shaking)

Floquet- quasl energy
-

.‘f"“’ i
Floguet- Chern de.nutv

- proposal for Floquet Engineering 20 - photo-induced quantum Hall state on

Tl from trivial band structure (Lindner, . .
Refael, Galitski, Nat. Phys. *11) Tl surface (Gedik et al, Science 2013)
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Floquet band structure engineering

- Intrinsically Floquet band structures

@ @)
potential =>
=

- interactions?

Dehgani, Oka, Mitra PRB '14, PRB ‘15
Torres, Perez-Piskunow, Balseiro, Usaj, PRL ‘14

Rudner, Lindner,
Berg, Levin '12;
Titum, Berg, Rudner,
Refael, Lindner ’16;



Floquet systems: heating problem without MBL

- generically, system will absorb energy until it is at infinite
femperature:

- entropy has been maximized,
system ‘blows up’
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- MBL in Floquet systems:

- MBL can be stable upon turning on a time dependent periodic
perturbation:

H(t) = Hy + H; (1)
(Hy(t+T) = Hy(t)) Up = Texp | i / H(1)dt

Y

Up = e "Mt with UTHogU = E:Ma-+§jquw;

1,]

Ponte, Papic, Huveneers, Abanin;
L azarides, Das, Moessner

- schematically,

quasi-local commuting unitaries

w:H%f’
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Floguet MBL phases

generic Floguet drive

MBL Floquet drive

- many body interacting invariants for Floquet MBL phases?
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Chiral Floquet MBL phases

Po, LF, Potter, Vishwanath, ‘16

o o o o ZH ¥~ local terms
e = Texpl / H{(1) dt)

true in bulk of

VTUFV — o 1T'HMBL _— system

Hysr —ZhO’ —I—ZJZJO'ZO'Z—l—

1,]
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- Expose an edge:

Ha=) Hjt)

jEA

T
Up =TeXp(7j/ HA(t) dt)
0
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- Expose an edge:

Ha=) Hjt)

jEA

T
UA = Texpl(i / Hoa(t) dt)
0

— MBL in bulk of system, but not at
A —iTH/ edge.
‘/TU Vi=c¢€ MBL
AVERVA

- freeze bulk conserved quantities, get effective edge evolution Y acting on
red spins: quasi 1d system.
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® Y acts on spins in red region

- furthermore, Y is locality preserving: for any local operator O,

YTC’)Y IS a (quasi)-local operator supported nearby.

- is 'Y the Floquet operator of some (quasi)-local 1d Hamiltonian?
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Analogy

zero temperature 2d
topological phase

MBL Floguet system

Bulk gap «— Bulk MBL

Low energy field

theory for the 1d edge «<— | ocality preserving unitary Y on the 1d edge
lack of 1d UV Impossibility of writing Y as the Floquet
completion for low evolution of a 1d driving Hamiltonian

energy edge theory
(e.g. chiral anomaly)

22



E.g. uniform translation:

o—-0-0-0-0-0-0-0-0

-there exists a rational quantized "GNVW’ index associated to Y

: p
md(Y) — — Gross, Nesme, Vogts, Werner ‘09

q
- Y is the Floquet operator of a 1d system if and only if ind(Y)=1.

-v(Y) = log(ind(Y)) characterizes the chiral flow of quantum
information along the edge, and is a quantized invariant distinguishing
difterent Floquet-MBL phases
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Example of Chiral Floquet model:

- free fermion "anomalous Floguet-Anderson insulator’
Rudner, Lindner, Berg, Levin '12;

Titum, Berg, Rudner, Refael, Lindner ‘16
potential
ﬁﬂ
oA oB

- after one time step nothing happens in the bulk, but a translation occurs
on the edge

- replace fermion sites by bosonic spins (of arbitrary Hilbert space
dimension p) and hopping by swap gates => get ind(Y)=p

- stable to interactions and all symmetry breaking in Floquet-MBL
setting 24



Derivation of index

- coarse graining allows one to assume that Y is one-site local

YO0, 20;:1)Y C(Op1®0,)R(Opi1 @Opis)
- in fact, the algebra YT(C’)CU & Om+1)Y must be of the form R & R p

RR C O:E—I—l Y Oa;—|—2
with simple bosonic ‘support algebras’ R, R g

- Oac — ,/\/lp((j), RL — ./\/lq(@), index = p/g

- fermionic generalization: Z2 graded simple algebras => sqrt(2) index,
corresponding to Majorana translation
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Future directions

- fractional models
Po, LF, Vishwanath, Potter, arXiv 1701.01440

- Incorporate fermions and symmetries (e.g. € <-> m symmetry in toric code)

LF, Po, Potter, Vishwanath, arXiv 1703.07360

- higher dimensions? connections to quantum cellular automata

- experimental realizations? c.f. discrete Floguet time crystals

von Keyserlingk, Khemani, Sondhi; Else, Nayak; Yao, Potter, Potirniche, Vishwanath

experiment: Monroe group (trapped ions), Lukin group (NV centers)
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